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Experimental Section
Atomic Force Microscopy (AFM) and Field Emission Scanning Electron Microscopy (FE-

SEM). For analysis of multi-layered graphene (MLG), MLG samples dispersed in a solution of
water and 2-propanol (50:50, v/v) were deposited onto a silicon wafer. AFM experiments were
performed at the National Institute for Nanomaterials Technology (NIST; Pohang, Korea) with a
VEECO Dimension 3100 atomic force microscope. FE-SEM experiments were performed at

NIST using a JEOL JSM-7401F scanning electron microscope.

UV/Vis spectroscopy. The solutions of triphenylene (Tri) and Cgy were prepared by dissolving
them in toluene. Then, the UV/Vis absorption of prepared solutions were analyzed using

Shimadzu UV-1800 (Shimadzu, Japan) spectrophotometer.

Discussion
Penetration depth of 355 nm laser in multi-walled carbon nanotubes.

The intensity of the 355 nm laser as a function of the depth of graphite is estimated by
equation (1).

— =e % (D)
Io

where o = %, A=355 nm, and k=1.3, which is the extinction coefficient of graphite'. The

z values at Iizi is defined as the penetration depth of laser. This equation was
0

previously shown to provide good estimate of laser penetration depth in graphite, similar
to the experimental values®. Based on equation (1), the penetration depth of the 355 nm
laser through graphite was calculated to be ~22 nm. Because the interval length between
the layers in multi-walled carbon nanotubes (MWNT) (0.34 nm) is same as graphite, we

assumed that the extinction coefficient of MWNT is equal to that of graphite.
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Figure S1. (A) AFM images, and (B) FE-SEM images of MLG used in this study. Thickness of

each MLG sheet was ~5 nm, indicating that it is multi-layered. The lateral dimensions were in

the order of micrometers.



500

®  Calibrants
-- Power Fit for Calibrants
_ 450+ -
:;( =
7} =
S 4 ’
S 400 P
5 ;
-— ,m
g 350+ /_,f
8 v
3004  &"
"
s’ y=242.08x°%% R2=0.9899
250

10 15 20 25 30
Corrected arrival times, t,” (ms)

Figure S2. Collision cross-section (CCS) calibration curve obtained using poly-DL-alanine as

calibrants.
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Figure S3. Correlation between the number of carbon atoms and collision cross-section (CCS)
areas of carbon clusters from (A) triphenylene (Tri), (B) multi-layered graphene (MLG), (C)
single-walled carbon nanotube (SWNT), and (D) multi-walled carbon nanotube (MWNT). The
peaks in the spectra which have ratios, S/N>3, are considered. Experimental CCS values of
carbon clusters were compared with the theoretical CCS values of various models of +1 charge

state. Detailed description of the models is provided in Figure 2B.
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Table S1. Theoretical CCS of the structural models presented in Figure 2. The CCS values (A%)
of the models were obtained for +1 and +2 charge state. The models with +2 charge show
slightly increased theoretical CCS values. Due to insignificant difference between the values, we

adopt the theoretical CCS values of the +1 charge state for plotting Figures 2 and S3.

MODEL +1 +2

Ceo 167.64 | 170.72

Sheet Caoo 42433 | 42521
Cano 751.07 | 752.28
Ceoo 1063.40 | 1063.80

Css 175.60 | 178.29

SWNT Cros 320.81 322,46
Caoz 527.21 528.76

Csss 72777 | 728.46

Cioo 229.59 | 232.23

DWNT Cano 302.57 | 304.96
Cano 433.36 | 434.54

Ceoo 564.99 | 566.00

Ceo 126.73 | 132.00

Cro 138.76 | 144.33

Ceo 151.33 | 156.74

Fullerene Ci1oo 17413 | 172.79
Ciso 259.15 | 266.27

Caao 323.33 | 320.79

Ca2o 399.70 | 400.58

Csoo 560.61 561.52
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Figure S4. UV/Vis absorption spectra of triphenylene (Tri) precursor, Ce fullerene, and [Tri+Cgo]
mixture for the examination of possible innate Cgy constituents in Tri precursors. (A) The
absorption spectra of Tri precursor and Cgg. Cgo has absorption at the wavelength range of 370-
420 nm as previously reported by other groups,”* whereas Tri precursor shows no absorption at
this range. (B) The comparison of absorption spectra of Tri, Cg, and [Tri+Cgo] mixture. The

same absorbance of Cgy and [Tri+Cgo] at the wavelength range of 370-420 nm indicates that no

Ceo 1s included in the original Tri precursor.
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Figure S5. IM-MS spectra of ions generated from (A) triphenylene (Tri), (B) anthracene (Ath),
and (C) phenanthrene (Phn). These IM-MS spectra show high abundance of hydrocarbons

(C,H,,") and traces of carbon clusters (C,," and Cy,>").
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Figure S6. Mobility-separated mass spectrum of +3 charged carbon clusters from LDI mass
spectrum of multi-layer graphene (MLG). Inset shows the original mass spectrum over identical

m/z range.
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