## A Formal Total Synthesis of (土)-Kopsihainanine A Using a Raney-Cobalt Mediated Reductive Cyclization Route to Polyhydroquinolines

Shen H. Tan, Martin G. Banwell* and Anthony C. Willis

Research School of Chemistry, Institute of Advanced Studies, The Australian National University, Canberra, ACT 2601, Australia

## CONTENTS

PAGE
Anisotropic Displacement Ellipsoid Plots from the Single-crystal X-ray
Analyses of compounds 5,6 and $\mathbf{8}$. S2
${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra for compounds $\mathbf{2 , 5 , 5 , 8 - 1 1}$ and 13-17. S5


Figure S1: Structure of compound 5 (CCDC 1482202) with labeling of selected atoms. Anisotropic displacement ellipsoids show $30 \%$ probability levels. Hydrogen atoms are drawn as circles with small radii.


Figure S2: Structure of compound 6 (CCDC 1482203) with labeling of selected atoms. Anisotropic displacement ellipsoids show $30 \%$ probability levels. Hydrogen atoms are drawn as circles with small radii.


Figure S3: Structure of compound 8 (CCDC 1482204) with labeling of selected atoms. Anisotropic displacement ellipsoids show $30 \%$ probability levels. Hydrogen atoms are drawn as circles with small radii.

$100 \mathrm{MHz}{ }^{13} \mathrm{C}$ NMR Spectrum of Compound 5
(Recorded in $\mathrm{CD}_{3} \mathrm{OD}$ )




















$100 \mathrm{MHz}{ }^{13} \mathrm{C}$ NMR Spectrum of Compound 16
(Recorded in $\mathrm{CD}_{3} \mathrm{OD}$ )







Table 1: Comparison of ${ }^{13} \mathrm{C}$ NMR Data
Recorded for Compound 2 Obtained by the
Route Associated with the Present Study with those Reported by Mukai ${ }^{6}$

| ${ }^{13} \mathrm{C}$ NMR Data for <br> Compound 2 <br> $\left(\delta_{\mathrm{C}}\right)^{\mathrm{a}}$ | ${ }^{13} \mathrm{C}$ NMR Data <br> from Mukai <br> $\left(\delta_{\mathrm{C}}\right)^{\mathrm{b}}$ |
| :---: | :---: |
| 136.0 | 135.9 |
| 135.3 | 135.3 |
| 133.3 | 133.3 |
| 127.1 | 127.1 |
| 120.7 | 120.6 |
| 120.3 | 120.2 |
| 119.1 | 119.0 |
| 117.0 | 117.0 |
| 110.9 | 110.9 |
| 110.3 | 110.3 |
| 63.8 | 63.7 |
| 47.2 | 47.2 |
| 36.0 | 35.9 |
| 33.7 | 33.6 |
| 32.2 | 32.1 |
| 29.6 | 29.6 |
| 22.2 | 22.2 |
| 20.1 | 20.0 |

${ }^{\text {a }}$ spectrum recorded in $\mathrm{CDCl}_{3}$ at 100 MHz ;
${ }^{\text {b }}$ data obtained from reference 6 , spectrum recorded in $\mathrm{CDCl}_{3}$ at 100 MHz .

