Amidinatogermylene Metal Complexes as Homogeneous Catalysts in Alcoholic Media

Lucía Álvarez-Rodríguez, Javier A. Cabeza,* José M. Fernández-Colinas, Pablo García-Álvarez,* and Diego Polo

Departamento de Química Orgánica e Inorgánica-IUQOEM, Centro de Innovación en Química Avanzada (ORFEO-CINQA), Universidad de Oviedo-CSIC, E-33071 Oviedo, Spain

*E-mail: jac@uniovi.es (J.A.C.) and pga@uniovi.es (P.G.-A.)

	2	5	6
formula	C27H44ClGeN2Rh	$C_{29}H_{46}Cl_2GeN_2Ru$	$2(C_{29}H_{47}Cl_2GeIrN_2)$
fw	607.59	667.3	1518.75
cryst syst	Monoclinic	monoclinic	Monoclinic
space group	P21/c	P21/n	P21/c
a, Å	16.7872(2)	9.2077(1),	24.1428(2)
b,Å	12.2820(2)	20.0025(4)	9.3753(1)
<i>c</i> , Å	13.9392(2)	16.7333(3)	27.3016(2)
α , deg	90	90	90
β , deg	106.677(2)	90.978(1)	95.134(1)
γ, deg	90	90	90
V, Å ³	2753.10(7)	3081.44(9)	6154.8(1)
Z	4	4	4
<i>F</i> (000)	1256	1376	3024
$D_{\rm calcd}$, g cm ⁻³	1.466	1.438	1.639
μ , mm ⁻¹	1.805 (Mo Kα)	6.900 (Cu Ka)	11.185 (Cu Kα)
cryst size, mm	0.19 x 0.13 x 0.10	0.12 x 0.10 x 0.08	0.26 x 0.16 x 0.09
<i>Т</i> , К	120.0(1)	150(2)	155(2)
θ range, deg	3.32 to 31.50	3.44 to 69.00	3.25 to 68.99
min./max. h, k, l	-23/24, -17/18, -20/19	-10/11, -23/23, -14/19	-29/27, -8/11, -32/32
no. collected reflns	40344	14539	29901
no. unique reflns	8550	5640	11357
no. reflns with $I > 2\sigma(I)$	7168	5094	10591
no. params/restraints	298/0	328/0	659/0
GOF (on F^2)	1.040	1.036	1.042
R_1 (on $F, I > 2\sigma(I)$)	0.031	0.043	0.024
wR_2 (on F^2 , all data)	0.063	0.108	0.059
min./max. $\Delta \rho$, e Å ⁻³	-0.489/0.597	-1.476/2.145	-1.411/0.948
CCDC dep. no.	1480090	1480091	1480092

Table S1. Crystal, measurement and refinement data for the compounds studied by XRD

Figure S1. ¹H (top; 300.1 MHz) and ¹³C{¹H} (bottom; 75.5 MHz) NMR spectra of **2** (C_6D_6 , 25 °C).

Figure S2. ¹³C{¹H}-DEPT 135 (75.5 MHz) NMR spectrum of **2** (C₆D₆, 25 °C).

Figure S3. ¹H (top; 300.1 MHz) and ¹³C{¹H} (bottom; 75.5 MHz) NMR spectra of **3** (C_6D_6 , 25 °C).

Figure S4. ¹³C{¹H}-DEPT 135 (75.5 MHz) NMR spectrum of **3** (C₆D₆, 25 °C).

Figure S5. ¹H (top; 300.1 MHz) and ¹³C{¹H} (bottom; 75.5 MHz) NMR spectra of 4 (C_6D_6 , 25 °C).

Figure S6. ${}^{13}C{}^{1}H$ -DEPT 135 (75.5 MHz) NMR spectrum of 4 (C₆D₆, 25 °C).

Figure S7. ¹H (top; 300.1 MHz) and ¹³C{¹H} (bottom; 75.5 MHz) NMR spectra of 5 (C_6D_6 , 25 °C).

Figure S8. ${}^{13}C{}^{1}H$ -DEPT 135 (75.5 MHz) NMR spectrum of 5 (C₆D₆, 25 °C).

~1.55 ~1.55 —1.18

CH₃ (Cp*)

Figure S9. ¹H (top; 300.1 MHz, C_6D_6) and ¹³C{¹H} (bottom; 75.5 MHz, CD_2Cl_2) NMR spectra of **6** (25 °C).

Figure S10. ¹H NMR spectra (300.1 MHz, C₆D₆, 25 °C) of 5 (top) and 6 (bottom) after one day in isopropanol under air.

Figure S11. ¹H NMR spectra (300.1 MHz, C_6D_6 , 25 °C) of 3 after one day in toluene under air (top) and of pure ¹Bu₂bzamH (bottom).

Figure S12. ¹H NMR spectra (300.1 MHz, C_6D_6 , 25 °C) of the solid obtained by solvent evaporation after heating complex **5** in toluene at reflux temperature for 24 h.