Cooperative P–H Bond Activation with Ruthenium and Iridium Carbene Complexes

Julia Weismann, Lennart T. Scharf and Viktoria H. Gessner*

Institut für Anorganische Chemie, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany.

Present address: Lehrstuhl für Anorganische Chemie II, Ruhr-Universität Bochum, Universitätsstraße 150, D-44780 Bochum, Germany.

Index

1.	Synthetic procedure for the P–H bond activation in phosphines, NMR data and spectra of the reaction mixtures	S 2
2.	¹ H, ¹³ C and ³¹ P NMR spectra of the isolated compounds	S 8
3.	Crystal Structure Determination	S 17
3.1	Crystal Structure Determination of 4a	S18
3.2	Crystal Structure Determination of 4b	S21
3.3	Crystal Structure Determination of 5a	S24
3.4	Crystal Structure Determination of 5b	S26
4.	Computational Details	S 30
4.1.	Thermodynamics of different isomers	S 30
4.2	Mechanistic Studies	S42

Synthesis and Characterization of Complexes 3a-3f.

General procedure: In a *J. Young* NMR tube, 30.0 mg (49.5 µmol) of ruthenium carbene complex **1** were dissolved in 0.7 mL dry C_6D_6 (for reactions at room temperature) or dry toluene (for reactions at -78 °C) and the purple solution was treated with one equivalent (49.5 µmol) of the appropriate phosphine. Subsequently, a color change to red/orange occurred, and the reaction mixture was screened by ³¹P{¹H} NMR spectroscopy, indicating a complete conversion of the starting materials. Thus, the NMR spectroscopic studies confirmed the presence of more than one main product and consequently the desired activation products **3a-3f** could not be isolated and fully characterized. ¹H and ³¹P{¹H} NMR data were determined out of the spectra of the reaction mixtures.

³¹P{¹H} and ¹H NMR data of Complexes 3b-3f.

3b: ¹H NMR (400.1 MHz, C₆D₆): $\delta = 1.06$ (d, ³*J*_{HH} = 6.99 Hz, 3 H; CH(CH₃)₂), 1.16 (d, ³*J*_{HH} = 6.94 Hz, 3 H; CH(CH₃)₂), 1.60 (s, 3 H; CH₃), 2.88-2.98 (sept., ³*J*_{HH} = 6.77 Hz, 1 H; CH(CH₃)₂), 3.56 (dd, ²*J*_{PH} = 10.5, ³*J*_{PH} = 4.18 Hz, 1 H; PCHS), 5.09 (d, ³*J*_{HH} = 5.24 Hz, 1 H; CH_{Cymene}), 5.27 (d, ³*J*_{HH} = 5.82 Hz, 1 H; CH_{Cymene}), 5.38 (br., 2 H; CH_{Cymene}), 6.16-8.32 (CH_{arom}). ³¹P{¹H} NMR (162.0 MHz, C₆D₆): $\delta = 39.0$ (d, ³*J*_{PP} = 2.89 Hz), 56.7 (d, ³*J*_{PP} = 3.74 Hz; PS).

3c: ¹H NMR (400.1 MHz, C₆D₆): $\delta = 1.00$ (d, ³*J*_{HH} = 7.00 Hz, 3 H; CH(C*H*₃)₂), 1.18 (d, ³*J*_{HH} = 6.81 Hz, 3 H; CH(C*H*₃)₂), 1.63 (s, 3 H; C*H*₃), 2.70-2.80 (sept., ³*J*_{HH} = 7.00 Hz, 1 H; C*H*(CH₃)₂), 3.61 (dd, ²*J*_{PH} = 10.1, ³*J*_{PH} = 4.21 Hz, 1 H; PCHS), 5.07 (d, ³*J*_{HH} = 5.88 Hz, 1 H; C*H*_{Cymene}), 5.19 (d, ³*J*_{HH} = 5.70 Hz, 1 H; C*H*_{Cymene}), 5.25 (d, ³*J*_{HH} = 5.76 Hz, 1 H; C*H*_{Cymene}), 5.56 (d, ³*J*_{HH} = 5.95 Hz, 1 H; C*H*_{Cymene}), 6.57-6.75 (m, 8 H; C*H*_{arom}), 7.03-7.11 (m, 5 H; C*H*_{arom}), 7.52-7.54 (m, 2 H; C*H*_{arom}), 7.83 (dd, *J* = 1.90, 4.36 Hz, 4 H; C*H*_{arom}), 8.15-8.21 (m, 2 H; C*H*_{P(S)Ph,ortho}. ³¹P{¹H} NMR (162.0 MHz, C₆D₆): δ = 35.5 (br.), 59.5 (d, ³*J*_{PP} = 14.8 Hz; *P*S).

3d: ¹H NMR (400.1 MHz, C₆D₆): $\delta = 0.79$ (d, ³*J*_{HH} = 6.90 Hz, 3 H; CH(CH₃)₂), 1.03 (d, ³*J*_{HH} = 6.91 Hz, 3 H; CH(CH₃)₂), 1.84 (s, 3 H; CH₃), 2.68-2.78 (sept., ³*J*_{HH} = 6.85 Hz, 1 H; CH(CH₃)₂), 3.17 (s, 3 H; OCH₃), 3.24 (s, 3 H; OCH₃), 3.86 (dd, ²*J*_{PH} = 8.57, ³*J*_{PH} = 6.87 Hz, 1 H; PCHS), 5.47 (d, ³*J*_{HH} = 5.86 Hz, 1 H; CH_{Cymene}), 5.65 (d, ³*J*_{HH} = 6.18 Hz, 1 H; CH_{Cymene}), 6.23 (d, ³*J*_{HH} = 5.59 Hz, 1 H; CH_{Cymene}), 6.46-8.09 (CH_{arom.}). ³¹P{¹H} NMR (162.0 MHz, C₆D₆): $\delta = 36.5$ (d, ³*J*_{PP} = 2.95 Hz; PO), 56.6 (d, ³*J*_{PP} = 3.75 Hz; PS).

3e: ¹H NMR (400.1 MHz, C₆D₆): $\delta = 0.83$ (d, ³*J*_{HH} = 6.91 Hz, 3 H; CH(CH₃)₂), 1.29 (d, ³*J*_{HH} = 6.80 Hz, 3 H; CH(CH₃)₂), 1.92 (s, 3 H; CH₃), 2.70-2.78 (sept., ³*J*_{HH} = 6.94 Hz, 1 H; CH(CH₃)₂), 4.04 (dd, ²*J*_{PH} = 8.36, ³*J*_{PH} = 6.71 Hz, 1 H; PCHS), 5.57 (d, ³*J*_{HH} = 6.05 Hz, 1 H; CH_{Cymene}), 5.72 (d, ³*J*_{HH} = 6.32 Hz, 1 H; CH_{Cymene}), 5.96 (dd, ³*J*_{HH} = 2.23, 9.06 Hz, 1 H; CH_{Cymene}), 6.21-8.40 (CH_{arom.}). ³¹P{¹H} NMR (162.0 MHz, C₆D₆): $\delta = 34.3$ (br.), 56.5 (d, ³*J*_{PP} = 3.90 Hz; *P*S).

3f: ¹H NMR (400.1 MHz, C₆D₆): $\delta = 0.96$ (d, ³*J*_{HH} = 6.97 Hz, 3 H; CH(CH₃)₂), 1.01 (d, ³*J*_{HH} = 6.84 Hz, 3 H; CH(CH₃)₂), 1.63 (s, 3 H; CH₃), 2.54-2.64 (sept., ³*J*_{HH} = 6.88 Hz, 1 H; CH(CH₃)₂), 3.90 (dd, ²*J*_{PH} = 9.29, ³*J*_{PH} = 2.49 Hz, 1 H; PCHS), 4.92 (d, ³*J*_{HH} = 5.80 Hz, 1 H; CH_{Cymene}), 4.97 (d, ³*J*_{HH} = 5.68 Hz, 1 H; CH_{Cymene}), 5.20 (d, ³*J*_{HH} = 5.80 Hz, 1 H; CH_{Cymene}), 5.83 (d, ³*J*_{HH} = 5.99 Hz, 1 H; CH_{Cymene}), 6.50-6.55 (m, 2 H; CH_{arom}), 6.61-6.74 (m, 6 H; CH_{arom}), 7.02-7.10 (m, 3 H; CH_{arom}), 7.40 (d, ²*J*_{HH} = 7.19 Hz, 2 H; CH_{arom}), 7.64 (s, 2 H; CH_{arom}), 7.99-8.06 (m, 2 H; CH_{arom}), 8.40 (d, ³*J*_{HH} = 3.35 Hz, 4 H; CH_{arom}). ³¹P{¹H} NMR (162.0 MHz, C₆D₆): $\delta = 24.4$ (br.), 62.8 (d, ³*J*_{PP} = 14.0 Hz; PS).

Figure S1. ¹H and ³¹P{¹H} NMR spectra of 3b in C₆D₆.

Figure S2. ¹H and ³¹P{¹H} NMR spectra of 3c in C₆D₆.

Figure S3. ¹H and ³¹P{¹H} NMR spectra of **3d** in C_6D_6 .

Figure S4. ¹H and ³¹P{¹H} NMR spectra of 3e in C₆D₆.

Figure S5. ¹H and ³¹P{¹H} NMR spectra of **3f** in C_6D_6 .

2. NMR spectra of the isolated complexes

Figure S6. ${}^{13}C{}^{1}H$ and ${}^{31}P{}^{1}H$ NMR spectra of 4a in CD₂Cl₂.

Figure S7. ¹H NMR spectrum of 4a in CD₂Cl₂.

Figure S8. ESI-HR MS spectra of complex 4b.

Figure S9. ${}^{13}C{}^{1}H$ and ${}^{31}P{}^{1}H$ NMR spectra of 4b in CD₂Cl₂.

Figure S10. ¹H NMR spectrum of 4b in CD₂Cl₂.

Figure S11. ${}^{13}C{}^{1}H$ NMR spectrum of 4c in CD₂Cl₂.

Figure S12. ${}^{31}P{}^{1}H$ and ${}^{1}H$ NMR spectra of 4c in CD₂Cl₂.

Figure S13a. VT ${}^{31}P{}^{1}H$ NMR spectra of 5a in CD₂Cl₂ at low temperatures.

Figure S13b. VT ¹H NMR spectra of 5a in CD₂Cl₂ at low temperatures.

Figure 14a. VT ${}^{31}P{}^{1}H$ NMR spectra of 5a in CD₂Cl₂ at elevated temperatures.

Figure S16. ${}^{13}C{}^{1}H$ spectrum of 5b in CD₂Cl₂.

Figure S17. ¹H and ³¹P{¹H} NMR spectra of **5b** in CD₂Cl₂.

3. Crystal Structure Determination

Table S1a . Data collection and structure refinement details for compounds	4a and 4b .
---	---------------------------

Compound	4a	4b
CCDC No.	CCDC 1450798	CCDC 1450797
Formula	$C_{43}H_{43}O_3P_2RuS_2{\cdot}0.5\ C_7H_8$	$C_{44}H_{41}O_3P_2RuS_2Cl_2$
Formula weight [g·mol ⁻¹]	880.97	915.80
Temperature [K]	100(2)	100(2)
Wave length [Å]	0.71073	0.71073
Crystal system	Monoclinic	Monoclinic
Space group	<i>C</i> 2/c	<i>C</i> 2/c
a [Å]	25.0763(13)	27.165(3)
b [Å]	12.6879(7)	13.074(1)
c [Å]	26.8084(14)	25.394(4)
α [°]	90	90
β [°]	109.414(2)	118.508(3)
γ [°]	90	90
Volume [Å ³]	8044.5(7)	7925.2(17)
Z	8	8
Calc. density [Mg·m ⁻³]	1.455	1.535
μ (Mo _{Kα}) [mm ⁻¹]	0.615	0.758
F(000)	3648	3752
Crystal dimensions [mm]	0.21 x 0.19 x 0.09	0.19 x 0.18 x 0.07
Theta range [°]	1.61 to 25.00	2.90 to 25
Index ranges	$-29 \leq h \leq 29$	$-32 \leq h \leq 32$
	$-15 \leq k \leq 15$	$-15 \leq k \leq 15$
	$-31 \le l \le 31$	$-30 \le l \le 30$
Reflections collected	59370	44370
Independent reflections	7089 [$R_{\rm int} = 0.0496$]	6950 [$R_{\rm int} = 0.0969$]
Data/Restraints/Parameter	7089 / 0 / 517	6950 / 0 / 494
Goodness-of-fit on F ²	1.097	1.100
Final R indices [I>2sigma(I)]	R1 = 0.0413 w $R2 = 0.1229$	R1 = 0.0381 w $R2 = 0.0661$
<i>R</i> indices (all data)	R1 = 0.0486 w $R2 = 0.1275$	R1 = 0.0738 w $R2 = 0.0774$
Largest diff. peak and hole	0779 und -0.793	0.417 und -0.428

Table S1b. Data collection and structure refinement details for compounds 5a and 5b.

Compound	5a	5b
CCDC No.	CCDC 1450796	CCDC 1450795
Formula	$C_{43}H_{45}O_3P_2IrS_2$	$C_{41}H_{39}Cl_2IrO_3P_2S_2 \cdot 1.5 \ C_6H_6$
Formula weight [g·mol ⁻¹]	928.05	1086.05
Temperature [K]	100(2)	100(2)
Wave length [Å]	0.71073	0.71073
Crystal system	Monoclinic	Monoclinic
Space group	$P2_{1}/c$	$P2_1/n$
a [Å]	11.5779(12)	13.0190(6)
b [Å]	19.1195(19)	23.4383(10)

c [Å]	17.1015(17)	18.9496(7)
α [°]	90	90
β [°]	96.535(3)	95.295(2)°
γ [°]	90	90
Volume [Å ³]	3761.1(7)	4542.3(4)
Z	4	4
Calc. density [Mg·m ⁻³]	1.639	1.588
μ (Mo _{Kα}) [mm ⁻¹]	3.787	3.262
F(000)	1864	2180
Crystal dimensions [mm]	0.31 x 0.28 x 0.21	0.21 x 0.20 x 0.11
Theta range [°]	1.60 to 26.44	1.62 to 25.00
Index ranges	$-13 \leq h \leq 13$	$-15 \leq h \leq 15$
	$-22 \leq k \leq 22$	$-27 \leq k \leq 27$
	$-20 \leq l \leq 20$	$-17 \leq l \leq 17$
Reflections collected	45901	74061
Independent reflections	6633 [$R_{int} = 0.0426$]	8005 [$R_{int} = 0.0352$]
Data/Restraints/Parameter	6633 / 0 / 461	8005 / 0 / 550
Goodness-of-fit on F ²	1.044	1.013
Final R indices [I>2sigma(I)]	R1 = 0.0198	R1 = 0.0201
	wR2 = 0.0425	wR2 = 0.0468
R indices (all data)	R1 = 0.0255 WP2 = 0.0445	R1 = 0.0249 WP2 = 0.0493
Largest diff. peak and hole	0.467 and -0.397	0.797 and -0.366

3.1 Crystal Structure Determination of 4a

All hydrogen atoms were refined on ideal positions except for H1 at C1, which was found in the difference Fourier map and refined independently.

Figure S18. ORTEP Plot of complex 4a. Ellipsoids are drawn at the 50% probability level.

	Х	У	Z	U(eq)
Ru(1)	8207(1)	10758(1)	8434(1)	12(1)
S (1)	8063(1)	9027(1)	7999(1)	13(1)
S(2)	8819(1)	9992(1)	9721(1)	16(1)
P(1)	8545(1)	8536(1)	8723(1)	12(1)
P(2)	7262(1)	10441(1)	8417(1)	12(1)
$\dot{\mathbf{O}(1)}$	9393(1)	10233(2)	9767(1)	24(1)
O(2)	8509(1)	10800(2)	9885(1)	21(1)
O(3)	7194(1)	9515(2)	8748(1)	15(1)
C(1)	8412(2)	9630(3)	9079(1)	13(1)
C(2)	9245(2)	82/1(3)	8716(1)	16(1)
C(2)	9742(2)	8722(3)	9020(2)	30(1)
C(3)	10242(2)	8/8/(5)	8028(2)	56(2)
C(4)	10242(2) 10247(2)	7766(4)	8520(2) 8540(2)	50(2)
C(3)	10247(2) 0752(2)	7700(4)	0340(2) 9249(2)	32(2) 20(1)
C(0)	9755(2)	7273(3)	0240(2) 9224(2)	50(1)
C(7)	9252(2)	7505(3)	8554(2)	20(1)
C(8)	8288(2)	/335(3)	8927(1)	16(1)
C(9)	8649(2)	6687(3)	9306(1)	19(1)
C(10)	8431(2)	5849(3)	9507(2)	24(1)
C(11)	7856(2)	5644(3)	9318(2)	24(1)
C(12)	7499(2)	6283(3)	8935(2)	22(1)
C(13)	7708(2)	7142(3)	8744(2)	18(1)
C(14)	8837(2)	8885(3)	10127(1)	22(1)
C(15)	8335(2)	8469(3)	10142(2)	34(1)
C(16)	8361(3)	7619(4)	10483(2)	48(1)
C(17)	8885(3)	7252(4)	10798(2)	55(2)
C(18)	9377(3)	7686(4)	10781(2)	53(2)
C(19)	9360(2)	8508(4)	10441(2)	36(1)
C(20)	8238(2)	12993(3)	9157(2)	34(1)
C(21)	8385(2)	12409(3)	8739(2)	22(1)
C(22)	8897(2)	11829(3)	8861(2)	20(1)
C(23)	9075(2)	11345(3)	8467(2)	17(1)
C(24)	8722(2)	11394(3)	7935(1)	16(1)
C(25)	8888(2)	10926(3)	7490(2)	22(1)
C(26)	9353(2)	10109(3)	7664(2)	27(1)
C(27)	9046(2)	11825(4)	7183(2)	36(1)
C(28)	8200(2)	11944(3)	7807(2)	19(1)
C(29)	8038(2)	12435(3)	8203(2)	23(1)
C(30)	6959(2)	11639(3)	8602(1)	15(1)
C(31)	6944(2)	11829(3)	9114(2)	18(1)
C(32)	7096(2)	11027(3)	9548(2)	23(1)
C(33)	6777(2)	12831(3)	9225(2)	23(1)
C(34)	6625(2)	13627(3)	8854(2)	26(1)
C(35)	6615(2)	13027(3) 13418(3)	8342(2)	26(1)
C(36)	6774(2)	12434(3)	8223(2)	19(1)
C(30)	6768(1)	10278(3)	7738(1)	1/(1)
C(38)	6201(2)	9977(3)	7647(2)	19(1)
C(30)	50/1(2)	9927(3) 9011(3)	8080(2)	25(1)
C(37)	5941(2)	0667(2)	7130(2)	23(1) 24(1)
C(40)	5005(2) 6065(2)	9002(3) 0602(3)	6717(2)	24(1) 23(1)
C(41)	6614(2)	10012(2)	6801(1)	23(1) 20(1)
C(42)	6055(2)	10012(3) 10075(3)	7207(1)	$\frac{20(1)}{14(1)}$
C(43)	0070(2)	10273(3)	/30/(1)	14(1) 51(5)
C12	9972(3) 0041(2)	4940(4)	70/0(2) 10212(2)	J1(J)
C22	9941(3)	5524(4) 50(0(6)	10512(5)	4/(3)
C32	9704(3)	5069(6)	10666(2)	40(3)
C42	9498(3)	4035(6)	10585(2)	49(3)
C52	9529(3)	3457(4)	10150(3)	55(3)
C62	9/66(3)	3912(4)	9797(2)	43(3)
C/2	10230(4)	5440(7)	9494(3)	55(3)

Table S2. Atomic coordinates (x 10⁴) and equivalent isotropic displacement parameters ($Å^2x$ 10³) for 4a. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

Table S3. Anisotropic displacement parameters ($Å^2x \ 10^3$) for **4a**. The anisotropic displacement factor exponent takes the form: $-2p^2[h^2a^{*2}U^{11} + ... + 2hka^*b^*U^{12}]$

	1					
	U ¹¹	U ²²	U ³³	U ²³	U ¹³	U ¹²
Ru(1)	13(1)	10(1)	13(1)	-1(1)	5(1)	0(1)
S(1)	14(1)	13(1)	12(1)	-1(1)	3(1)	0(1)
S(2)	14(1)	19(1)	13(1)	-4(1)	2(1)	1(1)
P(1)	11(1)	11(1)	13(1)	-1(1)	2(1)	0(1)
P(2)	13(1)	12(1)	12(1)	1(1)	$\frac{2}{4(1)}$	2(1)
O(1)	14(1)	33(2)	23(2)	-11(1)	4(1)	-2(1)
O(2)	22(1)	22(1)	19(1)	-5(1)	5(1)	$\frac{1}{4(1)}$
O(3)	14(1)	15(1)	16(1)	3(1)	5(1)	3(1)
C(1)	13(2)	12(2)	12(2)	-3(1)	2(2)	0(1)
C(2)	12(2)	12(2) 15(2)	20(2)	0(2)	$\frac{2(2)}{3(2)}$	5(1)
C(3)	12(2) 16(2)	33(2)	37(2)	-21(2)	5(2)	-2(2)
C(4)	15(2)	71(4)	75(4)	-53(3)	8(2)	-7(2)
C(5)	15(2) 16(2)	67(4)	72(4)	-44(3)	13(2)	2(2)
C(6)	21(2)	31(2)	37(3)	-18(2)	7(2)	$\frac{2(2)}{4(2)}$
C(0)	15(2)	19(2)	23(2)	-4(2)	2(2)	0(2)
C(8)	22(2)	13(2)	14(2)	-5(2)	5(2)	-1(2)
C(0)	22(2) 23(2)	15(2)	17(2)	-3(2)	1(2)	0(2)
C(10)	$\frac{23(2)}{38(2)}$	10(2) 17(2)	13(2)	-1(2)	$\frac{1(2)}{4(2)}$	3(2)
C(10)	$\frac{30(2)}{40(2)}$	17(2) 13(2)	24(2)	-1(2) 2(2)	$\frac{1}{2}$	$\frac{3(2)}{1(2)}$
C(11)	+0(2) 23(2)	13(2) 18(2)	24(2) 28(2)	$\frac{2(2)}{4(2)}$	10(2) 14(2)	1(2) 1(2)
C(12)	$\frac{25(2)}{16(2)}$	17(2)	19(2)	-4(2)	A(2)	-1(2) 3(2)
C(13)	10(2) 33(2)	$\frac{1}{(2)}$	19(2) 12(2)	-1(2)	$\frac{4(2)}{7(2)}$	5(2)
C(14)	53(2)	21(2) 30(2)	12(2) 30(2)	1(2) 0(2)	7(2)	5(2)
C(15)	32(3) 88(4)	30(2)	30(2)	0(2)	$\frac{27(2)}{50(3)}$	5(2)
C(10)	112(5)	31(3) 20(2)	43(3)	-2(2)	30(3) 21(2)	-3(3)
C(17)	72(4)	30(3)	20(3)	10(2)	21(3)	21(3)
C(18)	/ 5(4)	40(3)	30(3)	3(2)	-3(3)	8(3) 0(2)
C(19)	41(3)	33(3) 17(2)	23(2)	-2(2)	-4(2)	9(2)
C(20)	30(3)	1/(2)	42(3)	-8(2)	34(2)	-8(2)
C(21)	34(2)	9(2)	50(2)	-5(2)	21(2)	-8(2)
C(22)	20(2)	10(2)	14(2)	-1(2)	4(2)	-9(2)
C(23)	13(2)	14(2)	24(2)	0(2)	4(2)	-6(2)
C(24)	19(2)	11(2)	21(2)	-1(2)	8(2)	-4(2)
C(25)	26(2)	20(2)	23(2)	-3(2)	13(2)	-6(2)
C(26)	25(2)	28(2)	36(2)	-9(2)	21(2)	-6(2)
C(27)	50(3)	33(3)	34(3)	-6(2)	29(2)	-11(2)
C(28)	21(2)	17(2)	19(2)	1(2)	7(2)	-6(2)
C(29)	27(2)	14(2)	34(2)	5(2)	17(2)	-3(2)
C(30)	13(2)	16(2)	17(2)	-1(2)	6(2)	-1(1)
C(31)	14(2)	23(2)	18(2)	-2(2)	6(2)	-2(2)
C(32)	24(2)	32(2)	15(2)	0(2)	9(2)	1(2)
C(33)	17(2)	28(2)	27(2)	-11(2)	11(2)	-4(2)
C(34)	20(2)	19(2)	44(3)	-4(2)	15(2)	2(2)
C(35)	24(2)	20(2)	39(2)	7(2)	16(2)	6(2)
C(36)	21(2)	17(2)	21(2)	2(2)	8(2)	3(2)
C(37)	13(2)	10(2)	16(2)	2(1)	2(2)	3(1)
C(38)	17(2)	17(2)	23(2)	4(2)	7(2)	3(2)
C(39)	16(2)	31(2)	31(2)	1(2)	11(2)	-4(2)
C(40)	13(2)	25(2)	29(2)	2(2)	1(2)	-1(2)
C(41)	21(2)	20(2)	18(2)	-1(2)	-4(2)	2(2)
C(42)	25(2)	16(2)	15(2)	1(2)	4(2)	6(2)
C(43)	13(2)	13(2)	16(2)	3(1)	4(2)	2(1)
C12	18(5)	64(8)	54(14)	27(10)	-13(7)	9(5)
C22	26(6)	44(8)	57(8)	-3(6)	-7(5)	9(5)
C32	44(7)	37(7)	37(7)	1(5)	-13(5)	13(5)
C42	41(6)	40(6)	48(7)	17(5)	-10(5)	7(5)
C52	61(7)	44(6)	34(6)	17(5)	-9(5)	-5(5)
C62	25(5)	39(6)	45(6)	-1(5)	-13(5)	2(4)
C72	46(7)	63(9)	45(8)	20(7)	-1(6)	12(7)

3.2 Crystal Structure Determination of 4b

Figure. S19. ORTEP Plot of complex 4b. Ellipsoids are drawn at the 50% probability level.

-	Х	У	Z	U(eq)
Ru(1)	8343(1)	9957(1)	8516(1)	11(1)
Cl(1)	6506(1)	13688(1)	8986(1)	31(1)
S (1)	8207(1)	8232(1)	8093(1)	14(1)
P(1)	8690(1)	7813(1)	8955(1)	12(1)
O(1)	8678(1)	10212(2)	10084(1)	18(1)
C(1)	8580(2)	8942(3)	9276(2)	12(1)
Cl(2)	5524(1)	8648(1)	5778(1)	24(1)
S(2)	8975(1)	9343(1)	10017(1)	13(1)
P(2)	7445(1)	9643(1)	8406(1)	13(1)
O(2)	9561(1)	9477(2)	10195(1)	16(1)
C(2)	9382(2)	7495(3)	9086(2)	15(1)
O(3)	7395(1)	8838(2)	8809(1)	15(1)
C(3)	9434(2)	6578(3)	8835(2)	22(1)
C(4)	9934(2)	6324(3)	8845(2)	27(1)
C(5)	10383(2)	6984(3)	9103(2)	22(1)
C(6)	10337(2)	7889(3)	9350(2)	18(1)
C(7)	9838(2)	8149(3)	9346(2)	15(1)
C(8)	8425(2)	6704(3)	9164(2)	14(1)
C(9)	7848(2)	6540(3)	8886(2)	17(1)
C(10)	7629(2)	5748(3)	9076(2)	24(1)
C(11)	7982(2)	5122(3)	9537(2)	23(1)
C(12)	8554(2)	5281(3)	9824(2)	23(1)
C(13)	8778(2)	6063(3)	9634(2)	18(1)
C(14)	8911(2)	8332(3)	10442(2)	14(1)
C(15)	9370(2)	7736(3)	10801(2)	18(1)

Table S4. Atomic coordinates ($x \ 10^4$) and equivalent isotropic displacement parameters (Å²x 10³) for **4b**. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

C(16)	9301(2)	6919(3)	11107(2)	24(1)
C(17)	8780(2)	6706(3)	11053(2)	22(1)
C(18)	8324(2)	7321(3)	10703(2)	22(1)
C(19)	8390(2)	8142(3)	10396(2)	19(1)
C(20)	8318(2)	12217(3)	9196(2)	21(1)
C(21)	8479(2)	11604(3)	8798(2)	14(1)
C(22)	8996(2)	11087(3)	9032(2)	15(1)
C(23)	9185(2)	10597(3)	8664(2)	15(1)
C(24)	8834(2)	10547(3)	8041(2)	14(1)
C(25)	9004(2)	10068(3)	7613(2)	19(1)
C(26)	9157(2)	10923(3)	7301(2)	31(1)
C(27)	9472(2)	9282(3)	7892(2)	25(1)
C(28)	8298(2)	11020(3)	7801(2)	15(1)
C(29)	8128(2)	11542(3)	8167(2)	16(1)
C(30)	7139(2)	10805(3)	8530(2)	13(1)
C(31)	7190(2)	10947(3)	9096(2)	16(1)
C(32)	6991(2)	11827(3)	9236(2)	21(1)
C(33)	6744(2)	12574(3)	8807(2)	19(1)
C(34)	6681(2)	12460(3)	8235(2)	19(1)
C(35)	6871(2)	11564(3)	8101(2)	17(1)
C(36)	6925(2)	9309(3)	7636(2)	12(1)
C(37)	6461(2)	8735(3)	7558(2)	20(1)
C(38)	6034(2)	8518(3)	6990(2)	22(1)
C(39)	6074(2)	8871(3)	6497(2)	16(1)
C(40)	6539(2)	9398(3)	6565(2)	20(1)
C(41)	6962(2)	9615(3)	7135(2)	17(1)
C1A1	9716(2)	3429(4)	12328(2)	40(1)
C2A1	9428(2)	4344(4)	12155(2)	38(1)
C3A1	9719(2)	5254(3)	12336(2)	31(1)

Table S5. Anisotropic displacement parameters (Å²x 10³) for **4b**. The anisotropic displacement factor exponent takes the form: $-2p^2[h^2a^{*2}U^{11} + ... + 2hka^{*}b^{*}U^{12}]$.

	U ¹¹	U ²²	U ³³	U ²³	U ¹³	U ¹²
Ru(1)	11(1)	11(1)	12(1)	1(1)	6(1)	-1(1)
Cl(1)	39(1)	21(1)	46(1)	-8(1)	31(1)	3(1)
S (1)	16(1)	14(1)	11(1)	-1(1)	6(1)	-1(1)
P(1)	12(1)	11(1)	12(1)	-1(1)	6(1)	-1(1)
O(1)	24(2)	14(2)	21(2)	-5(1)	14(1)	0(1)
C(1)	12(2)	13(2)	11(2)	3(2)	6(2)	-1(2)
Cl(2)	16(1)	26(1)	22(1)	-5(1)	3(1)	-1(1)
S(2)	14(1)	14(1)	12(1)	-1(1)	6(1)	-2(1)
P(2)	12(1)	13(1)	15(1)	1(1)	7(1)	0(1)
O(2)	13(2)	21(2)	15(1)	-3(1)	7(1)	-5(1)
C(2)	13(2)	17(2)	16(2)	2(2)	9(2)	1(2)
O(3)	16(2)	15(1)	19(2)	6(1)	11(1)	-1(1)
C(3)	20(2)	20(2)	28(2)	-5(2)	13(2)	-5(2)
C(4)	30(3)	16(2)	43(3)	-8(2)	25(2)	-1(2)
C(5)	15(2)	26(2)	28(2)	4(2)	14(2)	6(2)

C(6)	13(2)	22(2)	17(2)	-1(2)	6(2)	-2(2)
C(7)	19(2)	15(2)	11(2)	-1(2)	7(2)	1(2)
C(8)	20(2)	10(2)	14(2)	-6(2)	10(2)	-1(2)
C(9)	20(2)	14(2)	19(2)	-2(2)	11(2)	0(2)
C(10)	22(2)	25(2)	30(3)	-4(2)	18(2)	-6(2)
C(11)	35(3)	16(2)	30(2)	-3(2)	25(2)	-9(2)
C(12)	36(3)	19(2)	13(2)	0(2)	11(2)	1(2)
C(13)	21(2)	18(2)	17(2)	-5(2)	10(2)	-6(2)
C(14)	20(2)	16(2)	10(2)	-3(2)	10(2)	-6(2)
C(15)	17(2)	22(2)	19(2)	2(2)	10(2)	1(2)
C(16)	22(2)	27(2)	19(2)	6(2)	7(2)	3(2)
C(17)	29(3)	21(2)	16(2)	0(2)	12(2)	-6(2)
C(18)	21(2)	28(2)	21(2)	2(2)	14(2)	-6(2)
C(19)	18(2)	25(2)	17(2)	-2(2)	10(2)	2(2)
C(20)	23(2)	12(2)	29(2)	0(2)	15(2)	-2(2)
C(21)	17(2)	6(2)	22(2)	-1(2)	12(2)	-5(2)
C(22)	16(2)	12(2)	17(2)	4(2)	8(2)	-5(2)
C(23)	15(2)	11(2)	21(2)	4(2)	10(2)	-2(2)
C(24)	18(2)	9(2)	20(2)	1(2)	12(2)	-7(2)
C(25)	20(2)	19(2)	20(2)	-3(2)	12(2)	-5(2)
C(26)	43(3)	33(3)	30(3)	4(2)	29(2)	1(2)
C(27)	28(3)	28(2)	26(2)	-2(2)	18(2)	0(2)
C(28)	17(2)	14(2)	15(2)	1(2)	8(2)	-4(2)
C(29)	14(2)	9(2)	22(2)	5(2)	7(2)	-3(2)
C(30)	10(2)	17(2)	13(2)	-1(2)	7(2)	-2(2)
C(31)	11(2)	20(2)	14(2)	2(2)	5(2)	-2(2)
C(32)	26(2)	26(2)	18(2)	-5(2)	16(2)	-5(2)
C(33)	18(2)	14(2)	29(2)	-4(2)	15(2)	0(2)
C(34)	18(2)	17(2)	26(2)	2(2)	13(2)	2(2)
C(35)	16(2)	21(2)	16(2)	0(2)	10(2)	-1(2)
C(36)	11(2)	11(2)	16(2)	1(2)	8(2)	5(2)
C(37)	19(2)	22(2)	20(2)	-1(2)	10(2)	-1(2)
C(38)	16(2)	24(2)	26(2)	-6(2)	10(2)	-10(2)
C(39)	9(2)	16(2)	18(2)	-2(2)	2(2)	5(2)
C(40)	22(2)	21(2)	15(2)	6(2)	8(2)	0(2)
C(41)	15(2)	15(2)	19(2)	2(2)	6(2)	-6(2)
C1A1	40(3)	34(3)	40(3)	5(2)	15(3)	-5(2)
C2A1	20(3)	42(3)	43(3)	15(2)	9(2)	0(2)
C3A1	31(2)	31(3)	33(3)	4(2)	17(2)	4(2)

3.3 Crystal Structure Determination of **5a**

Figure S20. ORTEP Plot of complex 5a. Ellipsoids are drawn at the 50% probability level.

	Х	У	Z	U(eq)
Ir(1)	1859(1)	1312(1)	8491(1)	12(1)
S(1)	2992(1)	360(1)	9141(1)	14(1)
P(1)	4333(1)	870(1)	8748(1)	12(1)
O(1)	4631(2)	2447(1)	7835(1)	25(1)
C(1)	3450(2)	1265(1)	7922(2)	14(1)
S(2)	3971(1)	1940(1)	7353(1)	18(1)
P(2)	879(1)	506(1)	7643(1)	13(1)
O(2)	3018(2)	2189(1)	6818(1)	27(1)
C(2)	5089(2)	1442(1)	9485(2)	16(1)
O(3)	-126(2)	188(1)	8002(1)	20(1)
C(3)	5895(3)	1945(2)	9305(2)	22(1)
C(4)	6520(3)	2320(2)	9896(2)	25(1)
C(5)	6349(3)	2207(2)	10669(2)	25(1)
C(6)	5580(3)	1704(2)	10853(2)	29(1)
C(7)	4955(3)	1319(2)	10267(2)	21(1)
C(8)	5436(2)	285(1)	8459(2)	14(1)
C(9)	5064(3)	-246(2)	7933(2)	20(1)
C(10)	5867(3)	-689(2)	7652(2)	26(1)
C(11)	7027(3)	-600(2)	7885(2)	27(1)
C(12)	7408(3)	-83(2)	8413(2)	26(1)
C(13)	6613(2)	358(2)	8709(2)	19(1)
C(14)	4924(2)	1501(2)	6770(2)	18(1)
C(15)	4469(3)	1258(2)	6041(2)	28(1)
C(16)	5183(3)	887(2)	5591(2)	35(1)
C(17)	6327(3)	765(2)	5875(2)	36(1)
C(18)	6777(3)	1011(2)	6601(2)	28(1)
C(19)	6075(3)	1388(2)	7057(2)	22(1)
C(20)	1123(2)	2377(1)	8432(2)	19(1)
C(21)	1976(3)	2372(2)	9127(2)	22(1)

Table S6. Atomic coordinates ($x \ 10^4$) and equivalent isotropic displacement parameters (Å²x 10³) for **5a**. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

C(22)	1630(3)	1864(2)	9650(2)	22(1)
C(23)	565(3)	1538(2)	9299(2)	19(1)
C(24)	228(2)	1888(2)	8570(2)	19(1)
C(25)	1054(3)	2918(2)	7804(2)	30(1)
C(26)	2966(3)	2872(2)	9271(2)	35(1)
C(27)	2191(3)	1687(2)	10454(2)	34(1)
C(28)	-146(3)	1021(2)	9692(2)	29(1)
C(29)	-932(3)	1805(2)	8097(2)	24(1)
C(30)	312(2)	855(2)	6662(2)	15(1)
C(31)	-409(2)	439(2)	6119(2)	16(1)
C(32)	-771(3)	-296(2)	6295(2)	21(1)
C(33)	-787(3)	726(2)	5383(2)	22(1)
C(34)	-510(3)	1402(2)	5185(2)	26(1)
C(35)	173(3)	1805(2)	5721(2)	27(1)
C(36)	591(3)	1526(2)	6448(2)	20(1)
C(37)	1798(2)	-205(1)	7308(2)	15(1)
C(38)	1888(3)	-874(2)	7651(2)	22(1)
C(39)	1298(3)	-1072(2)	8359(2)	31(1)
C(40)	2542(3)	-1381(2)	7310(2)	30(1)
C(41)	3120(3)	-1241(2)	6674(2)	34(1)
C(42)	3054(3)	-583(2)	6335(2)	29(1)
C(43)	2388(2)	-73(2)	6651(2)	20(1)

Table S7. Anisotropic displacement parameters ($Å^2x \ 10^3$) for **5a**. The anisotropic displacement factor exponent takes the form: $-2p^2[h^2a^{*2}U^{11} + ... + 2hka^{*}b^{*}U^{12}]$.

	U ¹¹	U ²²	U ³³	U ²³	U ¹³	U ¹²
Ir(1)	12(1)	11(1)	13(1)	-2(1)	0(1)	1(1)
S(1)	13(1)	14(1)	14(1)	1(1)	2(1)	0(1)
P(1)	12(1)	11(1)	13(1)	0(1)	1(1)	0(1)
O(1)	27(1)	17(1)	32(1)	0(1)	3(1)	-5(1)
C(1)	16(2)	12(2)	14(2)	1(1)	0(1)	-1(1)
S(2)	17(1)	17(1)	19(1)	6(1)	1(1)	-1(1)
P(2)	13(1)	14(1)	13(1)	-2(1)	2(1)	-1(1)
O(2)	21(1)	30(1)	29(1)	17(1)	0(1)	3(1)
C(2)	16(2)	13(2)	17(2)	-2(1)	-2(1)	1(1)
O(3)	20(1)	21(1)	19(1)	-4(1)	7(1)	-4(1)
C(3)	26(2)	23(2)	17(2)	1(1)	-1(1)	-4(1)
C(4)	26(2)	19(2)	28(2)	1(1)	-4(1)	-6(1)
C(5)	27(2)	21(2)	25(2)	-7(1)	-10(1)	-2(1)
C(6)	35(2)	35(2)	14(2)	0(1)	-5(1)	-4(2)
C(7)	22(2)	19(2)	21(2)	3(1)	-1(1)	-1(1)
C(8)	17(2)	13(2)	13(2)	4(1)	4(1)	1(1)
C(9)	17(2)	20(2)	23(2)	-1(1)	1(1)	3(1)
C(10)	33(2)	21(2)	24(2)	-5(1)	3(1)	5(1)
C(11)	26(2)	25(2)	32(2)	4(1)	15(2)	13(1)
C(12)	15(2)	28(2)	37(2)	6(2)	5(1)	2(1)
C(13)	17(2)	16(2)	24(2)	-1(1)	3(1)	-2(1)
C(14)	18(2)	22(2)	15(2)	7(1)	4(1)	-5(1)
C(15)	24(2)	39(2)	21(2)	9(1)	2(1)	-4(2)
C(16)	38(2)	46(2)	20(2)	-3(2)	4(2)	-6(2)
C(17)	37(2)	48(2)	26(2)	-3(2)	14(2)	-1(2)
C(18)	20(2)	40(2)	26(2)	4(2)	7(1)	-1(2)
C(19)	22(2)	26(2)	17(2)	4(1)	4(1)	-4(1)
C(20)	22(2)	9(2)	25(2)	-4(1)	4(1)	8(1)
C(21)	23(1)	18(1)	23(1)	-13(1)	1(1)	7(1)
C(22)	23(1)	18(1)	23(1)	-13(1)	1(1)	7(1)
C(23)	20(2)	20(2)	17(2)	-7(1)	4(1)	7(1)
C(24)	18(2)	17(2)	20(2)	-6(1)	1(1)	6(1)

C(25)	37(2)	12(2)	41(2)	4(1)	6(2)	6(1)
C(26)	28(2)	22(2)	52(2)	-18(2)	-1(2)	-2(1)
C(27)	37(2)	42(2)	21(2)	-14(2)	-5(2)	19(2)
C(28)	32(2)	31(2)	26(2)	0(1)	14(2)	2(2)
C(29)	19(2)	26(2)	27(2)	-5(1)	0(1)	8(1)
C(30)	11(2)	19(2)	14(2)	-2(1)	1(1)	2(1)
C(31)	13(2)	19(2)	17(2)	-1(1)	1(1)	1(1)
C(32)	24(2)	20(2)	18(2)	-6(1)	-2(1)	-5(1)
C(33)	18(2)	29(2)	18(2)	-4(1)	0(1)	1(1)
C(34)	27(2)	35(2)	15(2)	6(1)	-1(1)	3(1)
C(35)	31(2)	22(2)	27(2)	8(1)	2(1)	-3(1)
C(36)	18(2)	20(2)	22(2)	0(1)	2(1)	-2(1)
C(37)	15(2)	17(2)	11(2)	-6(1)	-5(1)	1(1)
C(38)	23(2)	16(2)	25(2)	-3(1)	-11(1)	-3(1)
C(39)	37(2)	18(2)	36(2)	7(1)	-7(2)	-10(2)
C(40)	34(2)	18(2)	34(2)	-7(1)	-15(2)	6(1)
C(41)	31(2)	36(2)	33(2)	-23(2)	-13(2)	18(2)
C(42)	21(2)	49(2)	15(2)	-12(1)	-4(1)	9(2)
C(43)	20(2)	25(2)	13(2)	-6(1)	-2(1)	3(1)

3.4 Crystal Structure Determination of 5b

All hydrogen atoms were refined on ideal positions except for H1 at C1, which was found in the difference Fourier map and refined independently.

Figure S21. ORTEP Plot of complex 5b. Ellipsoids are drawn at the 50% probability level.

$I_r(1)$				
$\Pi(1)$	6533(1)	4410(1)	8379(1)	16(1)
Cl(1)	10160(1)	1874(1)	8144(1)	46(1)
Cl(2)	3394(1)	1950(1)	10218(1)	39(1)
S(1)	5029(1)	4532(1)	9211(1)	19(1)
$\mathbf{S}(2)$	5334(1)	3699(1)	6503(1)	21(1)
P(1)	4293(1)	4370(1)	8003(1)	17(1)
P(2)	6948(1)	3675(1)	9360(1)	18(1)
O(1)	60/10(1)	3075(1) 3225(1)	6523(1)	29(1)
O(1)	5405(1)	3223(1)	5002(1)	29(1) 26(1)
O(2)	7250(1)	4104(1)	10282(1)	20(1)
O(3)	/ 550(1) 5208(2)	3074(1)	10282(1)	25(1)
C(1)	5308(2)	5958(1)	7010(2)	10(1)
C(2)	3904(2)	5021(1)	7426(2)	18(1)
C(3)	3448(2)	5422(1)	7957(2)	22(1)
C(4)	2992(2)	5906(1)	7573(2)	25(1)
C(5)	2995(2)	5994(1)	6660(2)	26(1)
C(6)	3466(2)	5607(1)	6132(2)	24(1)
C(7)	3911(2)	5115(1)	6510(2)	21(1)
C(8)	3089(2)	3995(1)	8090(2)	21(1)
C(9)	2197(2)	4132(1)	7552(2)	26(1)
$\mathbf{C}(10)$	1297(2)	3831(1)	7635(2)	35(1)
C(11)	1297(2) 1283(2)	3398(1)	8253(2)	39(1)
C(12)	2165(2)	3256(1)	8787(2)	36(1)
C(12) C(13)	2103(2) 3068(2)	3250(1) 3554(1)	8708(2)	27(1)
C(13)	3008(2)	3334(1)	6700(2)	27(1) 21(1)
C(14)	4085(2)	3420(1)	0199(2)	21(1)
C(15)	3727(2)	2965(1)	6664(2)	27(1)
C(16)	2738(2)	2765(1)	6446(2)	34(1)
C(17)	2120(2)	3022(1)	5760(2)	34(1)
C(18)	2485(2)	3469(1)	5289(2)	32(1)
C(19)	3466(2)	3680(1)	5508(2)	26(1)
C(20)	7591(2)	5075(1)	8926(2)	22(1)
C(21)	6887(2)	5356(1)	8267(2)	23(1)
C(22)	6989(2)	5115(1)	7416(2)	23(1)
C(23)	7746(2)	4662(1)	7535(2)	22(1)
C(24)	8165(2)	4671(1)	8455(2)	22(1)
C(25)	7810(2)	5243(1)	9890(2)	30(1)
C(25)	6202(2)	52+3(1) 58/1(1)	9090(2) 8482(2)	30(1)
C(20)	6527(2)	5225(1)	6402(2)	30(1) 32(1)
C(27)	0.327(2)	3333(1)	(797(2))	32(1)
C(28)	81/4(2)	4343(1)	0/8/(2)	32(1)
C(29)	9100(2)	436/(1)	8845(2)	28(1)
C(30)	78/6(2)	3169(1)	8964(2)	21(1)
C(31)	7886(2)	3013(1)	8071(2)	27(1)
C(32)	8576(2)	2608(1)	7818(2)	34(1)
C(33)	9269(2)	2369(1)	8460(2)	29(1)
C(34)	9291(2)	2525(1)	9351(2)	28(1)
C(35)	8590(2)	2921(1)	9596(2)	25(1)
C(36)	5905(2)	3167(1)	9529(2)	19(1)
C(37)	5586(2)	2719(1)	8949(2)	22(1)
C(38)	4820(2)	2342(1)	9151(2)	25(1)
C(39)	4369(2)	2413(1)	9942(2)	25(1)
C(40)	4669(2)	2847(1)	10532(2)	27(1)
C(41)	5/25(2)	2077(1) 3210(1)	10332(2) 10337(2)	27(1) 22(1)
$C^{(+1)}$	9710(2)	5217(1) 6707(2)	9124(2)	$\frac{22(1)}{56(1)}$
	0/17(3) 1001(2)	5952(2)	0134(3)	JU(1)
C41	10010(3)	5852(2) (122(2)	/055(2)	45(1)
C51	10220(3)	6132(2)	8448(3)	63(1)
C61	9556(3)	6554(2)	8692(3)	86(2)
C21	8511(3)	6426(2)	7347(2)	45(1)
-				

Table S8. Atomic coordinates ($x \ 10^4$) and equivalent isotropic displacement parameters (Å²x 10³) for **5b**. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

C12	10225(3)	4438(1)	5164(2)	41(1)
C22	9286(3)	4589(2)	4748(2)	39(1)
C32	9058(3)	5151(2)	4588(2)	42(1)

Table S9. Anisotropic displacement parameters ($Å^2x \ 10^3$) for **5b**. The anisotropic displacement factor exponent takes the form: $-2p^2[h^2a^{*2}U^{11} + ... + 2hka^*b^*U^{12}]$

	U^{11}	U ²²	U ³³	U ²³	U ¹³	U ¹²
Ir(1)	14(1)	19(1)	15(1)	-1(1)	2(1)	1(1)
Cl(1)	31(1)	35(1)	73(1)	-17(1)	3(1)	12(1)
Cl(2)	46(1)	30(1)	42(1)	3(1)	10(1)	-15(1)
$\mathbf{S}(1)$	19(1)	23(1)	15(1)	-2(1)	2(1)	0(1)
S(2)	21(1)	26(1)	15(1)	-4(1)	0(1)	4(1)
P(1)	17(1)	18(1)	15(1)	-1(1)	2(1)	0(1)
P(2)	18(1)	22(1)	15(1)	-1(1)	$\frac{1}{0(1)}$	2(1)
O(1)	27(1)	34(1)	25(1)	-9(1)	-2(1)	14(1)
O(2)	26(1)	35(1)	16(1)	0(1)	5(1)	-1(1)
O(3)	26(1)	28(1)	16(1)	-2(1)	-2(1)	0(1)
C(1)	15(1)	17(1)	15(1)	-1(1)	-1(1)	0(1)
C(1)	13(1) 14(1)	20(1)	20(1)	-1(1) 1(1)	-1(1) 1(1)	3(1)
C(2)	$\frac{14(1)}{22(2)}$	20(1) 24(2)	$\frac{20(1)}{18(1)}$	2(1)	$\frac{1(1)}{3(1)}$	-3(1)
C(3)	22(2) 22(2)	24(2) 23(2)	30(2)	-2(1)	$\frac{3(1)}{1(1)}$	0(1)
C(4)	22(2)	23(2)	30(2)	-3(1)	1(1) 5(1)	0(1) 1(1)
C(3)	22(2)	23(2)	33(2)	5(1)	-3(1)	-1(1)
C(0)	24(2)	28(2)	20(2)	3(1)	0(1)	-7(1)
C(7)	19(1)	24(2)	19(1)	0(1)	3(1)	0(1)
C(8)	22(2)	21(2)	19(1)	-4(1)	4(1)	0(1)
C(9)	22(2)	28(2)	27(2)	1(1)	2(1)	-2(1)
C(10)	18(2)	38(2)	46(2)	2(2)	-2(1)	-2(1)
C(11)	22(2)	36(2)	60(2)	0(2)	12(2)	-7(1)
C(12)	33(2)	26(2)	50(2)	9(1)	11(2)	-3(1)
C(13)	25(2)	22(2)	33(2)	2(1)	5(1)	2(1)
C(14)	24(2)	22(2)	17(1)	-9(1)	-2(1)	5(1)
C(15)	31(2)	26(2)	23(2)	-5(1)	-5(1)	2(1)
C(16)	42(2)	26(2)	34(2)	-7(1)	2(1)	-6(1)
C(17)	27(2)	31(2)	42(2)	-15(1)	-6(1)	0(1)
C(18)	30(2)	34(2)	30(2)	-12(1)	-12(1)	10(1)
C(19)	31(2)	25(2)	22(2)	-6(1)	-3(1)	3(1)
C(20)	19(1)	21(2)	26(2)	-2(1)	3(1)	-6(1)
C(21)	17(1)	20(1)	34(2)	2(1)	5(1)	-3(1)
C(22)	16(1)	26(2)	26(2)	6(1)	4(1)	-4(1)
C(23)	19(2)	26(2)	22(1)	1(1)	6(1)	-5(1)
C(24)	18(1)	23(2)	26(2)	0(1)	5(1)	-4(1)
C(25)	32(2)	32(2)	27(2)	-8(1)	2(1)	-7(1)
C(26)	23(2)	24(2)	44(2)	0(1)	8(1)	0(1)
C(27)	28(2)	38(2)	31(2)	13(1)	2(1)	-5(1)
C(28)	26(2)	44(2)	28(2)	-4(1)	12(1)	-2(1)
C(29)	16(2)	30(2)	36(2)	2(1)	0(1)	0(1)
C(30)	18(1)	22(2)	25(2)	0(1)	1(1)	-2(1)
C(31)	23(2)	33(2)	25(2)	-6(1)	-1(1)	4(1)
C(32)	25(2)	40(2)	35(2)	-15(1)	1(1)	4(1)
C(33)	22(2)	20(2)	47(2)	-7(1)	7(1)	1(1)
C(34)	23(2)	24(2)	37(2)	11(1)	3(1)	1(1)
C(35)	21(2)	27(2)	25(2)	5(1)	4(1)	-1(1)
C(36)	22(2)	20(1)	15(1)	3(1)	-1(1)	6(1)
C(37)	26(2)	24(2)	17(1)	1(1)	-1(1)	6(1)
C(38)	28(2)	20(2)	26(2)	0(1)	-4(1)	2(1)
C(30)	20(2)	20(2)	20(2)		-(1)	2(1)

C(39)	27(2)	18(2)	30(2)	6(1)	2(1)	0(1)
C(40)	36(2)	24(2)	22(2)	3(1)	8(1)	4(1)
C(41)	29(2)	18(1)	19(1)	-1(1)	2(1)	2(1)
C11	33(2)	53(2)	80(3)	-23(2)	-4(2)	-2(2)
C41	41(2)	50(2)	44(2)	0(2)	6(2)	1(2)
C51	44(2)	98(3)	46(2)	-7(2)	-12(2)	12(2)
C61	48(3)	134(5)	72(3)	-63(3)	-17(2)	13(3)
C21	33(2)	59(2)	43(2)	8(2)	-2(2)	-4(2)
C31	40(2)	62(2)	33(2)	-7(2)	2(2)	-12(2)
C12	37(2)	40(2)	49(2)	10(2)	14(2)	10(2)
C22	32(2)	51(2)	34(2)	-4(2)	0(1)	-5(2)
C32	27(2)	66(3)	34(2)	14(2)	-4(1)	7(2)

4. Computational studies

4.1. Thermodynamics of different isomers

Table S10. Calculated energies [in kJ/mol] of the optimized structures [M062x//6-311+g(d)/LANL2TZ(f)]; energy differences, reaction enthalpies and activation energies are given relative to the energetically most favoured isomer.

Compound	SCF	Enthalpy ^a	Free energy ^a	ΔH	ΔG	
	Iri	dium complex + P	h ₂ P(O)H			
cis-isomer (cis-5)	-8916469,36	-8914433,13	-8914764,78	0	0	
<i>cis</i> -isomer (H-bond) (<i>cis</i> - 5')	-8916458,34	-8914421,11	-8914755,52	12,02	9,25	
<i>trans-</i> isomer (<i>trans-</i> 5)	-8916437,04	-8914401,58	-8914737,14	31,57	27,65	
	Iri	dium complex + T	ol ₂ P(O)H			
<i>cis</i> -isomer (<i>cis</i> -5a)	-9122847,25	-9120655,13	-9121005,98	0	0	
<i>cis</i> -isomer (H-bond) (<i>cis</i> - 5 a')	-9122838,16	-9120645,46	-9120991,62	9,67	14,36	
Ruthenium complex + Ph ₂ P(O)H						
cis-isomer (cis-4)	-8680068,05	-8678219,17	-8678540,46	3,95	3,60	
<i>cis</i> -isomer (H-bond) (<i>cis</i> - 4')	-8680072,281	-8678223,12	-8678544,06	0	0	

[a] Thermal corrections were calculated using the 6-31+G(d) (for all non-metal atoms) and LANL2DZ (for Ir and Ru) basis set.

Figure S22. Structures of the energy-optimized *cis*-isomers of 5b [M062X//6-311+G(d)/LANL2TZ(f)].

Figure S23. Structures of the energy-optimized isomers of the iridium and ruthenium complexes of the P-H activation of $Ph_2P(O)H$ [M062X//6-311+G(d)/LANL2TZ(f)].

Atomic symbol	X	у	Z
Ir	-1.19375600	-0.92292700	-0.22032600
S	0.33015100	-0.78619300	-2.18328100
Р	1.68161000	-0.64902200	-0.66976800
Ο	1.27142700	-0.74810000	2.92225700
С	0.54035800	0.13675600	0.48880500
S	0.89257800	0.46626000	2.19727300
Р	-2.13303800	0.97185200	-1.10652400
О	-0.21703600	1.26696300	2.70883400
С	2.34666400	-2.29475300	-0.27078000
Ο	-2.83608400	0.68826900	-2.42001000
С	2.59554200	-2.74961600	1.02296300
С	3.17025200	-4.00591000	1.21092000
С	3.51079400	-4.79634900	0.12000500
С	3.27416600	-4.33501000	-1.17343000
С	2.68916900	-3.09180700	-1.36969100
С	3.13402200	0.37660100	-1.05802400
С	2.90230900	1.73040900	-1.32200300
С	3.97065700	2.57463600	-1.58960300
С	5.26985000	2.07175700	-1.60867800
С	5.50068400	0.72369200	-1.35700500
С	4.43566500	-0.12699400	-1.07559500

Table S11. Cartesian coordinates of the cis-isomer cis-5.

Η Η

2.32608300	1.53494900	2.14359000
2.13048400	2.90791700	2.05845800
3.23875100	3.73528300	1.91712400
4.51610700	3.18529800	1.86089100
4.69654600	1.80825700	1.95895700
3,59595400	0.97179200	2.10346300
-2 41272700	-1 80090900	1 34431400
-1 35682300	-2 78150400	1 13378500
-1 40227800	-3 19761800	-0 20911200
-2 51050500	-2 51294600	-0.86/132800
-3 18757900	-1 7383/000	0.12783200
-2 78756300	-1.26204600	2 69008300
0.50528000	3 32604600	2.07000500
0.51028000	-3.32004000	0.88857400
2 96/91800	2 70145000	-0.88857400
-2.90491800	-2.70145000	-2.27855500
-4.52707400	-1.10278400	-0.00040800
-3.32200800	2 31350300	0.03383800
-4.48528500	2.31330300	-0.32700300
-5.43095500	2.92300600	1 65647500
-3.22923900	2.40024700	1.03047300
-4.00011500	2.49924700	2.218/3400
-3.11494000	1.8/940400	1.41125200
-0.96421900	2.58217400	-1.39511100
-0.55350100	2.61314000	-2.70950800
0.28///100	3.68177600	-3.00841200
0.72412700	4.53307400	-1.99611500
0.31/28900	4.31113700	-0.68291900
-0.52573200	3.24259900	-0.38438300
0.48094900	1.15357300	0.09162400
2.31409000	-2.15124500	1.87994400
3.34426100	-4.36430000	2.21935800
3.957/6100	-5.77207500	0.27445800
3.53386100	-4.94819100	-2.02868000
2.48039300	-2.74496600	-2.37654700
1.89228600	2.12917700	-1.32856300
3.78133700	3.62436700	-1.78486800
6.10319400	2.73225500	-1.82199200
6.51126900	0.33124000	-1.37510200
4.62403700	-1.17388700	-0.86467900
1.12612200	3.31027500	2.11795400
3.10467800	4.80910800	1.85221900
5.37756400	3.83311700	1.74247100
5.69329500	1.38477400	1.91731400
3.71908100	-0.10319400	2.18723300
-1.91977500	-0.84122100	3.20238700
-3.19746900	-2.06288500	3.31449200
-3.53906700	-0.47779600	2.60878500
-0.07798000	-2.53457400	2.85030800
0.30768700	-3.94182900	1.85340200
-1.12771800	-3.95575700	2.88032900
-0.11702600	-3.78063200	-1.82341000
-1.07334300	-5.09377500	-1.12890500
0.33861700	-4.46521600	-0.26259200
-3.30354700	-1.74901500	-2.69236000
-3.78090500	-3.42912700	-2.33203800
-2.14653600	-3.06433700	-2.90293100
-4.75337300	-0.36870900	0.70569000
-5.28659800	-1.89038700	-0.02249000
-4.59862100	-0.61342900	-1.03956800
-6.34380400	3.32670700	-0.15782600
-5.97331800	3.49176700	2.28771600
-3.90004700	2.56785700	3.28878100

Н	-2.21965000	1.45762300	1.85650900
Н	0.59545900	3.85556200	-4.03388100
Н	1.36731100	5.37475200	-2.23117700
Н	0.64270400	4.98065400	0.10672100
Н	-0.85588100	3.08767900	0.63997500
Н	-4.63755900	2.21576300	-1.59732600
Н	-0.92057900	1.95593200	-3.49034400

Table S12. Cartesian coordinates of the cis-isomer cis-5'.

Atomic symbol	Х	у	Z
Ir	-0.88034900	0.90506000	-0.07093600
S	0.25341700	0.66214900	2.11082700
Р	1.86103700	0.34990900	0.88796000
Ο	2.37464000	0.45557000	-2.60103300
С	0.86561000	-0.24668200	-0.47791300
S	1.50696700	-0.61009600	-2.08806300
Р	-1.77198000	-1.19054700	0.38005400
О	0.38835000	-1.05480900	-2.91256000
С	2.81628200	1.87364100	0.61915100
Ο	-0.77201600	-2.35036300	0.37426400
С	3.75776800	1.96841700	-0.40990100
С	4.49491200	3.13579100	-0.56513600
С	4.31064300	4.20363200	0.30979600
С	3.39196600	4.10085000	1.34843500
С	2.64454500	2.93728000	1.50451300
С	3.02801700	-0.89775100	1.49588800
С	2.52507300	-2.19260500	1.67503000
С	3.37823500	-3.19839400	2.10803600
С	4.71832300	-2.91985400	2.36755300
С	5.21240100	-1.63128100	2.19810800
С	4.36859400	-0.61492400	1.76071700
С	2.52028200	-2.04944700	-1.76358200
С	1.86772700	-3.24942200	-1.49370200
С	2.63441800	-4.36483000	-1.18149200
С	4.02314000	-4.26701200	-1.12577400
С	4.65686400	-3.05626400	-1.38622300
С	3.90218200	-1.93362100	-1.71446100
С	-1.35928900	1.92702000	-1.93327900
С	-0.44153100	2.80932900	-1.22798100
С	-1.05635700	3.17611100	-0.00961500
С	-2.35883900	2.55407400	0.06885200
С	-2.56047800	1.83541200	-1.15333800
С	-1.21328300	1.47012900	-3.35062900
С	0.85381600	3.31812300	-1.78305600
С	-0.52511800	4.09516800	1.04430600
С	-3.40806000	2.89933300	1.08011100
С	-3.87192100	1.30846100	-1.63521100
С	-2.66502600	-1.26249100	1.98543300
С	-3.01233400	-2.53099900	2.45956800
С	-3.71559100	-2.66720500	3.65041900
С	-4.07247900	-1.53743900	4.38460800
С	-3.71234300	-0.27434700	3.92922200
С	-3.00770900	-0.14121300	2.73431300
С	-3.09376100	-1.63408700	-0.81498500
С	-2.67923400	-1.92134400	-2.12033400
С	-3.61286400	-2.25168000	-3.09547900
С	-4.96984700	-2.29956900	-2.77791700

С	-5.38530300	-2.02999200	-1.47888200
С	-4.44977300	-1.70235800	-0.49860700
Н	0.59293900	-1.26011400	-0.14262100
Н	3.88975800	1.15393500	-1.10919200
Н	5.20947400	3.21263000	-1.37642700
Н	4.88679000	5.11345800	0.18306600
Н	3.25113600	4.92633200	2.03719400
Н	1.91877300	2.85552300	2.30555500
Н	1.47613700	-2.41072700	1.47857900
Н	2.99491400	-4.20402400	2.23803600
Н	5.37879500	-3.71117400	2.70503900
Н	6.25403300	-1.41427800	2.40596300
Н	4.75568900	0.38905300	1.62688500
Н	0.78265600	-3.29426000	-1.49729700
Н	2.14470800	-5.30809000	-0.96852000
Н	4.61508800	-5.13929300	-0.87082200
Н	5.73726400	-2.98406700	-1.33717300
Н	4.37516500	-0.98560100	-1.94388300
Н	-0.16641600	1.41036200	-3.64677200
Н	-1.72011200	2.17830200	-4.01522500
Н	-1.64684500	0.48110900	-3.49590400
Н	1.44397200	2.52057600	-2.23530800
Н	1.46536900	3.79273600	-1.01434000
Н	0.64758000	4.06431600	-2.55722300
Н	-0.49831800	3.60397100	2.02013100
Н	-1.17576000	4.97074600	1.12850800
Н	0.47992500	4.44142800	0.80918200
Н	-4.15626700	2.11174100	1.17399500
Н	-3.92492800	3.81866400	0.78467300
Н	-2.97315900	3.07057800	2.06709800
Н	-3.75773800	0.49527500	-2.35062800
Н	-4.40164100	2.12768000	-2.13358900
Н	-4.49651400	0.95322800	-0.81703800
Н	-3.98305600	-3.65463400	4.01082700
Н	-4.61974800	-1.64467300	5.31484800
Н	-3.97085300	0.60669100	4.50707900
Н	-2.70271000	0.83886200	2.38889000
Н	-3.28218400	-2.46991100	-4.10533300
Н	-5.69847600	-2.55464900	-3.53983200
Н	-6.43871000	-2.07681700	-1.22416500
Н	-4.78541500	-1.49249500	0.51206700
Н	-2.71849100	-3.40558700	1.88797800
Н	-1.62370300	-1.87061100	-2.37140300

Table S13. Cartesian coordinates of the *trans*-isomer *trans*-5.

Atomic symbol	v	V	7
Atomic symbol	<u>A</u>	y	Z
Ir	-1.04606000	0.96678500	0.14882500
S	-0.38227900	-0.04091100	-2.04452000
Р	1.43312000	-0.08509700	-1.15024200
0	1.12017000	-1.94205400	1.84278700
С	0.96538700	0.39936000	0.53577000
S	1.43091900	-0.52848600	1.98822000
Р	-2.17643300	-0.95941300	0.74992300
0	0.94005300	0.24268100	3.12410500
С	2.38103200	-1.61548700	-1.36484800
0	-2.50588200	-1.04292200	2.22638400
С	1.81117600	-2.81674400	-0.93116500

Η

Η

H H H H

2.54386000	-3.99389600	-1.02179500
3.83380100	-3.97810300	-1.54541700
4.39381000	-2.78473300	-1.99337300
3.67079300	-1.60092400	-1.90534800
2.50816000	1.25771900	-1.75817800
2.25226700	1.86271100	-2.98615000
3.07859100	2.88781700	-3.43870200
4.15461700	3.30970600	-2.66552000
4.41642300	2.69962800	-1.44034900
3.59862200	1.67198400	-0.98660500
3.22265800	-0.37698800	2.02351400
3.78201000	0.77402400	2.57269600
5.15992300	0.94832100	2.51856600
5.96144100	-0.02401300	1.92160400
5.39120700	-1.181//000	1.40108600
4.01209500	-1.30800800	1.4542/800
-1.00055100	2.07581500	-0.515/8400
-0.01897800	2.97381300	1.03373800
-1.08502500	2.28497400	0.700/3600
2.35140000	2.17401700	0.75543000
-2.33140900	2.03123400	-0.40744500
0.66146500	3 40019300	1 68095600
-1 76915100	1 96399000	3 18911600
-4.16872100	1.76348300	1.20620900
-3.16033400	2.78107300	-1.72036500
-3.78133000	-0.97690700	-0.18616600
-4.89144700	-1.47839300	0.49629600
-6.13980100	-1.51603800	-0.11602100
-6.29231500	-1.05932400	-1.42302400
-5.18870000	-0.56921100	-2.11475900
-3.94145800	-0.52630300	-1.49564800
-1.58268300	-2.62453500	0.20861500
-1.13285700	-3.48785700	1.20787000
-0.73429800	-4.78392200	0.89025700
-0.80190500	-5.23421100	-0.42512400
-1.27797300	-4.38742400	-1.42369400
-1.6/141300	-3.09148500	-1.10629100
1.50072000	1.33391000	0.70785900
2.00775500	-2.85520800	-0.49957700
4 40242900	-4.91788500	-0.07334000
5 39356800	-2 77341500	-2 41254300
4.11643500	-0.67512800	-2.24944000
1.39820000	1.54370700	-3.57355500
2.87511700	3.36076300	-4.39259700
4.79208000	4.11333700	-3.01672300
5.25798100	3.02087800	-0.83701300
3.81781200	1.19157700	-0.03756400
3.13942800	1.50915600	3.04469000
5.60933300	1.83635400	2.94827200
7.03590100	0.11506100	1.87855100
6.01662200	-1.94632100	0.95447800
3.55275500	-2.27200800	1.06859900
0.85000000	3.85991700	-1.17975400
-0.55697400	4.86375600	-1.55538700
-0.34038000	3.29950100	-2.34910800
1.4/194800	3.31830800	0.95/53400
0.90422000	2.0/024000 1 36182100	2.44204400
0.31049200 2 18180100	4.JU4024UU N 96135500	2.17550100
-2 40747400	2,69312500	3 69933000
2.10/ 1/ 100	2.07512500	5.07755000

Н	-0.78370600	1.97132400	3.65195400
Н	-4.79339400	1.48875300	0.35697900
Н	-4.63716200	2.60846900	1.72147600
Н	-4.13456000	0.92099100	1.89916900
Н	-2.60052600	2.43117000	-2.59120000
Н	-3.41934500	3.83049300	-1.89156900
Н	-4.08403900	2.20716300	-1.65936100
Н	-6.99718400	-1.89782300	0.42803100
Н	-7.26594600	-1.08598700	-1.90023100
Н	-5.29942800	-0.21338500	-3.13408800
Н	-3.09406000	-0.11903300	-2.03816300
Н	-0.38037100	-5.44409600	1.67491300
Н	-0.50261400	-6.24831200	-0.67076600
Н	-1.35054000	-4.73786700	-2.44759100
Н	-2.05746700	-2.45034300	-1.88949500
Н	-4.76102000	-1.81284000	1.52092000
Н	-1.09743200	-3.12933800	2.22899500

 Table S14. Cartesian coordinates of the *cis*-isomer *cis*-5b (*o*-tolyl-substituted phosphine oxide).

Atomic symbol	Х	у	Z
Ir	-0.95158100	-1.19390500	-0.16394400
S	0.45803400	-0.72822900	-2.15325500
Р	1.83428300	-0.43529000	-0.68573200
0	1.76128700	-0.77856900	2.80629100
С	0.62316600	0.10393000	0.54313600
S	1.05113700	0.37423000	2.24751700
Р	-2.29050100	0.55698000	-0.85086800
0	-0.14376200	0.85648100	2.93162900
С	2.79219400	-1.95518400	-0.36558000
0	-3.18634100	0.12502600	-1.99639200
С	3.48260700	-2.19246200	0.82658000
С	4.29010100	-3.31775300	0.94727300
С	4.42840000	-4.20340800	-0.11724100
С	3.75597600	-3.96088200	-1.30988400
С	2.94049000	-2.84089800	-1.43541000
С	3.07196300	0.83657300	-1.08094400
С	2.59841300	2.13562700	-1.29235400
С	3.49429500	3.16197500	-1.55463400
С	4.86032600	2.89528200	-1.62193600
С	5.33039600	1.60042900	-1.43061100
С	4.43911200	0.56703400	-1.15593700
С	2.19517500	1.75289600	2.18506500
С	1.67103200	3.04039900	2.17920700
С	2.53736500	4.11849900	2.03816400
С	3.90561600	3.90116100	1.90596400
С	4.41801300	2.60715900	1.92779600
С	3.56058800	1.52232100	2.07006500
С	-1.71956800	-2.40381500	1.47011600
С	-0.60955200	-3.17927700	0.92971600
С	-0.90283900	-3.46491600	-0.41833900
С	-2.18865100	-2.88440000	-0.75532600
С	-2.72648800	-2.31131500	0.44357100
С	-1.87790600	-2.09107800	2.92609300
С	0.55010100	-3.67205100	1.73748800
С	-0.08908300	-4.26564700	-1.38296400
С	-2.91405900	-3.03811700	-2.05525400
С	-4.14239400	-1.84851700	0.58625100
С	-3.33748500	1.26192700	0.50264900
С	-4.46658200	2.04747300	0.19368500

С	-5.23391300	2.53858300	1.25241500
С	-4.89802500	2.29360200	2.58076500
С	-3.76391200	1.54933300	2.87668700
С	-2.99867400	1.03590000	1.83391500
С	-1.36758300	2.11335400	-1.31165600
С	-1.10747100	2.47849300	-2.64825000
C	-0.43543600	3.68340000	-2.88579900
Ċ	-0.04116400	4.52768400	-1.85400400
C	-0.31432000	4.17382300	-0.53839000
C	-0.97446900	2.97646200	-0.28078100
Н	0.37992400	1.11737400	0.21267600
Н	3.35517700	-1.53730000	1.67578500
Н	4.80467300	-3.50473900	1.88280900
Н	5.05863400	-5.08001000	-0.01690800
Н	3.85840300	-4.64483300	-2.14476700
Н	2.40874000	-2.65954700	-2.36236300
Н	1.53394000	2.34884500	-1.26371000
Н	3.11909200	4.16769200	-1.70825600
Н	5.55901400	3.69839100	-1.82955100
Н	6.39250800	1.39163300	-1.49296100
Н	4.81096800	-0.43952100	-0.99829400
Н	0.60385500	3.18532000	2.30276800
Н	2.14395000	5.12873000	2.03689000
Н	4.57754700	4.74433500	1.79050600
Н	5.48449000	2.44079000	1.83016800
Н	3.94988100	0.51135500	2.09884500
Н	-0.97377900	-1.64338500	3.34150600
Н	-2.08249400	-3.01507300	3.47689900
Н	-2.70507100	-1.40493700	3.10391100
Н	0.97803800	-2.88027000	2.35343500
Н	1.34267100	-4.07070400	1.10294700
Н	0.21592700	-4.47470100	2.40341700
Н	0.11214700	-3.69872100	-2.29470800
Н	-0.64541700	-5.16375100	-1.66708300
Н	0.86303600	-4.57381700	-0.95444000
Н	-3.45574600	-2.12127700	-2.29295500
Н	-3.61554200	-3.87764800	-2.00894900
Н	-2.21241100	-3.22951500	-2.86943100
Н	-4.29312100	-1.23707900	1.47403400
Н	-4.78317600	-2.73274000	0.66357900
Н	-4.45866500	-1.27419100	-0.28688400
Н	-6.11165400	3.13692900	1.02680100
Н	-5.51558100	2.69593600	3.37690100
Н	-3.46747900	1.36846400	3.90450100
Н	-2.10878200	0.46611300	2.06136900
Н	-0.23324500	3.97032200	-3.91323700
Н	0.46138000	5.46246100	-2.08021000
Н	-0.03026300	4.82670500	0.27992200
Н	-1.21124100	2.71496400	0.74768600
С	-1.57550600	1.67475300	-3.83500700
Н	-1.13760300	2.07206500	-4.75241800
Н	-2.66365600	1.70915200	-3.91140800
Н	-1.32008700	0.62087100	-3.74633300
С	-4.86220200	2.39452000	-1.21971800
Н	-5.69461200	3.10013500	-1.21672000
Н	-5.13707300	1.50376200	-1.78384600
Η	-4.02677900	2.84996400	-1.75914500

Atomic symbol	Х	у	Z
Ir	-0.69258800	1.04078200	-0.08666000
S	0.37984400	0.61653300	2.10278300
Р	1.98561200	0.24457500	0.89892600
О	2.59080800	0.48581100	-2.54704900
С	0.97672500	-0.21873400	-0.51004800
S	1.64521000	-0.54938800	-2.11469700
Р	-1.77178000	-0.99742100	0.28536500
0	0.53328800	-0.89186400	-2.99472400
Č	3.05163800	1.70921400	0.73214100
Õ	-0.83090700	-2.20703200	0.22548600
Č	4 02871200	1 79413400	-0.26385600
Č	4 84727100	2 91473700	-0 33396400
Č	4 70922000	3 94419500	0.59373500
C	3 75406700	3.84944200	1 59984800
C	2 02521200	2 72282000	1.57984800
C C	2.92321200	2.75565900	1.07023700
C C	2.45050700	-1.10065500	1.4/743400
C	2.45050700	-2.30830400	2.00005500
C	3.21839200	-3.44830700	2.00605500
C	4.56728200	-3.27628700	2.30927200
C	5.15511400	-2.02090000	2.20286300
C	4.39708700	-0.93102800	1.78591800
C	2.56200500	-2.06092900	-1.83004500
С	1.83085300	-3.23038600	-1.63938100
С	2.51740600	-4.40486900	-1.36007100
С	3.90695100	-4.39589600	-1.25771800
С	4.62035000	-3.21558600	-1.43931000
С	3.94593600	-2.03418400	-1.73493500
С	-0.97911700	2.19174300	-1.91714400
С	-0.06543200	2.96973500	-1.09791300
С	-0.74800500	3.30190100	0.09777500
С	-2.08454800	2.75715600	0.04818200
С	-2.23356900	2.12135700	-1.23063100
С	-0.76095800	1.80605700	-3.34610400
С	1.28417300	3.44009500	-1.54744000
С	-0.23146300	4.11643400	1.24165500
С	-3.18296000	3.09000000	1.01044200
С	-3.52102300	1.70400100	-1.86045300
С	-2.64773200	-1.07631100	1.90845300
С	-3.17687800	-2.29865900	2.36909700
C	-3.83217400	-2.31131300	3.60235800
Č	-3.97540000	-1.16097300	4.37094600
C	-3.44468600	0.03892700	3.91634000
Ċ	-2.77980100	0.06641900	2.69552800
Č	-3.07255900	-1.30676700	-1.00002800
Č	-2 50024600	-1 71580000	-2 21172000
Č	-3 27707000	-1 98497600	-3 33043100
Č	-4 65963700	-1.86506100	-3 24377300
C	-5 23568900	-1 46505800	-2 04567500
C	-5.25506700	1 16872100	0.9121/100
С Ц	0.61512600	1 22007800	0.22633100
11 11	4 12568700	1 01214500	1 00472600
п u	4.12300700	1.01214300 2.08570100	-1.004/3000
п u	5.24001500	2.705/9100 1.81755600	-1.1200/200
Н	2.54901200	4.01/33000	0.33313000
H	3.04830/00	4.04438500	2.32939900
H	2.17019800	2.66043700	2.44465800
H	1.39440900	-2.50154000	1.36207700
H	2.76191500	-4.42824100	2.08698600
Н	5.16088200	-4.12486500	2.63151400
Н	6.20343700	-1.88676500	2.44439500

Table S15. Cartesian coordinates of the H-bonded cis-isomer cis-5b' (o-tolyl-substituted phosphine oxide).

Н	4.85756500	0.04704600	1.70253400
Н	0.74596600	-3.20892200	-1.67988000
Н	1.96511700	-5.32538400	-1.20971000
Н	4.43650400	-5.31403400	-1.02788600
Н	5.70093500	-3.21257700	-1.35420300
Н	4.48291300	-1.10763200	-1.90305200
Н	0.29859100	1.69950800	-3.57718900
Н	-1.17825500	2.58286900	-3.99644300
Н	-1.24102100	0.85636000	-3.58007600
Н	1.85282100	2.63974900	-2.02227100
Н	1.87780800	3.83084400	-0.72030100
Н	1.15998200	4.24350900	-2.28088500
Н	-0.31427100	3.57233900	2.18563600
Н	-0.81636200	5.03652200	1.33192000
Н	0.81253000	4.39133500	1.09894500
Н	-3.93820900	2.30461900	1.05366900
Н	-3.68089800	4.01797800	0.71025700
Н	-2.79772400	3.23564200	2.02163400
Н	-3.39687700	0.86351800	-2.54260600
Н	-3.90429500	2.55376200	-2.43605000
Н	-4.27366200	1.43720600	-1.12044200
Н	-4.24672700	-3.24768500	3.96347800
Н	-4.49422100	-1.20702100	5.32242700
Н	-3.53860300	0.94362600	4.50726000
Н	-2.35918200	0.99909900	2.33925700
Н	-2.80245500	-2.28510200	-4.25811500
Н	-5.28735300	-2.07506900	-4.10312400
Н	-6.31504700	-1.36214200	-1.98422400
Н	-1.42182700	-1.80300900	-2.28316000
С	-3.09806000	-3.57563000	1.57107600
Н	-3.60080900	-4.38613000	2.10086900
Н	-2.06175500	-3.84768500	1.37509600
Н	-3.57203900	-3.46056400	0.59171500
С	-5.21228400	-0.68935400	0.31362300
Н	-6.21932800	-0.37278400	0.03587900
Н	-4.71516100	0.14816500	0.80302300
Н	-5.30556700	-1.47413200	1.06819800

Table S16. Cartesian coordinates of the ruthenium complex *cis*-4.

Atomic symbol	Х	У	Ζ
Ru	1.32984500	-0.99753100	0.27084200
S	0.51333800	-0.25146900	-2.02747600
Р	-1.21757300	-0.39798800	-0.98517000
Ο	-0.77152000	0.81753600	3.08106700
С	-0.55611400	0.01707600	0.62913600
S	-1.44004700	-0.09113600	2.16062600
Р	2.36846800	1.01270000	0.71473000
Ο	-1.64989600	-1.48461400	2.57069300
С	-1.95283600	-2.04954300	-1.18670100
Ο	2.72656800	1.20732600	2.17406800
С	-2.06994200	-2.51177000	-2.50179300
С	-2.62518100	-3.75943500	-2.75377700
С	-3.05876100	-4.55543800	-1.69555700
С	-2.93813700	-4.09821000	-0.38857900
С	-2.38801100	-2.84437200	-0.12732700
С	-2.47324600	0.78887000	-1.55488200
С	-2.05653700	2.11189700	-1.73130800

Η Η

-2.97737900	3.08163200	-2.10388100
-4.31195300	2.73446400	-2.30358400
-4.72745900	1.42020700	-2.11861200
-3.81132200	0.44278500	-1.74005400
-3.06362500	0.57910700	1.80850400
-4.17260300	-0.25557100	1.82036300
-5.42217700	0.28381200	1.52289100
-5.54096900	1.63328800	1.21157900
-4.41626100	2.45732300	1.19928100
-3.16759900	1.93350300	1.50346300
1.60507800	-1.58822000	3.58161800
1.82016000	-2.09930600	2.18540900
0.86121800	-2.90718900	1.50618700
1.06544500	-3.35316000	0.19414200
2.23805400	-2.96792700	-0.51556500
2.40522500	-3.35508500	-1.95711600
3.24045400	-2.24286200	0.16001600
3.01344700	-1.79379500	1.48576400
3.93591800	1.06813900	-0.26663800
5.08119200	1.48662400	0.41201800
6.31409500	1.51570200	-0.23662600
6.41262600	1.12740700	-1.56829000
5.27461000	0.70332500	-2.25167800
4.04570700	0.66671600	-1.60114800
1.48513000	2.53360400	0.14614500
0.69667800	3.18533400	1.10097500
-0.00749100	4.33845700	0.76155000
0.08680300	4.86273200	-0.52552200
0.88295000	4.22700800	-1.47466400
1.57208900	3.06257800	-1.14259700
-0.40489100	1.09638100	0.53860500
-1.71212600	-1.90081600	-3.32465400
-2.71302800	-4.11326900	-3.77460000
-3.48605500	-5.53238300	-1.89215900
-3.26674400	-4.71817100	0.43799500
-2.27684900	-2.50857500	0.89589500
-1.01431200	2.38182600	-1.58440100
-2.64776100	4.10588400	-2.23926000
-5.03029700	3.49116400	-2.59988200
-5.76833900	1.15249000	-2.26239100
-4.14130300	-0.57937000	-1.58695700
-4.05638200	-1.30073200	2.08151400
-6.30040000	-0.35151000	1.53941500
-6.51440900	2.04905000	0.97557900
-4.51243300	3.50743700	0.94848000
-2.28224600	2.56266800	1.50628100
2.21396200	-2.16014700	4.28778400
0.55901800	-1.67872400	3.87223500
1.89598000	-0.53607400	3.63198300
-0.07626400	-3.11810700	2.00679600
0.29299600	-3.91816000	-0.31558100
3.10763700	-2.68936700	-2.46044300
4.14136200	-1.94293700	-0.36213100
3.74027300	-1.14767200	1.96639300
4.98701100	1.77846800	1.45315200
7.19874000	1.84039200	0.30061000
5.34713900	0.39556200	-3.28950300
3.16956500	0.31055700	-2.13449400
0.65004600	2.78037200	2.10848300
-0.61045500	4.84114200	1.51094600
0.97070700	4.63765100	-2.47498500
2.18945400	2.57753800	-1.89036500

Н	-0.44527200	5.77258200	-0.78330500
Н	7.37229100	1.15000000	-2.07312900
Н	2.78750600	-4.37712300	-2.02874500
Н	1.44974300	-3.30587600	-2.48149300

 Table S17. Cartesian coordinates of the ruthenium complex *cis*-4' (H-bond).

-			
Atomic symbol	X	У	Z
Ru	0.99931300	1.03614700	-0.35698000
S	-0.00757800	1.02459400	1.93879000
Р	-1.59574400	0.38828400	0.83762200
0	-0.29094400	-1.52158400	-2.77760100
С	-0.66552400	-0.29830800	-0.53188700
S	-1.31259900	-0.71828500	-2.11162800
Р	2.05840700	-0.85918200	0.48369500
0	-1.83543200	0.45087000	-2.83256000
С	-2.71781100	1.79359700	0.53926100
0	1.16596800	-2.06363300	0.77664500
С	-3.03029700	2.56222400	1.66701000
С	-3.87536000	3.65717100	1.55294500
С	-4.40435100	4.00263800	0.31082700
С	-4.09375700	3.24213900	-0.80957400
С	-3.25670900	2.13198600	-0.70100300
С	-2.57472100	-0.89775200	1.66445200
С	-1.86315500	-1.97519500	2.20629500
С	-2.56222300	-3.02488800	2.78863200
С	-3.95526700	-3.00740600	2.82267200
С	-4.65733800	-1.94302400	2.26762600
С	-3.96891300	-0.88209200	1.68630700
С	-2.71234900	-1.76397800	-1.72433400
С	-3.99508400	-1.33903900	-2.04133800
С	-5.07634800	-2.13193900	-1.66412500
С	-4.86052700	-3.31785500	-0.97179500
С	-3.56533800	-3.72911400	-0.66008800
С	-2.47834800	-2.95406500	-1.03985000
С	3.09424000	0.65824600	-3.15364300
С	2.28538500	1.51160400	-2.22145500
С	0.93455100	1.77192700	-2.49995600
С	0.17894300	2.72374300	-1.75153500
С	0.73995500	3.35605700	-0.64365600
С	-0.05754900	4.29470500	0.21538900
С	2.08931500	3.02520500	-0.28645900
С	2.84815100	2.13666500	-1.06655700
С	3.39673600	-1.42966200	-0.64043600
С	3.01178300	-2.25849700	-1.69782500
С	3.95711200	-2.71436100	-2.60984700
С	5.29444000	-2.34751400	-2.47513300
С	5.68565900	-1.53182000	-1.41755400
С	4.74010700	-1.07624100	-0.50089500
С	3.00108100	-0.48454400	2.02315800
С	3.13340300	-1.52005000	2.94941100
С	3.85676300	-1.32627400	4.12204700
С	4.45321000	-0.09566300	4.38132300
С	4.31821200	0.94424900	3.46648500
C	3.59064200	0.74909100	2.29592600
H	-0.33285500	-1.26859600	-0.13433400
Н	-2.59650000	2.31306900	2.63014600
Н	-4.11230000	4.24730500	2.43077700
H	-5.05525700	4.86505200	0.21958100
Н	-4.49871900	3.50970000	-1.77910400

Н	-3.00502200	1.56023600	-1.58445700
Н	-0.77577900	-1.99550200	2.14853600
Н	-2.01698500	-3.86051300	3.21263400
Н	-4.49519100	-3.82998500	3.27927500
Н	-5.74150300	-1.93620000	2.28407200
Н	-4.51635900	-0.05328600	1.24936300
Н	-4.13510800	-0.41160400	-2.58404200
Н	-6.08482500	-1.81945200	-1.91000900
Н	-5.70505700	-3.92685800	-0.66868200
Н	-3.40280300	-4.65008600	-0.11241500
Н	-1.46328700	-3.25819000	-0.80038600
Η	3.41233000	1.26863700	-4.00424000
Н	2.49500200	-0.17012600	-3.53264000
Н	3.98398300	0.25249800	-2.67476800
Н	0.45549000	1.25334400	-3.32168100
Η	-0.86011200	2.88948000	-2.00926000
Η	-0.01872600	3.97809400	1.26028900
Η	2.52055400	3.47357600	0.60158500
Η	3.87079800	1.90330300	-0.78856900
Η	1.96628000	-2.53097900	-1.80733800
Η	3.64952500	-3.35472400	-3.42953300
Η	6.72873500	-1.25849900	-1.29880000
Η	5.05775200	-0.46041400	0.33497200
Η	2.65387300	-2.47001600	2.73837300
Η	3.95283200	-2.13619000	4.83720000
Η	4.77246400	1.90835400	3.66900000
Η	3.47280000	1.56856000	1.59497400
Η	5.01567300	0.05521200	5.29625800
Η	6.03101100	-2.70443700	-3.18678100
Η	0.34607900	5.30847000	0.14814300
Η	-1.10472300	4.31579400	-0.09215900

4.2 Mechanistic Studies

Table S18. Calculated energies [in kJ/mol] of the optimized structures and transition states [M062x//6-311+g(d)/LANL2TZ(f)]; energy differences, reaction enthalpies and activation energies are given relative to the Iridium complex 2' and the respective diphenylphosphine oxide.

Compound	SCF	Enthalpy	Free energy	ΔH	ΔG
Iridium complex 2'	-4578874.748	-4578249.006	-4578420.734	0.00	0.00
Diphenyl phosphine oxid	-2311416.030	-2310862.805	-2311002.356	0.00	0.00
Diphenyl phosphinous acid	-2311416.116	-2310860.369	-2311003.275	0.00	0.00
	Path <i>via</i> Diph	enyl phosphine ox	sid		
TS1	-6890246.648	-6889069.364	-6889314.822	42.45	108.27
Int1	-6890319.030	-6889136.617	-6889381.746	-24.81	41.34
TS2	-6890308.604	-6889131.710	-6889373.983	-19.90	49.11
$5_{\rm Me}$	-6890483.160	-6889293.742	-6889533.873	-181.93	-110.78
	Path <i>via</i> Diphe	nyl phosphinous a	acid		
TS1'	-6890333.182	-6889149.103	-6889402.168	-39.73	21.84
Int1'	-6890435.678	-6889249.505	-6889495.328	-140.13	-71.32
TS2'	-6890428.399	-6889252.987	-6889495.690	-143.61	-71.68
5' _{Me}	-6890498.303	-6889309.264	-6889552.766	-199.89	-128.76

Figure S24. Reaction profile and structures of the optimized intermediates and transition states for the oxidative addition of the P–H bond to iridium (orange pathway) and for coordination of the phosphinous acid tautomer (green pathway) [M062X//6-311+G(d)/LANL2TZ(f)].

Atomic symbol	Х	У	Ζ
Ir	0.94863900	-0.17471600	0.05247700
S	-0.00199300	-2.44209000	0.20658100
S	-1.76725800	1.68576900	-0.16186800
Р	-1.72392100	-1.34466100	-0.02265600
0	-3.08394100	1.39698000	-0.75326500
0	-0.88995000	2.67173800	-0.79659800
С	-0.92960800	0.19294700	0.05892300
С	3.17463500	-0.41119800	0.06601800
С	2.72751500	0.47324300	1.08469300
С	2.04130800	1.58461900	0.45766900
С	2.01760400	1.33638000	-0.94498600
С	2.70016500	0.08077700	-1.17944200
Н	3.67074500	-1.35612400	0.22485900
Н	2.87933900	0.34336200	2.14509300
Н	1.60499600	2.43751000	0.95361700
Н	1.52731200	1.95495700	-1.68087300
Н	2.81871600	-0.40038900	-2.13784500
С	-2.96325200	-1.66543000	1.26380000
Н	-3.79863900	-0.97501400	1.12225200
Н	-3.32554100	-2.69281100	1.19859300
Н	-2.50542400	-1.50320800	2.23937400

Table S19. Cartesian Coordinates of the iridium complex 2'.

С	-2.56685700	-1.68519100	-1.58873500
Н	-2.95777200	-2.70397400	-1.59637900
Н	-3.37266300	-0.95890200	-1.70859100
Н	-1.84515600	-1.56140300	-2.39560900
С	-2.08905500	2.30928900	1.48836000
Н	-2.61025600	3.25910100	1.36976200
Н	-1.13524800	2.44842300	1.99326200
Н	-2.71236200	1.59033100	2.01727800

Table S20. Cartesian Coordinates of TS1.

Atomic symbol	Х	У	Z
S	1.55688100	0.15384300	-2.09507400
S	1.54184700	-0.18732100	2.27902500
Р	2.69572900	-0.40100200	-0.45306800
0	2.36071600	-1.40154000	2.46857400
0	0.12627000	-0.23495700	2.71035700
С	0.75194800	3.35545600	-0.55780200
С	0.10222700	3.12568200	0.70776800
С	-1.21808800	2.67197000	0.45282500
С	-1.43181500	2.68920800	-0.97950300
С	-0.23562600	3.11194900	-1.59110600
Н	1.76056200	3.70738900	-0.70767800
Н	0.56499000	3.20363700	1.67863300
Н	-1.93678500	2.35841200	1.19518300
Н	-2.32467800	2.36029600	-1.49091200
Н	-0.05315400	3.15743000	-2.65407400
С	4.36945300	0.30844800	-0.58567300
Н	4.93416700	0.05075000	0.31422900
Н	4.88944800	-0.07756100	-1.46479000
Н	4.27870700	1.39192900	-0.65909500
С	3.00422900	-2.18917400	-0.41661100
Н	3.64759000	-2.45995200	-1.25666300
Н	3.47405200	-2.44893400	0.53239300
Н	2.05391300	-2.71345200	-0.49782400
С	1.67036400	0.34804100	0.69025400
Н	-0.47386400	-0.16731100	0.05539700
Ir	0.22998800	1.31620600	-0.44056900
С	2.28080900	1.02096800	3.38802000
Н	2.18348300	0.63145900	4.40106700
Н	1.74524600	1.96302200	3.29001000
Н	3.32773000	1.13616100	3.11376700
Р	-1.46485600	-0.80594200	-0.96105300
С	-0.75924000	-2.43541900	-0.63679000
С	-0.42403000	-2.83713800	0.65853400
С	-0.51628800	-3.26745800	-1.73009300
С	0.13298800	-4.09490900	0.85875600
Н	-0.56593900	-2.17258900	1.50531300
С	0.03992600	-4.52501000	-1.51872200
Н	-0.75922000	-2.91718100	-2.72736000
С	0.35762700	-4.93819900	-0.22688800
Н	0.41129100	-4.40136600	1.86006300
Н	0.23033100	-5.17928200	-2.36188100

Н	0.79654100	-5.91690300	-0.06679000
С	-2.91671300	-0.50322800	0.07602800
С	-2.81997200	-0.30950600	1.45650400
С	-4.15619600	-0.45909200	-0.56453000
С	-3.97919700	-0.09138600	2.19383800
Н	-1.85062300	-0.30454900	1.94991300
С	-5.30814700	-0.23594500	0.18262400
Н	-4.20500300	-0.59224400	-1.64006500
С	-5.21906000	-0.05625900	1.55978500
Н	-3.91092000	0.05640600	3.26566400
Н	-6.27311200	-0.20059300	-0.31019200
Н	-6.11813200	0.11666800	2.14104800
0	-1.72818900	-0.54146900	-2.40096400

 Table S21. Cartesian Coordinates of Int1.

Atomic symbol	X	У	Z
S	1.37537800	-0.09184000	-2.12276400
S	1.90118400	0.07483600	2.22409700
Р	2.68767100	-0.50570900	-0.56717600
0	3.00236900	-0.88653800	2.41937000
0	0.59276300	-0.19790500	2.85170700
С	0.41274100	3.15404300	-1.53060500
С	0.68170900	3.36414700	-0.16884400
С	-0.47123700	2.95518900	0.57855200
С	-1.49179900	2.57577500	-0.35976800
С	-0.92672700	2.64817200	-1.66508800
Н	1.11644000	3.27658400	-2.34063000
Н	1.63089500	3.66075400	0.25132900
Н	-0.59163500	2.99827200	1.65072400
Н	-2.49737400	2.26955300	-0.11128000
Н	-1.42311700	2.37554300	-2.58431200
С	4.35523600	0.14932000	-0.87896700
Н	4.95765000	-0.02409900	0.01671400
Н	4.82168900	-0.34888000	-1.73088700
Н	4.28267300	1.21962800	-1.06802500
С	2.95475900	-2.29138000	-0.40363800
Н	3.53967800	-2.64887500	-1.25413100
Н	3.48422000	-2.47731700	0.53204200
Н	1.99159700	-2.79778300	-0.38456100
С	1.75669500	0.37277500	0.56399200
Н	-0.31666300	0.28684700	0.84069500
Ir	0.08891700	1.07290200	-0.43367300
С	2.44990300	1.59087400	3.01368500
Н	2.52060000	1.39397100	4.08298300
Н	1.71124000	2.36697700	2.81834800
Н	3.42015900	1.85775100	2.59962900
Р	-1.44490300	-0.58291300	-0.92323400
С	-0.76255900	-2.22228200	-0.50643700
С	-0.40518900	-2.58977200	0.79255900
С	-0.65245300	-3.14157000	-1.54975100
С	0.04325000	-3.88204100	1.04585600
Н	-0.44926800	-1.88079700	1.61180200

С	-0.19278800	-4.43018600	-1.29172000
Н	-0.93354600	-2.83502000	-2.55154300
С	0.14805300	-4.80260900	0.00584600
Н	0.32432500	-4.16085900	2.05501800
Н	-0.10672000	-5.14432600	-2.10319600
Н	0.50126400	-5.80823800	0.20635900
С	-2.86666400	-0.35783300	0.21852400
С	-2.75836500	-0.19024000	1.60347100
С	-4.12711500	-0.35065000	-0.38050300
С	-3.90439700	-0.02734000	2.37365200
Н	-1.79140100	-0.17690100	2.09968600
С	-5.27109200	-0.18068100	0.39575700
Н	-4.19488900	-0.47425600	-1.45598800
С	-5.16108300	-0.01994800	1.77194400
Н	-3.81401900	0.09612800	3.44706700
Н	-6.24687400	-0.17435900	-0.07720600
Н	-6.05103500	0.11183400	2.37740900
0	-1.92816500	-0.53015400	-2.34251200

 Table S22. Cartesian Coordinates of TS2.

Atomic symbol	Х	у	Z
S	-1.43457300	0.15423600	-2.12853900
S	-1.87924600	-0.14905000	2.27333800
Р	-2.65799400	0.57560500	-0.51020600
0	-3.01240300	0.76563000	2.49459900
0	-0.59591900	0.10066900	2.95203500
С	-0.62441500	-3.33555200	-0.14113800
С	0.57444300	-2.89032800	0.52191800
С	1.52344000	-2.53856500	-0.48715400
С	0.87265800	-2.64388900	-1.75540600
С	-0.44612800	-3.17232800	-1.52106700
Н	-1.54009400	-3.63523700	0.34655200
Н	0.76226700	-2.89518800	1.58546200
Н	2.53840500	-2.21254000	-0.31449600
Н	1.31408900	-2.40986500	-2.71205000
Н	-1.19892900	-3.32779300	-2.27971400
С	-4.33304800	-0.10626200	-0.69068000
Н	-4.86731600	0.06276100	0.24785800
Н	-4.86781400	0.38181900	-1.50751000
Н	-4.25704300	-1.17552100	-0.88505300
С	-2.92615200	2.35601700	-0.31497200
Н	-3.59167000	2.71469300	-1.10325400
Н	-3.37171900	2.52727700	0.66673900
Н	-1.97023400	2.87267000	-0.38115000
С	-1.67193100	-0.28253900	0.59935400
Н	-0.04611300	-0.03822900	0.67443400
Ir	-0.08907600	-1.06448700	-0.53354000
С	-2.41496100	-1.73826100	2.91332500
Н	-2.54929500	-1.62599600	3.98875200
Н	-1.63832800	-2.47241600	2.70368300
Н	-3.35265900	-2.00359500	2.42856700
Р	1.45941000	0.58917600	-0.94194600

С	0.78847400	2.23355900	-0.50265400
С	0.46521800	2.59663200	0.80716200
С	0.65641100	3.16092100	-1.53587900
С	0.02642800	3.88816000	1.08033400
Н	0.54521800	1.88833200	1.62584600
С	0.20786600	4.44968000	-1.25883900
Н	0.91656300	2.86121700	-2.54542000
С	-0.10071100	4.81534600	0.04875800
Н	-0.22294500	4.16373100	2.09868100
Н	0.10744800	5.17007900	-2.06311000
Н	-0.44332700	5.82151000	0.26431900
С	2.82397200	0.33247400	0.25783500
С	2.63532900	0.05125900	1.61522400
С	4.11753000	0.41502300	-0.25878700
С	3.73749900	-0.13000300	2.44353600
Н	1.63892300	-0.03690800	2.04009700
С	5.21699800	0.22558400	0.57492500
Н	4.24677900	0.61920000	-1.31642400
С	5.02810400	-0.04532400	1.92539600
Н	3.58623000	-0.34030000	3.49648600
Н	6.21985400	0.28856200	0.16719700
Н	5.88363400	-0.19294700	2.57526000
0	1.99265400	0.57818500	-2.34423700

Table S23. Cartesian Coordinates of 5_{Me} .

Atomic symbol	Х	У	Z
S	1.48306600	-0.99749300	-1.98208400
S	1.79077200	0.13093300	2.36707700
Р	2.05195900	-1.59013500	-0.12311400
0	2.27717000	-1.06224100	3.06792300
0	0.81049600	0.99462100	3.02157100
С	1.91248900	2.69456400	-0.95926400
С	0.99602800	2.87931500	0.11949900
С	-0.33544500	2.86224900	-0.39878900
С	-0.24891500	2.65044100	-1.82088400
С	1.12389100	2.51168000	-2.14331600
Н	2.99071100	2.69995300	-0.91430900
Н	1.23593600	3.00788600	1.16566500
Н	-1.23821400	3.00644800	0.17404300
Н	-1.07957300	2.52939900	-2.50010900
Н	1.51154500	2.27929300	-3.12433900
С	3.83968300	-1.38770500	0.11883800
Н	4.11248100	-1.62194800	1.14950500
Н	4.33702300	-2.08250900	-0.56061700
Н	4.13857200	-0.37498700	-0.14844300
С	1.71814500	-3.30816600	0.32452900
Н	2.32647600	-3.97684600	-0.28722200
Н	1.96697400	-3.43390900	1.38154800
Н	0.66315800	-3.52937200	0.16449500
С	1.05748100	-0.41745300	0.82970900
Н	0.21678800	-0.98574000	1.24159000
Ir	0.52477900	0.89022900	-0.72948900

С	3.23158500	1.15351500	2.01167700
Н	3.20824600	1.95549500	2.74812200
Н	3.15906300	1.55698400	1.00547900
Н	4.12455500	0.54750900	2.13569500
Р	-1.53231000	-0.10962600	-0.92814100
С	-1.59137200	-1.89356200	-0.44622900
С	-1.80566400	-2.35205100	0.85652500
С	-1.49329400	-2.82327700	-1.48573100
С	-1.89526000	-3.71737900	1.12060600
Н	-1.93960700	-1.64599900	1.67086300
С	-1.58652700	-4.18639600	-1.22293400
Н	-1.37043700	-2.46076400	-2.50022700
С	-1.78308300	-4.63614500	0.08133300
Н	-2.06818700	-4.05936100	2.13497600
Н	-1.51814500	-4.89859000	-2.03803900
Н	-1.86329200	-5.69844700	0.28461500
С	-2.68332300	0.62456400	0.30292800
С	-2.29819200	0.99089100	1.59545300
С	-4.00844000	0.79828600	-0.09723500
С	-3.23739200	1.50477000	2.48413600
Η	-1.26255800	0.90310500	1.91273700
С	-4.94397100	1.32230500	0.79122500
Η	-4.28769300	0.52848100	-1.11064300
С	-4.56110900	1.67054400	2.08276700
Η	-2.93026100	1.78406600	3.48604400
Н	-5.97172500	1.46051600	0.47343200
Н	-5.29048700	2.07782000	2.77449100
Ο	-2.11258600	0.01753500	-2.31559300

Table S24. Cartesian Coordinates of TS1'.

Atomic symbol	Х	у	Z
S	-1.26059300	-2.20319300	1.36402300
S	-2.32488700	0.46414900	-2.04711000
Р	-1.94613100	-2.09609500	-0.57523400
0	-2.56779800	-0.47117300	-3.15881600
0	-1.57712600	1.70232700	-2.30005400
С	-2.41625300	1.60265500	1.92059300
С	-1.52314200	2.31383600	1.03944700
С	-0.20095400	2.09960900	1.53041400
С	-0.26666800	1.34725800	2.75823000
С	-1.62380900	1.03645300	2.99253700
Н	-3.49138800	1.54380700	1.84078900
Н	-1.77490600	2.83617600	0.12782400
Н	0.70385600	2.44223800	1.04923000
Н	0.57826600	1.01882700	3.34257900
Н	-2.00827800	0.41463300	3.78673600
С	-3.70044000	-2.56037200	-0.68305700
Н	-4.05517400	-2.35910400	-1.69698300
Н	-3.82039100	-3.62088100	-0.45534200
Н	-4.26495400	-1.97335300	0.04158600
С	-1.10574600	-3.22368000	-1.71639300
Н	-1.33891000	-4.26161700	-1.47270500

Н	-1.44846400	-2.98581300	-2.72655800
Н	-0.02996400	-3.05895700	-1.65176000
С	-1.58916000	-0.41018200	-0.77212900
Н	0.20695500	-0.65110700	-1.64794900
Ir	-1.11765800	0.23105100	1.05481000
С	-3.95386500	1.01641900	-1.51744500
Н	-4.38381400	1.56365000	-2.35620600
Н	-3.83854900	1.67004200	-0.65497700
Н	-4.56333400	0.14789300	-1.27501600
Р	1.74624900	-0.23609300	-0.18263400
С	2.45910900	1.39517900	-0.62466600
С	3.63669900	1.87365700	-0.04611300
С	1.70126000	2.23882800	-1.44551600
С	4.05873900	3.17766800	-0.29070900
Н	4.23640600	1.22268500	0.58369600
С	2.13108300	3.53919500	-1.69035200
Н	0.77399000	1.88681700	-1.89096600
С	3.30667500	4.01237000	-1.11201700
Н	4.98013600	3.53820600	0.15359600
Н	1.54264000	4.18256000	-2.33529000
Н	3.63826900	5.02666800	-1.30484000
С	3.24904700	-1.26327000	-0.03835800
С	3.65407800	-1.70081300	1.22147900
С	4.00973100	-1.59365600	-1.16368700
С	4.82187600	-2.44786700	1.36403200
Н	3.04874500	-1.46538600	2.09210600
С	5.16621900	-2.34914200	-1.02178100
Н	3.68336300	-1.25941300	-2.14276000
С	5.57582900	-2.77176500	0.24257800
Н	5.13382100	-2.78476400	2.34631900
Н	5.75396000	-2.60699600	-1.89589900
Н	6.48154900	-3.35849900	0.34970600
Ο	1.18741200	-0.74190800	-1.64267600

Table S25. Cartesian Coordinates of Int1'.

.

Atomic symbol	Х	У	Ζ
S	-0.74588200	-2.40518800	0.56527200
S	-2.69617300	1.09522400	-1.34409100
Р	-2.24120800	-1.74131200	-0.70147800
0	-3.48962000	0.47988200	-2.42650300
0	-1.91614900	2.31114100	-1.62235400
С	-0.86823600	0.05398200	3.14575400
С	-1.74286700	0.92400900	2.45375000
С	-0.93316300	1.90196400	1.76633300
С	0.43091100	1.62739600	2.08829800
С	0.47937100	0.47770100	2.94143400
Н	-1.16969700	-0.83086400	3.68748800
Н	-2.81801800	0.84039200	2.42352400
Н	-1.27320400	2.71075100	1.13573800
Н	1.28042100	2.19266700	1.73301300
Н	1.36360000	0.03882100	3.37581300
С	-3.89081400	-2.08503800	-0.00320000

Н	-4.64830800	-1.64415800	-0.65649500
Н	-4.05589000	-3.16130800	0.07288800
Н	-3.95020800	-1.64275200	0.99198900
С	-2.26002000	-2.59058300	-2.30279300
Н	-2.56644500	-3.63223300	-2.19128400
Н	-2.95802800	-2.05383600	-2.94938800
Н	-1.25894500	-2.54514500	-2.73213100
С	-1.69378900	-0.11004600	-0.71124100
Н	-0.34639300	-0.20790100	-2.05160000
Ir	-0.38669200	-0.01767500	0.91324100
С	-3.94551900	1.64646300	-0.16161000
Н	-4.60404400	2.31981600	-0.70971300
Н	-3.46656200	2.17998500	0.65595800
Н	-4.50282200	0.78217300	0.19740700
Р	1.21427800	-0.06525400	-0.63728500
С	2.10642400	1.51776900	-0.72601400
С	3.42527000	1.66520500	-0.29963100
С	1.37566500	2.63184500	-1.15640000
С	4.01730000	2.92725600	-0.30081400
Н	3.99407400	0.80156000	0.02959700
С	1.97714200	3.88402500	-1.16305800
Н	0.34027200	2.52007800	-1.47335000
С	3.29504700	4.03380700	-0.73197300
Н	5.04379600	3.04105600	0.02930100
Н	1.41437200	4.74582400	-1.50366700
Н	3.75795000	5.01447100	-0.73571900
С	2.52194800	-1.31608100	-0.50206100
С	2.81207300	-1.92402400	0.71716700
С	3.27602300	-1.62968600	-1.63513000
С	3.86136500	-2.83348700	0.80967000
Н	2.20401600	-1.69661700	1.58686700
С	4.31963700	-2.54257700	-1.54069900
Н	3.03568400	-1.16440100	-2.58516100
С	4.61524600	-3.14072600	-0.31805500
Н	4.08251200	-3.30976400	1.75814900
Н	4.90169900	-2.78962300	-2.42131800
Н	5.42955400	-3.85325600	-0.24722800
0	0.64934700	-0.28501000	-2.12814800

Table S26. Cartesian Coordinates of TS2'.

Atomic symbol	Х	у	Z
S	-0.70423700	-2.39600700	0.63165100
S	-2.73106200	1.04401300	-1.36136700
Р	-2.17642000	-1.78854500	-0.67409800
Ο	-3.52662100	0.39212900	-2.41621000
Ο	-2.00794700	2.28357100	-1.66194600
С	-0.81237400	0.12874600	3.15277100
С	-1.72870700	0.96079000	2.46568700
С	-0.95865200	1.93826800	1.73122400
С	0.41961500	1.70540800	2.02129800
С	0.51861300	0.57844200	2.90073900
Н	-1.07687300	-0.74829600	3.72571500

S	5	1
2	-	

Н	-2.80264500	0.86088100	2.48345400
Н	-1.33076700	2.72455800	1.09033300
Н	1.24507500	2.28014700	1.62708900
Н	1.42447900	0.17084100	3.32057800
С	-3.83508100	-2.07996000	0.01466000
Н	-4.58247500	-1.65133700	-0.65755100
Н	-4.00532800	-3.15324900	0.11579300
Н	-3.89786100	-1.61849500	1.00078100
С	-2.16439200	-2.66064400	-2.25851100
Н	-2.41627600	-3.71443100	-2.12861800
Н	-2.88948600	-2.16989300	-2.91187000
Н	-1.16667500	-2.56538900	-2.68817600
С	-1.62953100	-0.13288400	-0.76872900
Н	-0.57637500	-0.21599200	-1.78489900
Ir	-0.39117200	0.01163500	0.92153900
С	-3.94482300	1.51874100	-0.11693100
Н	-4.67233000	2.13430400	-0.64560900
Н	-3.46304200	2.10058100	0.66388900
Н	-4.42716000	0.62923000	0.28413000
Р	1.21128300	-0.07002500	-0.67133500
С	2.10083100	1.51523000	-0.77106700
С	3.40930000	1.68485900	-0.32215700
С	1.37186900	2.61303700	-1.24355400
С	3.99103700	2.95175600	-0.34028400
Н	3.97873500	0.83323300	0.03656700
С	1.96079500	3.87105300	-1.26425100
Н	0.34650200	2.48173300	-1.58316800
С	3.26810800	4.04255800	-0.80931800
Н	5.01024400	3.08202200	0.00622800
Н	1.39804400	4.72007600	-1.63583000
Н	3.72261900	5.02703900	-0.82537900
С	2.51915900	-1.31798700	-0.49120400
С	2.85906600	-1.84857800	0.75124600
С	3.21830100	-1.71508600	-1.63261000
С	3.90458900	-2.76064500	0.85788600
Н	2.29159500	-1.55927100	1.63018100
С	4.25949100	-2.63001600	-1.52436000
Н	2.93449900	-1.31147700	-2.59890200
С	4.60559300	-3.14914800	-0.27943500
Н	4.16445500	-3.17628700	1.82501300
Н	4.79948200	-2.94069500	-2.41173700
Н	5.41705400	-3.86378600	-0.19734900
0	0.55203500	-0.30383600	-2.08194300

Table S27. Cartesian Coordinates of 5'Me.

Atomic symbol	Х	у	Z
S	0.79922000	2.18602800	0.85292300
S	3.29895800	-0.86532200	-0.85776200
Р	1.97699800	1.85051600	-0.78301700
0	4.17431000	-0.23169000	-1.84812500
0	2.99692500	-2.28651400	-0.99425300
С	1.33203600	-1.14569400	2.61619500

S52

С	1.17244900	-2.12912200	1.59986400
С	-0.21510800	-2.24991400	1.28544100
С	-0.93063400	-1.33163600	2.13453900
С	0.02479200	-0.63708700	2.91776300
Н	2.25399400	-0.82949300	3.07793600
Н	1.95183400	-2.68254800	1.09636100
Н	-0 65127500	-2.93407700	0 57365900
н	-2 00058900	-1 19428300	2 15766000
н	-0 19369400	0 15309200	3 62157600
C II	3 66565000	2 48270500	-0 53390000
н	4 30126700	2.18055400	-1 36610600
н	3 58834800	3 57156600	-0.49040300
н	4 08000300	2 13235200	0.40466400
II C	1 44050500	2.13233200	2 31446000
С ц	1.44950500	2.04802200	-2.31440000
п	2 16262000	3.72971000	-2.10/90/00
п	2.16262900	2.37883100	-5.09802500
H	0.45473000	2.28011600	-2.30/88100
C	1./5851500	0.04148900	-0.83890300
Н	1.32997300	-0.20774000	-1.81596300
lr	0.3918/900	-0.22430600	0.74516100
C	4.06/9/400	-0.61859200	0.75999700
H	3.99159300	-1.54865900	1.31867200
Н	3.55848000	0.18251100	1.29319900
Н	5.10999000	-0.36652200	0.57112900
Р	-1.21676200	0.20122000	-0.82406600
С	-2.23551600	-1.31840000	-1.00201400
С	-3.37483100	-1.58067300	-0.24143300
С	-1.79030900	-2.27235700	-1.92028300
С	-4.04602800	-2.79404100	-0.37668000
Н	-3.75475200	-0.82963000	0.44520900
С	-2.46109400	-3.48278000	-2.05587200
Н	-0.91860300	-2.05533800	-2.52980300
С	-3.58630300	-3.74835400	-1.27837100
Н	-4.93406000	-2.98871800	0.21473600
Н	-2.10909700	-4.21799200	-2.77110400
Н	-4.10975700	-4.69207900	-1.38431000
С	-2.45210200	1.42496600	-0.23281700
С	-2.67503600	1.72423300	1.11038900
С	-3.22782500	2.05115900	-1.21025900
С	-3.67325500	2.62246300	1.47632400
Н	-2.05348800	1.26849400	1.87461600
С	-4.22361400	2.95147500	-0.84591700
Н	-3.03577400	1.82962700	-2.25513000
С	-4.45061400	3.23455200	0.49790900
Н	-3.83751400	2.85282100	2.52335500
Н	-4.82165900	3.43441800	-1.61092500
Н	-5,22618200	3.93724500	0.78213700
0	-0.73584400	0.61139200	-2.20464500

Atomic symbol	Х	у	Ζ
С	-1.45700100	0.34771500	-0.21789300
С	-2.05857200	-0.54670500	-1.10290300
С	-2.00253800	0.55092900	1.04998300
С	-3.19081900	-1.25493400	-0.71302500
Н	-1.65362600	-0.68445400	-2.10183200
С	-3.13524000	-0.15602800	1.43558200
Н	-1.54343500	1.27130700	1.71936900
С	-3.72570500	-1.06057400	0.55673000
Н	-3.66057300	-1.94784500	-1.40176100
Н	-3.56235300	0.00260500	2.41918700
Н	-4.61108700	-1.60859900	0.85894900
С	1.44015900	0.18266600	-0.22934500
С	2.56646700	0.79352200	0.32064900
С	1.42163700	-1.19781300	-0.43501500
С	3.67662300	0.02389600	0.65496500
Н	2.55516900	1.86500900	0.49087300
С	2.53410400	-1.96178400	-0.10390400
Н	0.53736500	-1.68074500	-0.83982300
С	3.66127600	-1.35010400	0.43988000
Н	4.55167700	0.49714600	1.08572100
Н	2.52005200	-3.03434600	-0.26094600
Н	4.52675700	-1.94878300	0.70122900
0	0.16414300	2.62042700	-0.07272200
Р	0.04289500	1.25840700	-0.66323400
Н	0.00112300	1.20447300	-2.07489700

Table S28. Cartesian Coordinates of Diphenyl phosphine oxid.

Table S29. Cartesian Coordinates of Diphenyl phosphinous acid.

Atomic symbol	Х	У	Z
С	-1.39917900	0.37434600	-0.22370900
С	-2.32051200	-0.13193800	-1.13838500
С	-1.55225100	0.09382300	1.13696000
С	-3.37967000	-0.92750700	-0.70310100
Н	-2.21582700	0.10025000	-2.19437600
С	-2.61517900	-0.68526500	1.57183000
Н	-0.83619400	0.49591100	1.84676400
С	-3.52707600	-1.20134700	0.65063100
Н	-4.09152700	-1.32201600	-1.41961700
Н	-2.73349900	-0.89872300	2.62849400
Н	-4.35372200	-1.81408000	0.99295700
С	1.37504500	0.27108900	-0.34135900
С	2.37185500	0.68061100	0.54282300
С	1.44521300	-1.00245300	-0.91312100
С	3.42264600	-0.17937200	0.85577200
Н	2.31435200	1.66498200	0.99172400
С	2.49418200	-1.85644300	-0.60031600
Н	0.66852400	-1.33463000	-1.59703600
С	3.48761800	-1.44513600	0.28591300
Н	4.19141300	0.14340000	1.54942600

Н	2.53642800	-2.84463200	-1.04474900
Н	4.30704000	-2.11157600	0.53087200
0	0.17295700	2.47521500	0.42189200
Р	0.00595200	1.38713600	-0.83853800
Н	-0.07608400	3.36990500	0.17484900