Supporting Information for

Formal [3+2] Cycloadditions via Indole Activation: A Route to Pyrroloindolines and Furoindolines

Ya-Ni Wang, ${ }^{\dagger}$ Tian-Ren Li, ${ }^{\dagger}$ Mao-Mao Zhang, Bei-Yi Cheng, Liang-Qiu Lu* andWen-Jing Xiao*${ }^{1}$ Key Laboratory of Pesticide \& Chemical Biology, Ministry of Education, College of Chemistry,Central China Normal University, 152 Luoyu Road, Wuhan, Hubei 430079, China${ }^{2}$ School of Chemistry and Chemical Engineering, Hunan University of Science and Technology,Xiangtan, Hunan 411201, China.
${ }^{\dagger}$ These two authors contributed equally to this work.
Table of Contents

1. General Information S2
2. Details for Condition Optimization S2-S3
3. Copies of ${ }^{1} \mathrm{H}$ NMR,,${ }^{13} \mathrm{C}$ NMR and ${ }^{11} \mathrm{~B}$ NMR Spectra of Products S4 - S29
4. Copies of HPLC Spectra S29-S30
5. X-Ray Structure of Product 3aa. S30-S31

1. General Information

3-Methyl indoles 1a, 10, 1p and $4 \mathbf{a}^{1}$ were obtained from comerial soures. Other indoles ${ }^{2-5}$ and vinly aziridines ${ }^{6,7}$ were prepared according to known procedures.

References:

(1) Kamata, K.; Kotani, M.; Yamaguchi, K.; Hikichi, S.; Mizuno. Chem. Eur. J. 2007, 13, 639.
(2) Cheng, H.-G.; Lu, L.-Q.; Wang, T.; Yang, Q.-Q.; Liu, X.-P.; Li, Y.; Deng, Q.-H.; Chen, J.-R.; Xiao, W.-J. Angew. Chem. Int. Ed. 2013, 52, 3250.
(3) Zhang, Y.; Stephens, D.; Hernandez, G.; Mendoza, R.; Larionov, O. V. Chem. Eur. J. 2012, 18, 16612.
(4) Yadav, J. S.; Reddy, B. S.; Reddy, P. M.; Srinivas, C. Tetrahedron Letter 2002, 43, 5185.
(5) Chen, J.-R.; Li, C.-F.; An, X.-L.; Zhang, J.-J.; Zhu, X.-Y.; Xiao, W.-J. Angew. Chem. Int. Ed. 2008, 47, 2489.
(6) Rodrigo, C.; Dennis G. D.; Fabio S.; Joao, V. C. Tetrahedron Letter 2005, 46, 2539.
(7) Feng, J.-J.; Lin, T.-Y.; Zhu, C.-Z.; Wang, H.-M.; Wu, H.-H.; Zhang, J.-L. J. Am. Chem. Soc. 2016, 138, 2178.

2. Details for Condition Optimization

Table S1. Conditions optimization for furoindoline synthsis ${ }^{a}$

8	$1: 2.5$	80	1,4 -dioxane	none	24	trace
9	$1: 2.5$	25	THF	n - $\mathrm{Bu}_{4} \mathrm{NBr}(1 \mathrm{eq})$.	24	trace
10	$1: 2.5$	25	THF	n - $\mathrm{Bu}_{4} \mathrm{NI}(1 \mathrm{eq})$.	24	trace
11	$1: 2.5$	25	THF	$\mathrm{LiBF}_{4}(1 \mathrm{eq})$.	24	>10
12	$1: 2.5$	25	THF	$\mathrm{LiCl}(1 \mathrm{eq})$.	24	28
13	$1: 4$	r.t.	THF	$\mathrm{LiCl}(1 \mathrm{eq})$.	24	37
14	$1: 4$	60	THF	$\mathrm{LiCl}(1 \mathrm{eq})$.	12	90

${ }^{a}$ Reaction conditions: $\mathbf{1 a}$ (x mmol.), $\mathbf{4 a}$ (y mmol), BEt_{3} (1.1 x equiv.), t-BuOK (1.1 x equiv.), solvent (2.0 ml). ${ }^{b}$ Isolated yields based on 2.

3. Copies of ${ }^{1} \mathbf{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR Spectra of Products

${ }^{1} \mathrm{H}$ NMR spectrum $\left(\mathbf{4 0 0} \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of product 3aa

${ }^{13} \mathrm{C}$ NMR spectrum $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of product 3aa

${ }^{1} \mathrm{H}$ NMR spectrum $\left(\mathbf{4 0 0} \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of product $\mathbf{3 b a}$

${ }^{13} \mathrm{C}$ NMR spectrum $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of product 3 ba

${ }^{1} \mathrm{H}$ NMR spectrum $\left(\mathbf{4 0 0} \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of product $\mathbf{3 c a}$

${ }^{13} \mathrm{C}$ NMR spectrum ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of product 3ca

${ }^{1} \mathrm{H}$ NMR spectrum $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of product 3 da

${ }^{13} \mathrm{C}$ NMR spectrum $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of product 3da

${ }^{1} \mathrm{H}$ NMR spectrum $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of product 3 ea

${ }^{13} \mathrm{C}$ NMR spectrum ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of product 3ea

${ }^{1} \mathrm{H}$ NMR spectrum $\left(\mathbf{4 0 0} \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of product 3 fa

${ }^{13} \mathrm{C}$ NMR spectrum $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of product $3 \mathrm{3fa}$

${ }^{1} \mathrm{H}$ NMR spectrum $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of product 3 ga

${ }^{13} \mathrm{C}$ NMR spectrum $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of product 3 ga

${ }^{1} \mathrm{H}$ NMR spectrum ($\mathbf{4 0 0} \mathrm{MHz}, \mathrm{CDCl}_{3}$) of product 3 ha

${ }^{13} \mathrm{C} \mathrm{NMR} \mathrm{spectrum}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of product 3ha

[^0]${ }^{1} \mathrm{H}$ NMR spectrum $\left(\mathbf{4 0 0} \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of product $\mathbf{3 j a}$

${ }^{13} \mathrm{C}$ NMR spectrum $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of product $\mathbf{3 j a}$

${ }^{1} \mathrm{H}$ NMR spectrum ($\mathbf{4 0 0} \mathbf{~ M H z}, \mathrm{CDCl}_{3}$) of product $\mathbf{3 k a}$

${ }^{13} \mathrm{C}$ NMR spectrum $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of product 3 ka

${ }^{1} \mathrm{H}$ NMR spectrum $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of product 3la

${ }^{13} \mathrm{C}$ NMR spectrum $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of product 3la

${ }^{1} \mathrm{H}$ NMR spectrum $\left(\mathbf{4 0 0} \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of product $\mathbf{3 m a}$

${ }^{13} \mathrm{C}$ NMR spectrum ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of product 3 ma

${ }^{1} \mathbf{H}$ NMR spectrum ($\mathbf{4 0 0} \mathbf{~ M H z}, \mathrm{CDCl}_{3}$) of product $\mathbf{3 n a}$

${ }^{13} \mathrm{C} \mathrm{NMR} \mathrm{spectrum}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of product 3na

${ }^{1} \mathrm{H}$ NMR spectrum $\left(\mathbf{4 0 0} \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of product 3 oa

							$\frac{K}{4}$	$\stackrel{\text { T' }}{\substack{\mathrm{N}}} \stackrel{\substack{\mathrm{~N}}}{ }$	\mathfrak{N}	$\begin{aligned} & \text { © } \\ & \stackrel{\circ}{0} \end{aligned}$		W'す					Noie	$\stackrel{\text { ¢ }}{+}$		$\stackrel{\infty}{\infty}$		$\stackrel{\text { +1 }}{\stackrel{+}{\square}}$				
11.0	10.5	10.0	9.5	9.0	8.5	8.0	7.5	7.0	6.5	6.0	5.5	$\begin{gathered} 1 \\ \text { fl } \left.\begin{array}{c} 5.0 \\ \text { (ppn) } \end{array}\right) \end{gathered}$	4.5	4.0	3.5	3.0		2.5	2.0	. 0	1.5	1.0	0.5	0.0	-0. 5	${ }_{-1.0}$

${ }^{13} \mathrm{C}$ NMR spectrum $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of product 3 oa

${ }^{1} \mathrm{H}$ NMR spectrum $\left(\mathbf{4 0 0} \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of product $\mathbf{3 p a}$

${ }^{13} \mathrm{C}$ NMR spectrum ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of product $\mathbf{3 p a}$

${ }^{1} \mathbf{H}$ NMR spectrum ($\mathbf{4 0 0} \mathbf{~ M H z}, \mathrm{CDCl}_{3}$) of product 3ab

${ }^{13} \mathrm{C} \mathrm{NMR} \mathrm{spectrum}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of product 3 ab

${ }^{1} \mathrm{H}$ NMR spectrum ($\mathbf{4 0 0} \mathrm{MHz}, \mathrm{CDCl}_{3}$) of product 3ac

${ }^{13} \mathrm{C}$ NMR spectrum $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of product 3 ac

${ }^{1} \mathrm{H}$ NMR spectrum $\left(\mathbf{4 0 0} \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of product 3ae

${ }^{13} \mathrm{C}$ NMR spectrum $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of product 3ae

${ }^{1} \mathrm{H}$ NMR spectrum ($\mathbf{4 0 0} \mathrm{MHz}, \mathrm{CDCl}_{3}$) of product 5 aa

${ }^{13} \mathrm{C}$ NMR spectrum $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of product 5 aa

${ }^{1} \mathrm{H}$ NMR spectrum $\left(\mathbf{4 0 0} \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of product 5 ba

${ }^{1} \mathrm{H}$ NMR spectrum $\left(\mathbf{4 0 0} \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of product $\mathbf{5 m a}$

${ }^{13} \mathrm{C}$ NMR spectrum ($\mathbf{1 0 0} \mathrm{MHz}, \mathrm{CDCl}_{3}$) of product 5 ma

${ }^{1} \mathrm{H}$ NMR spectrum ($\mathbf{4 0 0} \mathrm{MHz}, \mathrm{CDCl}_{3}$) of product $3 q \mathbf{q a}$
 13
C NMR spectrum ($\mathbf{1 0 0} \mathrm{MHz}, \mathrm{CDCl}_{3}$) of product $3 q \mathrm{a}$

${ }^{1} \mathrm{H}$ NMR spectrum ($\mathbf{4 0 0} \mathrm{MHz}, \mathrm{CDCl}_{3}$) of product 6

${ }^{13} \mathrm{C}$ NMR spectrum $\left(\mathbf{1 0 0} \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of product 6

a) 11 B NMR of $1 \mathbf{a}+t-\mathrm{BuOK}+E{ }^{3} \mathrm{~B}$

b) 11 B NMR of $E{ }^{+3} \mathrm{~B}$

Figure S1. a) ${ }^{11}$ B NMR of 1a, $\mathbf{t - B u O K}$ and $\mathrm{Et}_{3} \mathrm{~B}$. b) ${ }^{11} \mathrm{~B}$ NMR of $\mathrm{Et}_{3} \mathrm{~B}$.

4. Copies of HPLC Spectra

5. X-Ray Structure of Product 3aa

Figure S2. The thermal ellipsoid was drawn at the $\mathbf{5 0 \%}$ probability level.
Crystals of the compound 3aa were obtained by diffusing petroleum ether to the ethyl acetate solution containing 3aa. The data were collected at 100 K with a diffractometer using graphite-monochromatized Mo-K $\alpha(\lambda=0.71073 \AA)$ radiation. SAMRT (v6.45, Bruker 2003) was used for data collection and SAINT (v7.68A, Bruker 2009) was used for data processing. No absorption correction was applied to the intensities due to its weak absorption nature. The structure was solved by Direct method with SHELXS ${ }^{1}$ and refined by full-matrix least-squares methods using the OLEX2, ${ }^{2}$ which utilizes the SHELXL-2013 module. ${ }^{3}$ The vinyl group was observed disordered over two parts with the fixed ratio of $0.8: 0.2$. The bond distances for the two parts were restrained to be the same by "SADI" command with the default deviation, and the anisotropic displacement parameters fot he minor part were strictly restrained by "ISOR 0.010 .02 " command. All non-hydrogen atoms in the structure were refined with anisotropic thermal parameters. All the hydrogen atoms except the H bound to N were introduced to their ideal positions
using riding modes with $U_{e q}(\mathrm{H})$ of $1.5 U_{e q}($ parent) for terminal methyl groups, and 1.2 $U_{e q}$ (parent) for others. The hydrogen bound to N 2 was located from the difference Fourier map, whose coordinates and the isotropic vibration parameter were refined freely. The information concerning crystal data, data collection and refinement results have been documented in the following.

Crystal data 3aa: $0.12 \times 0.15 \times 0.20 \mathrm{~mm}, \mathrm{C}_{20} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}, M=354.45$, monoclinic, space group $P 2_{1} / n, a=13.764$ (3) $\AA, b=8.3813(18) \AA, c=15.703$ (3) $\AA,, \beta=95.075(4)^{\circ}, V=$ 1804.4(7) $\AA^{3}, Z=4, \rho=1.305 \mathrm{~g} \mathrm{~cm}^{-3}, \mu=0.195 \mathrm{~mm}^{-1}, F(000)=752,8869$ reflections $\left(\theta_{\max }=25.25^{\circ}\right)$ measured (3136 unique, $R_{\mathrm{int}}=0.1029$ completeness $=96.3 \%$), Final R indices $(I>2 \sigma(I)): R_{l}=0.0811, w R_{2}=0.1757, R$ indices (all data): $R_{l}=0.1292, w R_{2}=$ 0.1911. GOF $=1.121$ for 250 parameters and 14 restraints, largest diff. peak and hole $0.506 /-0.227 e \AA^{-3}$.

References:

1. G. M. Sheldrick, Acta Cryst. 2008, A64, 112.
2. O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard, H. Puschmann, J. Appl. Cryst. 2009, 42, 339.
3. G. M. Sheldrick, Acta Cryst. 2015, C71, 3.

[^0]: | 1220 | 210 | 200 | 190 | 180 | 170 | 160 | 150 | 140 | 130 | 120 | 110 |
 | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
 | 101 | | | | | | | | | | | |

