Supporting Information for

Formal [3+2] Cycloadditions via Indole Activation: A Route to Pyrroloindolines and Furoindolines

Ya-Ni Wang,[†] Tian-Ren Li,[†] Mao-Mao Zhang, Bei-Yi Cheng, Liang-Qiu Lu* and

Wen-Jing Xiao*

¹Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry,

Central China Normal University, 152 Luoyu Road, Wuhan, Hubei 430079, China

²School of Chemistry and Chemical Engineering, Hunan University of Science and Technology,

Xiangtan, Hunan 411201, China.

[†]These two authors contributed equally to this work.

Table of Contents

1.	General Information
2.	Details for Condition Optimization
3.	Copies of ¹ H NMR, ¹³ C NMR and ¹¹ B NMR Spectra of Products
4.	Copies of HPLC Spectra
5.	X-Ray Structure of Product 3aa

1. General Information

3-Methyl indoles **1a**, **1o**, **1p** and **4a**¹ were obtained from comerial soures. Other indoles²⁻⁵ and vinly aziridines^{6,7} were prepared according to known procedures.

References:

- (1) Kamata, K.; Kotani, M.; Yamaguchi, K.; Hikichi, S.; Mizuno. Chem. Eur. J. 2007, 13, 639.
- (2) Cheng, H.-G.; Lu, L.-Q.; Wang, T.; Yang, Q.-Q.; Liu, X.-P.; Li, Y.; Deng, Q.-H.; Chen, J.-R.;

Xiao, W.-J. Angew. Chem. Int. Ed. 2013, 52, 3250.

(3) Zhang, Y.; Stephens, D.; Hernandez, G.; Mendoza, R.; Larionov, O. V. *Chem. Eur. J.* **2012**, *18*, 16612.

(4) Yadav, J. S.; Reddy, B. S.; Reddy, P. M.; Srinivas, C. Tetrahedron Letter 2002, 43, 5185.

(5) Chen, J.-R.; Li, C.-F.; An, X.-L.; Zhang, J.-J.; Zhu, X.-Y.; Xiao, W.-J. Angew. Chem. Int. Ed.
2008, 47, 2489.

(6) Rodrigo, C.; Dennis G. D.; Fabio S.; Joao, V. C. Tetrahedron Letter 2005, 46, 2539.

(7) Feng, J.-J.; Lin, T.-Y.; Zhu, C.-Z.; Wang, H.-M.; Wu, H.-H.; Zhang, J.-L. J. Am. Chem. Soc.

2016, *138*, 2178.

2. Details for Condition Optimization

Table S1. Conditions optimization for furoindoline synthsis^a

	N H 1a	Me J +	Li 4a	t-BuOK, BEt ₃	Me NHO HH 5aa	~
entry	1a:4a (x:y)	T/°C	solvent	additive	t/h	yield/% ^b
1	2.5:1	25	THF	none	24	n.r.
2	1:1	25	THF	none	24	n.r.
3	1:2.5	25	THF	none	24	n.r.
5	1:2.5	60	THF	none	24	trace
6	1:2.5	80	THF	none	24	>5
7	1:2.5	80	Toluene	none	24	trace

8	1:2.5	80	1,4-dioxane	none	24	trace
9	1:2.5	25	THF	<i>n</i> -Bu ₄ NBr (1 eq.)	24	trace
10	1:2.5	25	THF	<i>n</i> -Bu ₄ NI (1 eq.)	24	trace
11	1:2.5	25	THF	LiBF ₄ (1 eq.)	24	>10
12	1:2.5	25	THF	LiCl (1 eq.)	24	28
13	1:4	r.t.	THF	LiCl (1 eq.)	24	37
14	1:4	60	THF	LiCl (1 eq.)	12	90

^{*a*} Reaction conditions: **1a** (x mmol.), **4a** (y mmol), BEt₃ (1.1x equiv.), *t*-BuOK (1.1x equiv.), solvent (2.0 ml). ^{*b*} Isolated yields based on **2**.

3. Copies of ¹H NMR and ¹³C NMR Spectra of Products

¹H NMR spectrum (400 MHz, CDCl₃) of product 3aa

¹³C NMR spectrum (100 MHz, CDCl₃) of product 3aa

¹H NMR spectrum (400 MHz, CDCl₃) of product 3ba

¹³C NMR spectrum (100 MHz, CDCl₃) of product 3ba

¹H NMR spectrum (400 MHz, CDCl₃) of product 3ca

¹³C NMR spectrum (100 MHz, CDCl₃) of product 3ca

¹H NMR spectrum (400 MHz, CDCl₃) of product 3da

¹³C NMR spectrum (100 MHz, CDCl₃) of product 3da

¹H NMR spectrum (400 MHz, CDCl₃) of product 3ea

¹³C NMR spectrum (100 MHz, CDCl₃) of product 3ea

¹H NMR spectrum (400 MHz, CDCl₃) of product 3fa

¹³C NMR spectrum (100 MHz, CDCl₃) of product 3fa

¹H NMR spectrum (400 MHz, CDCl₃) of product 3ga

¹H NMR spectrum (400 MHz, CDCl₃) of product 3ha

¹³C NMR spectrum (100 MHz, CDCl₃) of product 3ha

¹H NMR spectrum (400 MHz, CDCl₃) of product 3ia

¹³C NMR spectrum (100 MHz, CDCl₃) of product 3ia

¹H NMR spectrum (400 MHz, CDCl₃) of product 3ja

¹³C NMR spectrum (100 MHz, CDCl₃) of product 3ja

¹H NMR spectrum (400 MHz, CDCl₃) of product 3ka

¹³C NMR spectrum (100 MHz, CDCl₃) of product 3ka

¹H NMR spectrum (400 MHz, CDCl₃) of product 3la

¹³C NMR spectrum (100 MHz, CDCl₃) of product 3la

¹H NMR spectrum (400 MHz, CDCl₃) of product 3ma

¹³C NMR spectrum (100 MHz, CDCl₃) of product 3ma

¹H NMR spectrum (400 MHz, CDCl₃) of product 3na

¹³C NMR spectrum (100 MHz, CDCl₃) of product 3na

¹H NMR spectrum (400 MHz, CDCl₃) of product 30a

¹³C NMR spectrum (100 MHz, CDCl₃) of product 3oa

¹³C NMR spectrum (100 MHz, CDCl₃) of product 3pa

¹H NMR spectrum (400 MHz, CDCl₃) of product 3ab

¹³C NMR spectrum (100 MHz, CDCl₃) of product 3ab

¹³C NMR spectrum (100 MHz, CDCl₃) of product 3ac

¹H NMR spectrum (400 MHz, CDCl₃) of product 3ae

¹³C NMR spectrum (100 MHz, CDCl₃) of product 3ae

¹H NMR spectrum (400 MHz, CDCl₃) of product 5aa

¹³C NMR spectrum (100 MHz, CDCl₃) of product 5aa

¹H NMR spectrum (400 MHz, CDCl₃) of product 5ba

¹³C NMR spectrum (100 MHz, CDCl₃) of product 5ba

¹H NMR spectrum (400 MHz, CDCl₃) of product 5fa

¹³C NMR spectrum (100 MHz, CDCl₃) of product 5fa

¹³C NMR spectrum (100 MHz, CDCl₃) of product 5ma

¹H NMR spectrum (400 MHz, CDCl₃) of product 3qa

C NMR spectrum (100 MHz, CDCl₃) of product 3qa

¹H NMR spectrum (400 MHz, CDCl₃) of product 6

¹³C NMR spectrum (100 MHz, CDCl₃) of product 6

Figure S1. a) ¹¹B NMR of 1a, t-BuOK and Et₃B. b) ¹¹B NMR of Et₃B.

4. Copies of HPLC Spectra

5. X-Ray Structure of Product 3aa

Crystals of the compound **3aa** were obtained by diffusing petroleum ether to the ethyl acetate solution containing **3aa**. The data were collected at 100 K with a diffractometer using graphite-monochromatized Mo- $K\alpha$ (λ =0.71073Å) radiation. *SAMRT* (v6.45, Bruker 2003) was used for data collection and *SAINT* (v7.68A, Bruker 2009) was used for data processing. No absorption correction was applied to the intensities due to its weak absorption nature. The structure was solved by Direct method with *SHELXS*¹ and refined by full-matrix least-squares methods using the *OLEX2*,² which utilizes the *SHELXL-2013* module.³ The vinyl group was observed disordered over two parts with the fixed ratio of 0.8:0.2. The bond distances for the two parts were restrained to be the same by "SADI" command with the default deviation, and the anisotropic displacement parameters fot he minor part were strictly restrained by "ISOR 0.01 0.02" command. All non-hydrogen atoms in the structure were refined with anisotropic thermal parameters. All the hydrogen atoms except the H bound to N were introduced to their ideal positions

using riding modes with $U_{eq}(H)$ of $1.5U_{eq}(parent)$ for terminal methyl groups, and 1.2 $U_{eq}(parent)$ for others. The hydrogen bound to N2 was located from the difference Fourier map, whose coordinates and the isotropic vibration parameter were refined freely. The information concerning crystal data, data collection and refinement results have been documented in the following.

Crystal data **3aa:** $0.12 \times 0.15 \times 0.20 \text{ mm}$, $C_{20}H_{22}N_2O_2S$, M = 354.45, monoclinic, space group $P2_1/n$, a = 13.764 (3) Å, b = 8.3813(18) Å, c = 15.703 (3) Å, $\beta = 95.075(4)$ °, V = 1804.4(7) Å³, Z = 4, $\rho = 1.305$ g cm⁻³, $\mu = 0.195$ mm⁻¹, F(000) = 752, 8869 reflections ($\theta_{max} = 25.25$ °) measured (3136 unique, $R_{int} = 0.1029$ completeness = 96.3%), Final Rindices ($I > 2\sigma(I)$): $R_I = 0.0811$, $wR_2 = 0.1757$, R indices (all data): $R_I = 0.1292$, $wR_2 = 0.1911$. GOF = 1.121 for 250 parameters and 14 restraints, largest diff. peak and hole $0.506/-0.227 e \text{Å}^{-3}$.

References:

- 1. G. M. Sheldrick, Acta Cryst. 2008, A64, 112.
- O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard, H. Puschmann, J. Appl. Cryst. 2009, 42, 339.
- 3. G. M. Sheldrick, Acta Cryst. 2015, C71, 3.