Supplementary Materials

Dithiol Aryl Arsenic Compounds as Potential Diagnostic and Therapeutic Radiopharmaceuticals

Anthony J. DeGraffenreid ${ }^{1 \text { al }}$, Yutian Feng ${ }_{2}^{1 a}$, Donald E. Wycoff ${ }^{1}$, Ryan Morrow ${ }^{1}$, Michael D. Phipps ${ }^{1}$, Cathy Cutler ${ }^{24}$, Alan R. Ketring ${ }^{2}$, Charles L. Barnes ${ }^{1}$, and Silvia S. Jurisson ${ }^{1,2 *}$
${ }^{1}$ Department of Chemistry, ${ }^{2}$ Research Reactor Center (MURR), University of Missouri, Columbia 65211

Abbreviated Title: Dithioaryl-[${ }^{77 / n a t}$ As]arsines
Key Words: Arsenic-77, dithioarylarsines, modified Bart reaction, no carrier added ${ }^{77}$ As
Correspondence to: Professor Silvia S. Jurisson, Department of Chemistry, 601 South College Avenue, University of Missouri, Columbia, MO 65211; jurissons@missouri.edu; 573-882-2107 (phone); 573-882-2754 (fax)
${ }^{\text {a }}$ Anthony DeGraffenreid and Yutian Feng contributed equally and are co-first authors.
'Current address: Medical Isotope Research \& Production Program (MIRP), Collider-Accelerator Department, Brookhaven National Laboratory, PO Box 5000, Building 801, Upton, NY 11973

Table of Contents

Synthesis and Characterization of S4-S12.
Figure S1. ORTEP representation of (S4) (CCDC 1436762) with 50% probability ellipsoids.

Figure S2. ORTEP representation of (S6) (CCDC\# 1436763) with 50\% probability ellipsoids.

Figure S3. ORTEP representation of (S7) (CCDC\# 1437260) with 50\% probability ellipsoids.

Figure S4. ORTEP representations of (S8a and S8b), obtained as the diammonium salt (omitted for clarity), (CCDC\# 1436764) with 50\% probability ellipsoids.

Figure S5. ORTEP representation of (S9) (CCDC\# 1436765) with 50\% probability ellipsoids.

Figure S6. ORTEP representation of (S10) (CCDC\# 1436766) with 50\% probability ellipsoids.

Figure S7. ORTEP representation of (S12) (CCDC\# 1436767) with 50\% probability ellipsoids.

Table S1. ${ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}$-NMR alkyl dithiol proton and carbon chemical shifts for the aryldithioarsines (1-3, S4-S12) compared to the free ligands.

Table S2. X-ray crystal data, data collection parameters, and refinement parameters for S4, S6-S10 and S12.

Table S3. Selected bond distances (\AA) and angles $\left({ }^{\circ}\right)$ for S4, S6-S10 and 12.

Several dithioarylarsines were synthesized (literature modification developed) ${ }^{32,33}$ and fully characterized, including their X-ray crystal structures.

Synthesis and Characterization of Additional Dithioarylarsines.

4-(1,3,2-dithiaarsolan-2-yl)aniline [$\mathrm{NH}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{As}\left(\mathrm{SCH}_{2} \mathrm{CH}_{2} \mathrm{~S}\right)$], S4. p-Arsanilic acid (109.5 $\mathrm{mg}, 0.504 \mathrm{mmol}$) was dissolved in ethanol $(95 \%, 20 \mathrm{~mL})$ in a 100 mL round bottom flask equipped with a stir bar, and heated to $55^{\circ} \mathrm{C}$ in a water bath. Aqueous ammonium mercaptoacetate ($5.5 \mathrm{M}, 458 \mu \mathrm{~L}, 2.52 \mathrm{mmol}$) was added, and heating continued while stirring vigorously. After 60 minutes, the flask was removed from heat and 1,2 -ethane dithiol ($47.5 \mathrm{mg}, 42.4 \mu \mathrm{~L}, 0.504 \mathrm{mmol}$) was added. The resultant reaction mixture was stirred for 30 minutes, at which time water ($\sim 50 \mathrm{~mL}$) was added until the reaction turned milky white. After standing overnight in the freezer $\left(-15^{\circ} \mathrm{C}\right)$, crystalline product was isolated by vacuum filtration, washed with water, and dried in vacuo. X-ray quality crystals were obtained by slow evaporation from methanol. Yield: $60 \%, 151 \mathrm{mg} .{ }^{1} \mathrm{H}-$ NMR ($\left.\mathrm{CDCl}_{3} ; 500 \mathrm{MHz}\right) ~ \delta ~ p p m: ~ 3.21\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{SCH}_{2}\right), 3.34\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{SCH}_{2}\right), 3.78(\mathrm{~s}, 2 \mathrm{H}$, $\left.\mathrm{NH}_{2}\right), 6.66(\mathrm{~d}, 2 \mathrm{H}, \mathrm{ArH}), 7.42(\mathrm{~d}, 2 \mathrm{H}, \mathrm{ArH}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3} ; 125.8 \mathrm{MHz}\right) \delta \mathrm{ppm}: 41.76$ $\left(\mathrm{CH}_{2}\right), 115.06$ (ArC), 131.49 (ArC), 132.27 (ArC), 147.73 (ArC). ESI/APCI MS (m / z) 259.90 (259.96 calcd for $\left.\left[\mathrm{C}_{8} \mathrm{H}_{10} \mathrm{NS}_{2} \mathrm{As}\right](\mathrm{M}+\mathrm{H})^{+}\right)$. Elem. Anal. Calcd (found) for $\mathrm{C}_{8} \mathrm{H}_{10} \mathrm{NS}_{2}$ As: C, 37.07 (37.15): H, 3.89 (3.94); N, 5.40 (5.34); S, 24.74 (24.95).

2-(4-aminophenyl)-1,3,2-dithiaarsolane-4,5-dicarboxylic acid, diammonium salt $\left(\mathrm{NH}_{4}\right)_{2}\left[\mathrm{NH}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{As}(\mathrm{SCH}(\mathrm{COO}) \mathrm{CH}(\mathrm{COO}) \mathrm{S})\right]$, S5. p-Arsanilic acid (106.5 mg, 0.490 mmol), 5.5 M ammonium mercaptoacetate ($419 \mu \mathrm{~L}, 2.30 \mathrm{mmol}$) and dimercaptosuccinic acid (DMSA; $84.6 \mathrm{mg}, 0.464 \mathrm{mmol})$ in ethanol $(95 \%, 20 \mathrm{~mL})$ were reacted as described above for S4. A white precipitate began to form shortly after the addition of DMSA. The product was collected via vacuum filtration, washed with cold ethanol and cold diethyl ether, and dried in vacuo. Yield: $68 \%, 109.6 \mathrm{mg} .{ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{D}_{2} \mathrm{O} ; 500 \mathrm{MHz}\right) \delta \mathrm{ppm}: 4.41$ (s, 2H, SCH), 6.78 (d, 2H, ArH), 7.49 (d, 2H, ArH). ${ }^{13} \mathrm{C}$ NMR ($\mathrm{CD}_{3} \mathrm{OD}+\mathrm{D}_{2} \mathrm{O} ; 125.8$ MHz) $\delta \mathrm{ppm}: 64.82$ (SCHCOOH), 116.77 (ArC), 132.06 (ArC), 133.0 (ArC), 149.43 (ArC), 176.85 (COOH). ESI/APCI MS (m / z): 345.72 (345.92 calcd for [$\mathrm{C}_{8} \mathrm{H}_{10} \mathrm{NS}_{2} \mathrm{As}$] [M-HJ^{-}). Elem. Anal. Calcd (found) for $\mathrm{C}_{10} \mathrm{H}_{16} \mathrm{~N}_{3} \mathrm{O}_{4} \mathrm{~S}_{2}$ As: C, 31.50 (31.39); H, 4.23 (4.09); N, 11.02 (10.03); S, 16.82 (17.42).

4-(1,3,2-dithiaarsinan-2-yl)aniline $\left[\mathrm{NH}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{As}\left(\mathrm{SCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~S}\right)\right]$, S6. p-Arsanilic acid ($101.4 \mathrm{mg}, 0.467 \mathrm{mmol}$), 5.5 M ammonium mercaptoacetate ($419 \mu \mathrm{~L}, 2.30 \mathrm{mmol}$) and 1,3-propane dithiol ($49.7 \mathrm{mg}, 46 \mu \mathrm{~L}, 0.46 \mathrm{mmol}$) in ethanol $(95 \% ; 20 \mathrm{~mL}$) were reacted and isolated as described above for S4. X-ray quality crystals were obtained by slow evaporation from methanol. Yield: $80 \%, 100.6 \mathrm{mg} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3} ; 500 \mathrm{MHz}\right) \delta \mathrm{ppm}$: $1.93\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2}\right), 2.14\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2}\right), 2.72\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{SCH}_{2}\right), 2.90\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{SCH}_{2}\right), 6.78(\mathrm{~d}$,
 $28.84\left(\mathrm{SCH}_{2}\right), 115.78(\mathrm{ArC}), 125.85(\mathrm{ArC}), 133.93(\mathrm{ArC}), 147.65(\mathrm{ArC}) . \mathrm{ESI} / \mathrm{APCI} \mathrm{MS}$ $(\mathrm{m} / \mathrm{z})$: 314.58 (315.00 calcd for $\left[\mathrm{C}_{11} \mathrm{H}_{15} \mathrm{~N}_{2} \mathrm{~S}_{2} \mathrm{As}\right]\left[\mathrm{M}+\mathrm{CH}_{3} \mathrm{CN}+\mathrm{H}\right]^{+}$). Elem. Anal. Calcd (found) for [C9 ${ }_{9}{ }_{12} \mathrm{NS}_{2}$ As: C, 39.56 (38.80); H, 4.43 (4.33); N, 5.13 (4.94); S, 23.47 (23.05).

2-phenyl-1,3,2-dithiaarsolane $\left[\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{As}\left(\mathrm{SCH}_{2} \mathrm{CH}_{2} \mathrm{~S}\right)\right.$], S7. Phenyl arsonic acid (101.0 $\mathrm{mg}, 0.5 \mathrm{mmol}$), 5.5 M ammonium mercaptoacetate ($2.48 \mathrm{mmol}, 450 \mu \mathrm{~L}$) and 1,2-ethane dithiol ($46.6 \mathrm{mg}, 41.7 \mu \mathrm{~L}, 0.495 \mathrm{mmol}$) in ethanol $(95 \%, 20 \mathrm{~mL})$ were reacted and isolated as above for $\mathbf{S 4}$. The desired product, a white solid, was collected via vacuum filtration, washed with water, and dried in vacuo. X-ray quality crystals were obtained by slow evaporation from methanol. Yield: $53 \%, 64.1 \mathrm{mg}$. ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3} ; 500 \mathrm{MHz}\right) \delta$ ppm: $3.17\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{SCH}_{2}\right), 3.37\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{SCH}_{2}\right), 7.31(\mathrm{t}, 1 \mathrm{H}, \mathrm{p}-\mathrm{ArH}), 7.36(\mathrm{t}, 2 \mathrm{H}, \mathrm{ArH})$, 7.65 (d, 2H, ArH). ${ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3} ; 125.8 \mathrm{MHz}\right) \delta \mathrm{ppm}: 41.97\left(\mathrm{SCH}_{2}\right), 128.57$ (ArC), 129.18 (ArC), 130.74 (ArC), 143.80 (ArC). ESI/APCI MS (m / z): 261.05 (260.94 calcd for $\left.\left[\mathrm{C}_{8} \mathrm{H}_{10} \mathrm{~S}_{2} \mathrm{AsO}\right][\mathrm{M}+\mathrm{OH}]^{+}\right)$. Elem. Anal. Calcd (found) for $\mathrm{C}_{8} \mathrm{H}_{9} \mathrm{~S}_{2} \mathrm{As}: \mathrm{C}, 39.35(39.56) ; \mathrm{H}$, 3.71 (3.73); S, 26.26 (26.39).

2-phenyl-1,3,2-dithiaarsolane-4,5-dicarboxylic acid, diammonium salt

 $\left(\mathrm{NH}_{4}\right)_{2}\left[\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{As}(\mathrm{SCH}(\mathrm{COO}) \mathrm{CH}(\mathrm{COO}) \mathrm{S})\right]$, S8. Phenyl arsonic acid ($101.2 \mathrm{mg}, 0.5 \mathrm{mmol}$), 5.5 M ammonium mercaptoacetate ($2.48 \mathrm{mmol}, 450 \mu \mathrm{~L}$), and dimercaptosuccinic acid $(89.8 \mathrm{mg}, 0.493 \mathrm{mmol})$ in ethanol $(95 \%, 20 \mathrm{~mL})$ were reacted as described above for S4. Water was not needed to initiate precipitation and thus was not added. The product was collected as a white solid by vacuum filtration, washed with cold acetone, and dried in vacuo. X-ray quality crystals were obtained by slow evaporation from a mixture of water and acetone. Yield: 78\%, $127.8 \mathrm{mg} .{ }^{1} \mathrm{H}$ NMR ($\mathrm{D}_{2} \mathrm{O} ; 500 \mathrm{MHz}$) $\delta \mathrm{ppm}: 4.15$ (s,2H, SCH), 7.44 (t, 1H, p-ArH), 7.49 (d, 2H, ArH), $7.84(\mathrm{~d}, 2 \mathrm{H}, \mathrm{ArH}) .{ }^{13} \mathrm{C}$ NMR ($\mathrm{CD}_{3} \mathrm{OD}+$ $\mathrm{D}_{2} \mathrm{O} ; 125.8 \mathrm{MHz}$) $\delta \mathrm{ppm}: 64.80(\mathrm{SCH}), 129.53(\mathrm{ArC}), 130.06$ (ArC), 131.69 (ArC), 144.53 (ArC), $176.42(\mathrm{COOH})$. ESI/APCI MS (m / z): 331.25 (330.92 calcd for $\left.\left[\mathrm{C}_{10} \mathrm{H}_{9} \mathrm{O}_{4} \mathrm{~S}_{2} \mathrm{As}\right][\mathrm{M}-\mathrm{H}]^{-}\right)$. Elem. Anal. Calcd (found) for $\mathrm{C}_{10} \mathrm{H}_{15} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~S}_{2} \mathrm{As}$: C, 32.79 (32.67); H, 4.13 (4.11); N, 7.65 (7.27); S, 17.51 (18.20).

2-phenyl-1,3,2-dithiaarsinane $\left[\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{As}\left(\mathrm{SCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~S}\right)\right.$], S9. Phenyl arsonic acid (99.8 $\mathrm{mg}, 0.494 \mathrm{mmol}$), 5.5 M ammonium mercaptoacetate ($2.48 \mathrm{mmol}, 450 \mu \mathrm{~L}$), and 1,3propane dithiol ($53.6 \mathrm{mg}, 49.7 \mu \mathrm{~L}, 0.495 \mathrm{mmol}$) in ethanol $(95 \%, 20 \mathrm{~mL})$ were reacted as above for S4. Following the water addition, the ethanol was removed by rotary evaporation to facilitate precipitation of the product, and the reaction mixture was placed in the freezer $\left(-15^{\circ} \mathrm{C}\right)$ for an hour. The product, a white solid, was isolated via vacuum filtration, washed with water, and dried in vacuo. X-ray quality crystals were obtained by slow evaporation from methanol. Yield: $45 \%, 57.5 \mathrm{mg} .{ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3} ; 500 \mathrm{MHz}\right) \delta$ ppm: $1.94\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2}\right), 2.17\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2}\right), 2.69\left(\mathrm{~m}, 2 \mathrm{H} \mathrm{SCH}_{2}\right), 2.84\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{SCH}_{2}\right)$, $7.40(\mathrm{t}, 1 \mathrm{H}, \mathrm{p}-\mathrm{ArH}), 7.49(\mathrm{t}, 2 \mathrm{H}, \mathrm{ArH}), 7.91(\mathrm{~d}, 2 \mathrm{H}, \mathrm{ArH}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3} ; 125.8 \mathrm{MHz}\right) \delta$ ppm: $26.11\left(\mathrm{SCH}_{2} \mathrm{CH}_{2}\right), 28.49\left(\mathrm{SCH}_{2}\right), 129.16(\mathrm{ArC}), 129.36(\mathrm{ArC}), 132.56(\mathrm{ArC})$, 138.73 (ArC). ESI/APCI MS (m / z): 275.02 (274.95 calcd for [$\left.\mathrm{C}_{9} \mathrm{H}_{12} \mathrm{~S}_{2} \mathrm{AsO}\right][\mathrm{M}+\mathrm{OH}]^{+}$). Elem. Anal. Calcd (found) for $\mathrm{C}_{9} \mathrm{H}_{11} \mathrm{~S}_{2}$ As: C, 41.86 (41.62); H, 4.29 (4.09).

2-(4-nitrophenyl)-1,3,2-dithiaarsolane [$\mathrm{NO}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{As}\left(\mathrm{SCH}_{2} \mathrm{CH}_{2} \mathrm{~S}\right)$], S10. p-Nitro phenyl arsonic acid ($102 \mathrm{mg}, 0.411 \mathrm{mmol}$), 5.5 M ammonium mercaptoacetate ($2.02 \mathrm{mmol}, 368$ $\mu \mathrm{L}$), and 1,2-ethane dithiol ($38.1 \mathrm{mg}, 34.0 \mu \mathrm{~L}, 0.411 \mathrm{mmol}$) in $\mathrm{H}_{2} \mathrm{O} / \mathrm{EtOH}(1: 1 ; 10 \mathrm{~mL})$ were reacted as described above for $\mathbf{S 4}$. The reaction mixture was removed from heat and 1,2-ethane dithiol in a 50/50 mix of ethanol and acetone (10 mL total) was added. After stirring for 30 minutes, organic solvents were removed via vacuum distillation and cooled to give the crude product as a light yellow precipitate. The solids were isolated via vacuum filtration, washed with cold water, and dried in vacuo to give the pure product. X-ray quality crystals were obtained by slow evaporation from methanol. Yield: 69\%, $91.8 \mathrm{mg} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3} ; 500 \mathrm{MHz}\right) \delta \mathrm{ppm}: 3.11\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{SCH}_{2}\right), 3.42(\mathrm{~m}$, $2 \mathrm{H}, \mathrm{SCH}_{2}$), $\left.7.85(\mathrm{~d}, 2 \mathrm{H}, \mathrm{ArH}), 8.17(\mathrm{~d}, 2 \mathrm{H}, \mathrm{ArH}) .{ }^{13} \mathrm{C} \mathrm{NMR} \mathrm{(CDCl}_{3} ; 125.8 \mathrm{MHz}\right) \delta \mathrm{ppm}: ~$ $42.42\left(\mathrm{SCH}_{2}\right), 123.09(\mathrm{ArC}), 131.81(\operatorname{ArC}), 148.43(\mathrm{ArC}), 153.31$ (ArC). ESI/APCI MS
(m / z): 287.93 (287.91 calcd for $\left[\mathrm{C}_{8} \mathrm{H}_{8} \mathrm{NO}_{2} \mathrm{~S}_{2} \mathrm{As}\right][\mathrm{M}-\mathrm{HJ}$). Elem. Anal. Calcd (found) for $\mathrm{C}_{8} \mathrm{H}_{8} \mathrm{NO}_{2} \mathrm{~S}_{2} \mathrm{As}: \mathrm{C}, 33.22$ (33.49); H, 2.79 (2.69); N, 4.84 (4.75); S, 22.17 (22.43).

2-(4-nitrophenyl)-1,3,2-dithiaarsolane-4,5-dicarboxylic acid, diammonium salt $\left(\mathrm{NH}_{4}\right)_{2}\left[\mathrm{NO}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{As}(\mathrm{SCH}(\mathrm{COO}) \mathrm{CH}(\mathrm{COO}) \mathrm{S})\right]$, S11. p-Nitro phenyl arsonic acid (100 mg , 0.405 mmol), 5.5 M ammonium mercaptoacetate ($368 \mu \mathrm{~L}, 2.02 \mathrm{mmol}$), and dimercaptosuccinic acid ($74.4 \mathrm{mg}, 0.408 \mathrm{mmol}$) in EtOH/acetone ($1: 1 ; 10 \mathrm{~mL}$) and $\mathrm{H}_{2} \mathrm{O}$ $(1 \mathrm{~mL})$ were reacted as above for S4. A light yellow precipitate began to form shortly after the addition of DMSA. After 30 minutes, acetone (5 mL) was added to further precipitate the product. The reaction mixture was cooled to, $-15^{\circ} \mathrm{C}$, and filtered via vacuum filtration. The solids were washed with acetone, diethyl ether, and dried in vacuo to obtain the product. Yield: $71 \%, 108.3 \mathrm{mg}$. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{D}_{2} \mathrm{O} / \mathrm{CD}_{3} \mathrm{OD} ; 500 \mathrm{MHz}\right) \delta$ ppm: 4.31 (s, 2H, SCH), 8.04 (d, 2H, ArH), 8.22 (d, $2 \mathrm{H}, \mathrm{ArH}$). ${ }^{13} \mathrm{C}$ NMR ($\mathrm{CD}_{3} \mathrm{OD}+\mathrm{D}_{2} \mathrm{O}$; 125.8 MHz) δ ppm: 65.51 (SCH), 123.79 (ArC), 133.16 (ArC), 149.46 (ArC), 155.19 (ArC), 176.19 (COOH). ESI/APCI MS (m/z): 375.72 (375.89 calcd for [$\mathrm{C}_{10} \mathrm{H}_{8} \mathrm{NO}_{6} \mathrm{~S}_{2} \mathrm{As}$] $[\mathrm{M}-\mathrm{H}]^{-}$). Elem. Anal. Calcd (found) for $\mathrm{C}_{10} \mathrm{H}_{14} \mathrm{~N}_{3} \mathrm{O}_{6} \mathrm{~S}_{2} \mathrm{As} \cdot \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}: \mathrm{C}, 31.51$ (31.34); H, 4.41 (4.27); N, 9.19 (9.04); S, 14.02 (14.54).

2-(4-nitrophenyl)-1,3,2-dithiaarsinane $\left[\mathrm{NO}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{As}\left(\mathrm{SCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~S}\right)\right]$, S12. p-Nitro phenyl arsonic acid ($103.7 \mathrm{mg}, 0.402 \mathrm{mmol}$), 5.5 M ammonium mercaptoacetate (2.02 $\mathrm{mmol}, 368 \mu \mathrm{~L}$) and 1,3-propane dithiol ($43.8 \mathrm{mg}, 40.7 \mu \mathrm{~L}, 0.405 \mathrm{mmol}$) in ethanol (95%, 20 mL) were reacted as above for S4. The product, a light yellow solid, precipitated upon removal of the ethanol by rotary evaporation. The solids were collected by vacuum filtration, washed with water, and dried in vacuo. X-ray quality crystals were obtained by slow evaporation from a $50 / 50$ mixture of chloroform and acetonitrile. Yield: $66 \%, 80.5 \mathrm{mg}$. ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3} \mathrm{~d}_{1} ; 500 \mathrm{MHz}\right) \delta \mathrm{ppm}: 1.97\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2}\right), 2.18(\mathrm{~m}, 1 \mathrm{H}$, CH_{2}), $2.72\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{SCH}_{2}\right), 8.13(\mathrm{~d}, 2 \mathrm{H}, \mathrm{ArH}), 8.21(\mathrm{~d}, 2 \mathrm{H}, \mathrm{ArH}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3} \mathrm{~d}_{1}\right.$; 125.8 MHz) $\delta \mathrm{ppm}: 25.84\left(\mathrm{CH}_{2}\right), 27.77\left(\mathrm{SCH}_{2}\right), 123.87(\mathrm{ArC}), 133.66(\mathrm{ArC}), 148.65$ (ArC), 148.49 (ArC). ESI/APCI MS (m / z): 302.69 (302.94 calcd for [C $\mathrm{C}_{9} \mathrm{H}_{10} \mathrm{NO}_{2} \mathrm{~S}_{2} \mathrm{As}$] $\left[M^{+}\right]$). Elem. Anal. Calcd (found) for $\mathrm{C}_{9} \mathrm{H}_{10} \mathrm{NO}_{2} \mathrm{~S}_{2}$ As: C, 35.65 (35.57); H, 3.32 (3.32); N, 4.62 (4.52); S, 21.15 (21.26).

Figure S1. ORTEP representation of (S4) (CCDC 1436762) with 50% probability ellipsoids.

Figure S2. ORTEP representation of (S6) (CCDC\# 1436763) with 50\% probability ellipsoids.

Figure S3. ORTEP representation of (S7) (CCDC\# 1437260) with 50\% probability ellipsoids.

Figure S4. ORTEP representations of (S8a and S8b), obtained as the diammonium salt (omitted for clarity), (CCDC\# 1436764) with 50\% probability ellipsoids.

Figure S5. ORTEP representation of (S9) (CCDC\# 1436765) with 50\% probability ellipsoids.

Figure S6. ORTEP representation of (S10) (CCDC\# 1436766) with 50% probability ellipsoids.

Figure S7. ORTEP representation of (S12) (CCDC\# 1436767) with 50% probability ellipsoids.

Table S1. ${ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}-\mathrm{NMR}$ alkyl dithiol proton and carbon chemical shifts for the aryldithioarsines (1-3, S4-S12) compared to the free ligands. Each methylene proton becomes unique on coordinating to the As(III). The aryl substituent is noted in parentheses following the compound number (1-3, S4-S12)

${ }^{1} \mathrm{H}$-NMR Chemical Shifts (δ, ppm)			${ }^{13} \mathrm{C}$-NMR Chemical Shifts (δ, ppm)		
	SCH_{2}	CH_{2}		SCH_{2}	CH_{2}
1,2-ethanedithiol	2.75		1,2-ethanedithiol	28.84	
1 (p-OEt)	3.19, 3.35		1 (p-OEt)	41.84	
S4 (p-NH2)	3.21, 3.34		S4 (p-NH2)	41.76	
S7 (p-H)	3.17, 3.37		S7 (p-H)	41.97	
S10 ($p-\mathrm{NO}_{2}$)	3.11, 3.42		S10 ($p-\mathrm{NO}_{2}$)	42.42	
DMSA	3.59		DMSA	41.23	
2 (p-OEt)	4.45		2 (p-OEt)	63.33	
S5 (p-NH2)	4.41		S5 $\left(\mathrm{p}-\mathrm{NH}_{2}\right)$	64.82	
S8 (p-H)	4.15		S8 (p-H)	64.80	
$\mathrm{S11}\left(\mathrm{p}-\mathrm{NO}_{2}\right)$	4.31		S11 ($p-\mathrm{NO}_{2}$)	65.51	
1,3-propanedithiol	2.68	1.91	1,3-propanedithiol	37.43	23.00
3 (p-OEt)	2.71, 2.87	2.14, 2.17	3 (p-OEt)	28.67	26.32
S6 (p-NH2)	2.72, 2.90	1.92, 2.14	S6 (p-NH2)	28.84	26.57
S9 (p-H)	2.69, 2.84	1.94, 2.17	S9 (p-H)	28.49	26.11
S12 $\left(p-\mathrm{NO}_{2}\right)$	2.72	1.97, 2.18	S12 (p-NO 2$)$	27.62	25.68

Table S2. X-ray crystal data, data collection parameters, and refinement parameters for S4, S6-S10 and S12.

	S4	S6	S7	S8a,b	S9a,b	S10	S12
CCDC \#	1436762	1436763	1437260	1436764	1436765	1436766	1436767
Formula	$\mathrm{C}_{8} \mathrm{H}_{10} \mathrm{AsNS}_{2}$	$\mathrm{C}_{9} \mathrm{H}_{12} \mathrm{AsNS}_{2}$	$\mathrm{C}_{8} \mathrm{H}_{9} \mathrm{AsS}_{2}$	$\mathrm{C}_{10} \mathrm{H}_{17} \mathrm{AsN}_{2} \mathrm{O}_{4} \mathrm{~S}_{2}$	$\mathrm{C}_{9} \mathrm{H}_{11} \mathrm{AsS}_{2}$	$\mathrm{C}_{8} \mathrm{H}_{8} \mathrm{AsNO}_{2} \mathrm{~S}_{2}$	$\mathrm{C}_{9} \mathrm{H}_{10} \mathrm{AsNO}_{2} \mathrm{~S}_{2}$
F.W.	259.21	273.24	244.19	384.3	258.22	289.19	303.22
Crystal System	Monoclinic	Orthorhombic	Orthorhombic	Triclinic	Monoclinic	Monoclinic	Monoclinic
Space Group	P 21/n	P 212121	P 212121	p-1	P 21/n	P 21/n	C 2/c
a (Å)	12.346(5)	5.6626(9)	8.3948(7)	6.2774(9)	12.144(4)	11.234(3)	28.493(7)
b (A)	6.184(2)	7.915(1)	9.8742(8)	16.094(2)	10.175(3)	6.3996(19)	7.1817(18)
c (A)	13.254(5)	23.987(4)	11.0466(9)	16.875(2)	17.227(5)	14.612(4)	11.623(3)
$\alpha\left({ }^{\circ}\right)$	90	90	90	115.1390(10)	90	90	90
$\beta\left({ }^{\circ}\right)$	95.594(4)	90	90	100.345(2)	106.308(3)	98.793(3)	107.713(3)
$\mathrm{Y}\left({ }^{\circ}\right)$	90	90	90	93.488(2)	90	90	90
$V\left(\AA^{3}\right)$	1007.1(7)	1075.1(3)	915.67(13)	1500.2(4)	2043.1(1)	1038.1(5)	2265.6(10)
Z	4	4	4	4	8	4	8
$\mathrm{rcalc}^{\text {ch }}$ g/cm ${ }^{3}$	1.71	1.688	1.771	1.047	1.679	1.85	1.778
T, K	173(2)	173(2)	100(2)	173(2)	173(2)	173(2)	173(2)
μ, mm^{-1}	3.734	3.503	4.098	2.563	3.678	3.647	3.347
λ source (\AA)	0.71073	0.71073	0.71073	0.71073	0.71073	0.71073	0.71073
$\mathrm{R}(\mathrm{F})$	0.0249	0.0163	0.0131	0.0256	0.0234	0.0227	0.0229
$\mathrm{R}_{\mathrm{w}}(\mathrm{F})^{2}$	0.0668	0.0413	0.0303	0.0615	0.0539	0.0491	0.0546
GoF	1.069	1.049	1.037	1.047	1.044	1.027	1.02
$\mathrm{R}=\left(\Sigma\| \| \mathrm{F}_{\mathrm{O}} \mid-\right.$	$\mathrm{F}_{\mathrm{C}}\| \| / \Sigma\left\|\mathrm{F}_{\mathrm{O}}\right\|$). $\mathrm{R}_{\mathrm{W}}=[\Sigma \varpi(\mid$	${ }^{2}\left\|-\left\|F_{C}^{2}\right\|\right)^{2 / 2}$	$\left(\left\|F_{0}{ }^{2}\right\|^{2}\right]^{1 / 2}$.			

Table S3. Selected bond distances (\AA) and angles $\left({ }^{\circ}\right)$ for S4, S6-S10 and 12.

	S4	S6	S7	S8		S9		S10	S12
aryl	$p-\mathrm{NH}_{2}$	$p-\mathrm{NH}_{2}$	$p-\mathrm{H}$	$p-\mathrm{H}$		$p-\mathrm{H}$		$p-\mathrm{NO}_{2}$	$p-\mathrm{NO}_{2}$
dithiol	ethyl	propyl	ethyl	DMSA		propyl		ethyl	propyl
				Molecule a	Molecule b	Molecule a	Molecule b		
As-S1	2.2516(1)	2.2452(5)	2.2394(6)	2.2418(5)	2.2470(6)	2.2310(8)	2.2301(7)	2.2369(8)	2.2279(7)
As-S2	2.2422(8)	2.2536(6)	2.2540(6)	2.2573(6)	2.2414(5)	2.2341(7)	2.2296(7)	2.2290(9)	2.2321(8)
As-C1	1.940(2)	1.940(2)	1.972(2)	1.9657(2)	1.9644(2)	1.9615(2)	1.9699(2)	1.986(2)	1.9712(2)
S1-As-S2	92.56(2)	97.27(2)	93.34(2)	92.480(2)	91.94(2)	99.28(3)	99.78(3)	93.91(2)	100.87(2)
S1-As-C1	100.75(6)	97.71(5)	100.29(6)	97.49(5)	101.28(6)	100.04(6)	99.76(6)	100.33(6)	98.53(6)
S2-As-C1	100.60(7)	97.05(6)	100.82(7)	100.68(6)	98.48(6)	99.91(6)	100.38(6)	98.99(6)	99.96(6)

