Alkynyl Acylammoniums as Electrophilic 3C Synthons in a Formal
[3+3] Annulation: Access to Functionalized 4H-Pyran-4-ones

Shuding Dong, Chao Fang, Weifang Tang, Tao Lu* and Ding Du*

State Key Laboratory of Natural Medicines, Department of Organic Chemistry, China Pharmaceutical University, Nanjing, 210009, P. R. China.
E-mail: lut163@163.com and ddmn9999@cpu.edu.cn
General Methods and Materials S2
General procedure for the synthesis of γ-pyrones $\mathbf{3 / 5}$ or α-pyrones 4 -S2
Procedure for the synthesis of compound $\mathbf{6}$ from $\mathbf{3 a}$ or $\mathbf{3 g}$ S9
Procedure for the synthesis of compound 9 S9
Procedure for the synthesis of compound $\mathbf{1 0}$ S10
Procedure for the synthesis of compound $\mathbf{1 1}$ S11
Procedure for the synthesis of product $\mathbf{3 g}$ from acid chloride S11
Procedure for the reaction of alkynyl acyl imidazole $\mathbf{1 2}$ with $\mathbf{2 g}$ S12
Copies of NMR spectra for products 3 S13
Copy of NMR spectra for products 4 S36
Copies of NMR spectra for product 5 S39
Copies of NMR spectra for compound 6 S40
Copies of NMR spectra for compound 9 S41
Copies of NMR spectra for compound $\mathbf{1 0}$ -S42
Copies of NMR spectra for compound $\mathbf{1 1}$ S43

General Methods and Materials. All reactions were carried out in dry glassware, and were monitored by analytical thin-layer chromatography (TLC), which was visualized by ultraviolet light (254 nm). All solvents were obtained from commercial sources and were purified according to standard procedures. Alkynyl carboxylic acids $\mathbf{1}^{[1]}$ and substrates $\mathbf{2}^{[2]}$ are commercially available or prepared according to known procedures. Compound $\mathbf{1 2}$ was prepared from acyl chloride and imidazole according to the known procedure. ${ }^{[3]}$ Purification of the products was accomplished by flash chromatography using silica gel (200-300 mesh). All NMR spectra were recorded on Bruker spectrometers, running at 300 MHz or 500 MHz for ${ }^{1} \mathrm{H}$ and 75 MHz or 125 MHz for ${ }^{13} \mathrm{C}$ respectively. Chemical shifts (δ) and coupling constants (J) are reported in ppm and Hz respectively. The solvent signals were used as references (residual CHCl_{3} in $\mathrm{CDCl}_{3}: \delta_{\mathrm{H}}=7.26 \mathrm{ppm}, \delta_{\mathrm{c}}=77.0 \mathrm{ppm}$). The following abbreviations are used to indicate the multiplicity in NMR spectra: s (singlet); d (doublet); t (triplet); q (quartet); m (multiplet). High resolution mass spectrometry (HRMS) was recorded on TOF perimer for ESI^{+}.

General procedure for the synthesis of $\boldsymbol{\gamma}$-pyrones $\mathbf{3 / 5}$ or α-pyrones 4:

To an oven-dried 25 mL round-bottom flask was charged with acid $\mathbf{1}(0.35 \mathrm{mmol})$, substrate $2(0.7 \mathrm{mmol})$, CDI ($97 \mathrm{mg}, 0.6 \mathrm{mmol}$), DMAP ($51 \mathrm{mg}, 0.385 \mathrm{mmol}$), $\mathrm{Sc}(\mathrm{OTf})_{3}(30 \mathrm{mg}, 0.06 \mathrm{mmol}), 200 \mathrm{mg}$ of $4 \AA \mathrm{MS}$ and $\mathrm{NaOH}(28 \mathrm{mg}, 0.7 \mathrm{mmol})$. Then anhydrous 1,2-DCE (4 mL) was added to the flask and the resulting mixture was heated at $80{ }^{\circ} \mathrm{C}$ in air for a period time until the completion of the reaction as monitored by TLC. The mixture was cooled to room temperature. The mixture was filtered and the filtrate was concentrated under reduced pressure. The residue was purified by chromatography on silica gel using hexane/EtOAc (10:1) as the eluent to afford products $\mathbf{3 / 5}$ or 4 .

$(\mathrm{s}, 1 \mathrm{H}), 4.40(\mathrm{q}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 2.49(\mathrm{~s}, 3 \mathrm{H}), 1.38(\mathrm{t}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (75 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 175.7,165.4,164.5,162.8,131.4,130.5,128.9,125.6,121.6,111.0$, 61.6, 18.5, 14.0. HRMS (ESI) calcd for $\mathrm{C}_{15} \mathrm{H}_{15} \mathrm{O}_{4}(\mathrm{M}+\mathrm{H})^{+}: 259.0965$, found 259.0964.

Methyl 2-methyl-4-oxo-6-phenyl-4H-pyran-3-carboxylate (3b). $48 \mathrm{mg}, 56 \%$ yield, white solid, mp: $130-131{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ
 $7.75(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.47-7.54(\mathrm{~m}, 3 \mathrm{H}), 6.81(\mathrm{~s}, 1 \mathrm{H}), 3.93(\mathrm{~s}$, $3 \mathrm{H}), 2.51(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 175.8,166.2$, $165.1,162.9,131.6,130.6,129.1,125.7,121.3,111.2,52.6,18.8$. HRMS (ESI) calcd for $\mathrm{C}_{14} \mathrm{H}_{13} \mathrm{O}_{4}(\mathrm{M}+\mathrm{H})^{+}: 245.0808$, found 245.0805.
tert-Butyl 2-methyl-4-oxo-6-phenyl-4H-pyran-3-carboxylate (3c). $41 \mathrm{mg}, 41 \%$ yield, white solid, $\mathrm{mp}: 145-146{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$):
 $\delta 7.71-7.74(\mathrm{~m}, 2 \mathrm{H}), 7.42-7.51(\mathrm{~m}, 3 \mathrm{H}), 6.72(\mathrm{~s}, 1 \mathrm{H}), 2.45(\mathrm{~s}$, $3 \mathrm{H}), 1.59(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 175.9,164.1$, $163.8,162.8,131.4,130.8,129.0,123.0,111.3,82.8,28.1,18.4$. HRMS (ESI) calcd for $\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{O}_{4}(\mathrm{M}+\mathrm{H})^{+}: 287.1278$, found 287.1281.
Benzyl 2-methyl-4-oxo-6-phenyl-4H-pyran-3-carboxylate (3d). 65 mg , 58% yield, white solid, mp: 123-124 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ

3d 7.73-7.75 (m, 2H), 7.46-7.54 (m, 5H), 7.37-7.40 (m, 2H), 7.33 $(\mathrm{m}, 1 \mathrm{H}), 6.81(\mathrm{~s}, 1 \mathrm{H}), 5.38(\mathrm{~s}, 2 \mathrm{H}), 2.44(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (75 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 175.8,165.9,164.5,162.9,135.4,131.6,130.6$, 129.1, 128.6, 128.3, 125.8, 121.4, 111.2, 67.4, 18.7. HRMS (ESI) calcd for $\mathrm{C}_{20} \mathrm{H}_{17} \mathrm{O}_{4}$ $(\mathrm{M}+\mathrm{H})^{+}: 321.1121$, found 321.1118 .

Ethyl 2-ethyl-4-oxo-6-phenyl-4H-pyran-3-carboxylate (3e). $48 \mathrm{mg}, 50 \%$ yield, colorless liquid. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.79-7.78(\mathrm{~m}$,
 $2 \mathrm{H}), 7.58-7.52(\mathrm{~m}, 3 \mathrm{H}), 6.81(\mathrm{~s}, 1 \mathrm{H}), 4.43(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H})$, $2.81(\mathrm{q}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.41(\mathrm{t}, J=7.3 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (125 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 175.79,168.79,164.26,162.71,131.31,130.46$, 128.82, 125.41, 120.81, 110.68, 61.41, 25.73, 13.84, 11.38. HRMS (ESI) calcd for $\mathrm{C}_{16} \mathrm{H}_{17} \mathrm{O}_{4}(\mathrm{M}+\mathrm{H})^{+}: 273.1121$, found 273.1125.

Ethyl 4-oxo-2,6-diphenyl-4H-pyran-3-carboxylate (3f). $78 \mathrm{mg}, 70 \%$ yield,

colorless liquid. ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.81(\mathrm{~d}, J=6.5$ $\mathrm{Hz}, 2 \mathrm{H}$), 7.73 (d, J = 7.5 Hz, 2H), 7.50-7.58 (m, 6H), 6.93 (s, 1H), $4.28(\mathrm{q}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.17(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (75 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 176.0,164.3,163.0,161.9,131.4,131.2,131.0$, $130.3,128.8,128.5,127.5,125.5,121.4,110.5,61.5,13.4$. HRMS (ESI) calcd for $\mathrm{C}_{20} \mathrm{H}_{17} \mathrm{O}_{4}(\mathrm{M}+\mathrm{H})^{+}: 321.1121$, found 321.1117.

Methyl 4-oxo-2,6-diphenyl-4H-pyran-3-carboxylate (3g). 84 mg , 78% yield, white solid, mp: 153-154 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.81$ (d, J

3 g $=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.71(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.52-7.57(\mathrm{~m}, 6 \mathrm{H}), 6.90$ $(\mathrm{s}, 1 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 176.3,165.2$, 163.4, 162.4, 131.7, 131.6, 131.4, 130.7, 129.1, 128.9, 127.7, 125.9, 121.5, 110.9, 52.7. HRMS (ESI) calcd for $\mathrm{C}_{19} \mathrm{H}_{15} \mathrm{O}_{4}(\mathrm{M}+\mathrm{H})^{+}: 307.0965$, found 307.0962 .

Methyl 2-(4-chlorophenyl)-4-oxo-6-phenyl-4H-pyran-3-carboxylate (3h). 73 mg ,
 61% yield, white solid, mp: $128-129{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $(300 \mathrm{MHz}$, CDCl_{3}): $\delta 7.79$ (d, $\left.J=6.6 \mathrm{~Hz}, 2 \mathrm{H}\right), 7.65(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H})$, 7.49-7.54 (m, 5H), $6.89(\mathrm{~s}, 1 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (75 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 176.1,165.1,163.5,161.2,138.0,131.8$, 130.6, 129.8, 129.3, 129.2, 129.1, 125.9, 121.7, 111.0, 52.9. HRMS (ESI) calcd for $\mathrm{C}_{19} \mathrm{H}_{14} \mathrm{ClO}_{4}(\mathrm{M}+\mathrm{H})^{+}: 341.0575$, found 341.0578 .

Methyl 4-oxo-6-phenyl-2-(p-tolyl)-4H-pyran-3-carboxylate (3i). $93 \mathrm{mg}, 83 \%$ yield,
 white solid, mp: 137-138 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ $7.81(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.61(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.50-7.53$ (m, 3H), 7.32 (d, J=7.8 Hz, 2H), 6.89 (s, 1H), 3.81 (s, 3H), $2.44(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 176.4,165.5$, $163.3,162.6,142.2,131.7,130.8,129.7,129.1,128.5,127.7,125.9,121.0,110.8$, 52.8, 21.5. HRMS (ESI) calcd for $\mathrm{C}_{20} \mathrm{H}_{17} \mathrm{O}_{4}(\mathrm{M}+\mathrm{H})^{+}: 321.1121$, found 321.1121.

3-Acetyl-2-methyl-6-phenyl-4H-pyran-4-one (3j). $29 \mathrm{mg}, 36 \%$ yield, white solid, mp: $140-141{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.76(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}$), 7.56-7.46

$(\mathrm{m}, 3 \mathrm{H}), 6.78(\mathrm{~s}, 1 \mathrm{H}), 2.61(\mathrm{~s}, 3 \mathrm{H}), 2.50(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 200.25,177.49,167.22,162.71,131.60$, 130.57, 129.08, 126.93, 125.77, 111.80, 31.93, 18.87. HRMS (ESI) calcd for $\mathrm{C}_{14} \mathrm{H}_{13} \mathrm{O}_{3}(\mathrm{M}+\mathrm{H})^{+}: 229.0859$, found 229.0864 .

3-Benzoyl-2,6-diphenyl-4H-pyran-4-one (3k). 38 mg , 31% yield, white solid, mp: $183-184{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.93(\mathrm{~d}, J=7.7 \mathrm{~Hz}$,
 $2 \mathrm{H}), 7.87(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.63(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.57-7.52$ (m, 4H), 7.44-7.40 (m, 3H), 7.37 (t, J=7.5 Hz, 2H), $6.93(\mathrm{~s}, 1 \mathrm{H})$. ${ }^{13} \mathrm{C}_{\mathrm{NMR}}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 193.13,177.89,163.59,161.60$, $136.58,133.80,131.69,131.27,131.18,130.84,129.30,129.16,128.80,128.69$, 128.19, 126.14, 125.91, 110.98. HRMS (ESI) calcd for $\mathrm{C}_{24} \mathrm{H}_{17} \mathrm{O}_{3}(\mathrm{M}+\mathrm{H})^{+}: 353.1172$, found 353.1178.

Methyl 6-(4-fluorophenyl)-4-oxo-2-phenyl-4H-pyran-3-carboxylate (31). 52 mg ,
 46% yield, white solid, mp: $166-167{ }^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}$ NMR (500 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.80-7.82(\mathrm{~m}, 2 \mathrm{H}), 7.69-7.71(\mathrm{~m}, 2 \mathrm{H})$, 7.57 (m, 1H), 7.50-7.53 (m, 2H), $7.20(\mathrm{t}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H})$, $6.84(\mathrm{~s}, 1 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ 176.14, 165.12, 164.76 (d, $J=252.3 \mathrm{~Hz}$), 162.42, 131.62, 131.26, 128.95, 128.16 (d, $J=8.6 \mathrm{~Hz}), 127.72,126.93(\mathrm{~d}, J=2.1 \mathrm{~Hz}), 121.48,116.44(\mathrm{~d}, J=22.2 \mathrm{~Hz}), 110.67$, 52.74. HRMS (ESI) calcd for $\mathrm{C}_{19} \mathrm{H}_{14} \mathrm{FO}_{4}(\mathrm{M}+\mathrm{H})^{+}: 325.0871$, found 325.0869.

Methyl 6-(4-chlorophenyl)-4-oxo-2-phenyl-4H-pyran-3-carboxylate (3m). 73 mg ,
 61% yield, white solid, mp: $170-171{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (500 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.74$ (d, $J=8.5 \mathrm{~Hz}, 2 \mathrm{H}$), 7.69 (d, $J=7.5$ $\mathrm{Hz}, 2 \mathrm{H}), 7.57$ (t, $J=7.0 \mathrm{~Hz}, 1 \mathrm{H}$), 7.48-7.54 (m, 4H), 6.86 ($\mathrm{s}, 1 \mathrm{H}$), 3.79 ($\mathrm{s}, 3 \mathrm{H}$). ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ 176.06, 165.05, 162.42, 162.24, 138.03, 131.65, 131.18, 129.48, 129.15, 128.95, 127.70, 127.16, 121.56, 111.00, 52.74. HRMS (ESI) calcd for $\mathrm{C}_{19} \mathrm{H}_{14} \mathrm{ClO}_{4}(\mathrm{M}+\mathrm{H})^{+}$: 341.0575, found 341.0570.

Methyl 6-(4-bromophenyl)-4-oxo-2-phenyl-4H-pyran-3-carboxylate (3n). 58 mg , 43% yield, white solid, mp: 191-192 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.70-7.68(\mathrm{~m}$,

2H), 7.66-7.64 (m, 4H), $7.58(\mathrm{t}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.53-7.51(\mathrm{~m}, 2 \mathrm{H}), 6.88(\mathrm{~s}, 1 \mathrm{H}), 3.79$ $(\mathrm{s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 176.10,165.06$, $162.49,162.36,132.50,131.68,131.22,129.66,128.99$, 127.75, 127.34, 126.48, 121.64, 111.08, 52.79. HRMS (ESI) calcd for $\mathrm{C}_{19} \mathrm{H}_{14} \mathrm{BrO}_{4}(\mathrm{M}+\mathrm{H})^{+}$: 385.0070 , found 385.0076

Methyl 4-oxo-2-phenyl-6-(p-tolyl)-4H-pyran-3-carboxylate (30). $74 \mathrm{mg}, 66 \%$ yield,
 white solid, mp: 149-150 ${ }^{\circ} \mathrm{C} .{ }^{\mathrm{I}} \mathrm{H}$ NMR (500 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 6.89-7.72(\mathrm{~m}, 4 \mathrm{H}), 7.50-7.57(\mathrm{~m}, 3 \mathrm{H}), 7.30(\mathrm{~d}$, $J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.85(\mathrm{~s}, 1 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 2.43(\mathrm{~s}, 3 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 176.35,165.31,163.57$, $162.24,142.41,131.50,131.43,129.85,128.89,127.87,127.72,125.83,121.39$, 110.20, 52.69, 21.43. HRMS (ESI) calcd for $\mathrm{C}_{20} \mathrm{H}_{17} \mathrm{O}_{4}(\mathrm{M}+\mathrm{H})^{+}: 321.1121$, found 321.1118.

Methyl 6-(3-chlorophenyl)-4-oxo-2-phenyl-4H-pyran-3-carboxylate (3p). 68 mg ,
 57% yield, white solid, mp: 96-97 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (500 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.78(\mathrm{~s}, 1 \mathrm{H}), 7.71-7.67(\mathrm{~m}, 3 \mathrm{H}), 7.58(\mathrm{t}$, $J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.55-7.50(\mathrm{~m}, 3 \mathrm{H}), 7.45(\mathrm{t}, J=7.9 \mathrm{~Hz}$, $1 \mathrm{H}), 6.88(\mathrm{~s}, 1 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (125 MHz , CDCl_{3}): $\delta 176.02,165.01,162.58,161.87,135.41,132.51,131.70,131.14,130.47$, 129.00, 127.75, 125.96, 124.05, 121.71, 111.59, 52.78. HRMS (ESI) calcd for $\mathrm{C}_{19} \mathrm{H}_{14} \mathrm{ClO}_{4}(\mathrm{M}+\mathrm{H})^{+}: 341.0575$, found 341.0579 .

Methyl 4-oxo-2-phenyl-6-(m-tolyl)-4H-pyran-3-carboxylate (3q). $49 \mathrm{mg}, 44 \%$, yield, white solid, mp: 132-133 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (500 MHz ,
 $\left.\mathrm{CDCl}_{3}\right): \delta 7.71(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.62-7.58(\mathrm{~m}, 2 \mathrm{H})$, 7.58-7.49 (m, 3H), 7.39 (t, $J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.35(\mathrm{~d}, J=$ $7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.88(\mathrm{~s}, 1 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 2.43(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 176.31,165.26,163.61,162.37,138.98,132.52,131.51$, $131.39,130.65,129.02,128.90,127.73,126.41,123.12,121.48,110.83,52.69,21.40$. HRMS (ESI) calcd for $\mathrm{C}_{20} \mathrm{H}_{17} \mathrm{O}_{4}(\mathrm{M}+\mathrm{H})^{+}: 321.1121$, found 321.1124.

Methyl 6-(2-chlorophenyl)-4-oxo-2-phenyl-4H-pyran-3-carboxylate (3r). 50 mg , 42% yield, white solid, mp: $153-154{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (500 MHz ,
 $\left.\mathrm{CDCl}_{3}\right): \delta 7.70(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.56-7.51(\mathrm{~m}, 3 \mathrm{H}), 7.50-$ $7.44(\mathrm{~m}, 3 \mathrm{H}), 7.40(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.74(\mathrm{~s}, 1 \mathrm{H}), 3.81(\mathrm{~s}$, $3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 175.96,165.19,163.00$, $162.58,132.74,132.05,131.60,131.09,130.81,130.58,128.82,127.76,127.22$, 121.43, 116.48, 52.76. HRMS (ESI) calcd for $\mathrm{C}_{19} \mathrm{H}_{14} \mathrm{ClO}_{4}(\mathrm{M}+\mathrm{H})^{+}: 341.0575$, found 341.0575

Methyl 6-(naphthalen-1-yl)-4-oxo-2-phenyl-4H-pyran-3-carboxylate (3s). 34 mg , 27% yield, white solid, mp: 153-154 ${ }^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}$ NMR (500
 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 8.10-8.09(\mathrm{~m}, 1 \mathrm{H}), 8.03(\mathrm{~d}, J=8.2 \mathrm{~Hz}$, $1 \mathrm{H}), 7.96-7.94(\mathrm{~m}, 1 \mathrm{H}), 7.72-7.68(\mathrm{~m}, 3 \mathrm{H}), 7.60-7.56(\mathrm{~m}$, $3 \mathrm{H}), 7.52(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.46(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.79$ $(\mathrm{s}, 1 \mathrm{H}), 3.85(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 176.12,165.34,164.96,162.89$, 133.64, 131.66, 131.56, 131.09, 130.14, 129.37, 128.81, 128.73, 127.85, 127.67, $127.55,126.60,124.95,124.32,121.48,116.46,52.77$. HRMS (ESI) calcd for $\mathrm{C}_{23} \mathrm{H}_{17} \mathrm{O}_{4}(\mathrm{M}+\mathrm{H})^{+}: 357.1121$, found 357.1120 .

Methyl 6-(furan-2-yl)-4-oxo-2-phenyl-4H-pyran-3-carboxylate (3t). $19 \mathrm{mg}, \mathbf{1 8 \%}$ yield, colorless liquid. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ
 7.69-7.65 (m, 2H), $7.61(\mathrm{~d}, J=1.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.57-7.53(\mathrm{~m}, 1 \mathrm{H})$, $7.50(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.01(\mathrm{~d}, J=3.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.77(\mathrm{~s}, 1 \mathrm{H})$, $6.58(\mathrm{dd}, J=3.5,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (75 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 175.78,165.16,161.79,155.31,145.91,145.42,131.62,131.20$, 128.92, 127.74, 121.63, 112.87, 112.45, 108.64, 52.80. HRMS (ESI) calcd for $\mathrm{C}_{17} \mathrm{H}_{13} \mathrm{O}_{5}(\mathrm{M}+\mathrm{H})^{+}: 297.0757$, found 297.0761.

Methyl 4-cyclopropyl-2-oxo-6-phenyl-2H-pyran-5-carboxylate (3u). $41 \mathrm{mg}, 43 \%$
 yield, colorless liquid. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.53$ (d, J $=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.49(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.44(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H})$, $6.27(\mathrm{~s}, 1 \mathrm{H}), 3.74(\mathrm{~s}, 3 \mathrm{H}), 1.90-1.82(\mathrm{~m}, 1 \mathrm{H}), 1.11-1.04(\mathrm{~m}, 4 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 175.73,169.61,165.32,161.72,131.34,131.22$, 128.77, 127.41, 121.19, 111.09, 52.59, 13.83, 8.33. HRMS (ESI) calcd for $\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{O}_{4}$ $(\mathrm{M}+\mathrm{H})^{+}: 271.0965$, found 271.0965 .

Methyl 4-oxo-6-pentyl-2-phenyl-4H-pyran-3-carboxylate (3v). $19 \mathrm{mg}, 18 \%$ yield,
 colorless liquid. ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.60(\mathrm{~d}$, $J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.52(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.47(\mathrm{t}, J=7.5$ $\mathrm{Hz}, 2 \mathrm{H}), 6.26(\mathrm{~s}, 1 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H}), 2.59(\mathrm{t}, J=7.5 \mathrm{~Hz}$, $2 \mathrm{H}), 1.74-1.68(\mathrm{~m}, 2 \mathrm{H}), 1.39-1.36(\mathrm{~m}, 4 \mathrm{H}), 0.92(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (125 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 176.34,169.26,165.41,162.57,131.42,131.38,128.80,127.63$, 121.14, 113.37, 52.72, 33.52, 30.96, 26.28, 22.22, 13.79. HRMS (ESI) calcd for $\mathrm{C}_{18} \mathrm{H}_{21} \mathrm{O}_{4}(\mathrm{M}+\mathrm{H})^{+}: 301.1434$, found 301.1438 .

Methyl 6-methyl-4-oxo-2-phenyl-4H-pyran-3-carboxylate (3w). $34 \mathrm{mg}, 40 \%$ yield,
 colorless liquid. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.62-7.59(\mathrm{~m}$, $2 \mathrm{H}), 7.75-7.43(\mathrm{~m}, 3 \mathrm{H}), 6.26(\mathrm{~s}, 1 \mathrm{H}), 3.76(\mathrm{~s}, 3 \mathrm{H}), 2.35(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 176.21,165.62,165.35,162.71$, 131.44, 131.28, 128.78, 127.66, 121.11, 114.13, 52.69, 19.82. HRMS (ESI) calcd for $\mathrm{C}_{14} \mathrm{H}_{13} \mathrm{O}_{4}(\mathrm{M}+\mathrm{H})^{+}: 245.0808$, found 245.0815 .

Methyl 4-methyl-2-oxo-6-phenyl-2H-pyran-5-carboxylate (4a). $20 \mathrm{mg}, 23 \%$ yield, white solid, mp: 99-100 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.57$ (d, $J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.52-7.41(\mathrm{~m}, 3 \mathrm{H}), 6.16(\mathrm{~s}, 1 \mathrm{H}), 3.66(\mathrm{~s}, 3 \mathrm{H}), 2.25(\mathrm{~s}$, $3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 166.60,161.04,160.32,153.69$, 131.88, 128.52, 127.80, 113.26, 112.44, 52.46, 20.16. HRMS (ESI) calcd for $\mathrm{C}_{14} \mathrm{H}_{13} \mathrm{O}_{4}(\mathrm{M}+\mathrm{H})^{+}: 245.0808$, found 245.0811.

Methyl 2-oxo-6-phenyl-2H-pyran-5-carboxylate (4b). 39 mg , 48% yield, colorless
 liquid. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.86(\mathrm{~d}, J=9.7 \mathrm{~Hz}, 1 \mathrm{H})$, 7.58-7.43 (m, 5H), $6.34(\mathrm{~d}, J=9.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.71(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (75MHz, CDCl_{3}): $\delta 167.2,164.9,160.1,144.1,132.1,131.2,129.1$, 128.0, 113.2, 109.4, 52.2. HRMS (ESI) calcd for $\mathrm{C}_{13} \mathrm{H}_{11} \mathrm{O}_{4}(\mathrm{M}+\mathrm{H})^{+}$: 231.0652, found 231.0656.

4-Oxo-2,6-diphenyl-4H-pyran-3-carbonitrile (5). 49 mg , 51% yield, white solid,
mp: 177-178 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.09(\mathrm{~d}, J=7.5 \mathrm{~Hz}$,

2 H), 7.82 (d, $J=7.0 \mathrm{~Hz}, 2 \mathrm{H}$), $7.68(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.54-7.64(\mathrm{~m}$, $5 \mathrm{H}), 6.91(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 175.1,170.3,163.7$, 133.3, 132.4, 129.8, 129.6, 129.4, 129.2, 128.4, 126.0, 113.4, 109.9, 102.0. HRMS (ESI) calcd for $\mathrm{C}_{18} \mathrm{H}_{12} \mathrm{NO}_{2}(\mathrm{M}+\mathrm{H})^{+}: 274.0863$, found 274.0859.

Procedure for the synthesis of compound 6 from 3 a or $\mathbf{3 g}$.

To a 10 mL round-bottom flask was charged with $\mathbf{3 a} / \mathbf{3 g}(0.1 \mathrm{mmol})$ and 3 mL of EtOH . Then 5 mL of $1 \mathrm{M} \mathrm{NaOH}(\mathrm{aq})$ was added and the resulting mixture was stirred for a period of time until the completion of the reaction as monitored by TLC. The solution was acidified to $\mathrm{pH}=3$ with 1 M HCl , and was subsequently extracted with DCM. Then, the organic phase was dried over anhydrous MgSO_{4}. The mixture was filtered and the filtrate was concentrated under reduced pressure. The residue was purified by chromatography on silica gel using hexane/EtOAc (1:2) as the eluent to afford product 6 .

5-Hydroxy-3-oxo-5-phenylpent-4-enoic acid (6). 20 mg from 3a and 10 mg from 3g.

Procedure for the synthesis of compound 9.

To a 10 mL round-bottom flask was charged with $\mathbf{3 g}(31 \mathrm{mg}, 0.1 \mathrm{mmol})$ and 3 mL of THF. Then 5 mL of 1 M NaOH (aq) was added and the resulting mixture was stired
for a period of time until the completion of the reaction as monitored by TLC. The solution was acidified to $\mathrm{pH}=3$ with 1 M HCl , and was subsequently extracted with DCM. Then, the organic phase was dried over anhydrous MgSO_{4}. The mixture was filtered and the filtrate was concentrated under reduced pressure. The residue was purified by chromatography on silica gel using hexane/EtOAc (1:2) as the eluent to afford 22 mg of compound 9 .

4-Oxo-2,6-diphenyl-4H-pyran-3-carboxylic acid (9). White solid, mp: 202-203 ${ }^{\circ} \mathrm{C}$.

${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.84-7.81$ (m, 2H), 7.69-7.66 (m, $2 \mathrm{H}), 7.61-7.51(\mathrm{~m}, 6 \mathrm{H}), 7.11(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (125 MHz , CDCl_{3}): $\delta 181.97,173.18,165.01,163.06,132.83,131.87,131.75$ $129.45,129.31,128.21,126.33,113.41,110.17$. HRMS (ESI) calcd for $\mathrm{C}_{18} \mathrm{H}_{13} \mathrm{O}_{4}$ $(\mathrm{M}+\mathrm{H})^{+}: 293.0808$, found 293.0815 .

Procedure for the synthesis of compound 10 from 9.

To a 10 mL round-bottom flask was charged with 9 ($29 \mathrm{mg}, 0.1 \mathrm{mmol}$), BOP (66 $\mathrm{mg}, 0.15 \mathrm{mmol}$), 3 mL of THF and DIPEA ($26 \mathrm{mg}, 0.2 \mathrm{mmol}$). After 5 mins , $4-\mathrm{OMePhNH}_{2}$ ($15 \mathrm{mg}, 0.12 \mathrm{mmol}$) was added to the solution, and the resulting mixture was stired for a period of time until the completion of the reaction as monitored by TLC. Then, the reaction mixture was concentrated under reduced pressure. The residue was purified by chromatography on silica gel using hexane/EtOAc (3:1) as the eluent to afford 39 mg of compound $\mathbf{1 0}$.
N-(4-methoxyphenyl)-4-oxo-2,6-diphenyl-4H-pyran-3-carboxamide (10). White
 solid, mp: 177-178 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ 10.94 (brs, 1H), 7.82 (d, $J=7.5 \mathrm{~Hz}, 2 \mathrm{H}$), 7.68 (d, $J=$ $7.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.49-7.57(\mathrm{~m}, 8 \mathrm{H}), 6.99(\mathrm{~s}, 1 \mathrm{H}), 6.84(\mathrm{~d}$, $J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 179.47$, 169.65, 163.09, $160.27,156.32,133.18,131.99,131.43,131.05,130.13,129.21,128.77,128.26$, 126.02, 122.03, 118.69, 113.99, 111.24, 55.43. HRMS (ESI) calcd for $\mathrm{C}_{25} \mathrm{H}_{20} \mathrm{NO}_{4}$
$(\mathrm{M}+\mathrm{H})^{+}: 398.1387$, found 398.1395 .

Procedure for the synthesis of compound 11.

To a 10 mL round-bottom flask was charged with $\mathbf{3 a}(26 \mathrm{mg}, 0.1 \mathrm{mmol}), 10 \mathrm{mg}$ of $\mathrm{NaBH}_{4}(0.25 \mathrm{mmol})$ and 3 mL of EtOH. The mixture was stirred at room temperature for 4 h . The mixture was concentrated and the residue was purified by chromatography on silica gel using hexane/EtOAc (1:1) as the eluent to afford 25 mg of compound $\mathbf{1 1}$. Ethyl 2-ethyl-5-hydroxy-3-oxo-5-phenylpent-4-enoate (11). Colorless liquid. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 15.85$ (brs, 1 H), $7.88(\mathrm{~d}, J=7.2 \mathrm{~Hz}$,
 $2 \mathrm{H}), 7.56-7.42(\mathrm{~m}, 3 \mathrm{H}), 6.28(\mathrm{~s}, 1 \mathrm{H}), 4.21(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H})$, $3.31(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.09-1.90(\mathrm{~m}, 2 \mathrm{H}), 1.28(\mathrm{t}, J=7.2 \mathrm{~Hz}$, $3 \mathrm{H}), 1.00(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 193.41,182.24,170.23$, 134.26, 132.49, 128.66, 127.05, 95.67, 61.29, 57.84, 22.98, 14.13, 11.94. HRMS (ESI) calcd for $\mathrm{C}_{15} \mathrm{H}_{19} \mathrm{O}_{4}(\mathrm{M}+\mathrm{H})^{+}: 263.1278$, found 263.1284.

Procedure for the synthesis of product $\mathbf{3 g}$ from acid chloride.

To an oven-dried 25 mL round-bottom flask was charged with acid $\mathbf{1 a}(51 \mathrm{mg}, 0.35$ mmol) and 5 mL of SOCl_{2}. The resulting mixture was refluxed for 2 h , and then SOCl_{2} was removed under reduced pressure. Then, substrate $\mathbf{2 g}$ ($125 \mathrm{mg}, 0.7 \mathrm{mmol}$), DMAP ($85 \mathrm{mg}, 0.7 \mathrm{mmol}$), and $\mathrm{Sc}(\mathrm{OTf})_{3}(30 \mathrm{mg}, 0.06 \mathrm{mmol})$ was added to the residue followed by addition of anhydrous 1,2-DCE (4 mL). The resulting mixture was heated at $80^{\circ} \mathrm{C}$ in air for a period time until the completion of the reaction as monitored by TLC. The mixture was cooled to room temperature. The mixture was filtered and the filtrate was concentrated under reduced pressure. The residue was purified by chromatography on silica gel using hexane/EtOAc (10:1) as the eluent to afford 56
mg of product $\mathbf{3 g}(52 \%)$.

Procedure for the reaction of alkynyl acyl imidazole 12 with $\mathbf{2 g}$.

To an oven-dried 10 mL round-bottom flask was charged with $\mathbf{1 2}(39 \mathrm{mg}, 0.2 \mathrm{mmol})$ $\mathbf{2 g}(71 \mathrm{mg}, 0.4 \mathrm{mmol})$, additive (none or certain amount of DMAP), $\mathrm{Sc}(\mathrm{OTf})_{3}(17 \mathrm{mg}$, 0.034 mmol), 200 mg of $4 \AA \mathrm{MS}$ and $\mathrm{NaOH}(10 \mathrm{mg}, 0.24 \mathrm{mmol}$). Then anhydrous 1,2-DCE (3 mL) was added to the flask and the resulting mixture was heated at $80^{\circ} \mathrm{C}$ in air for a period time until the completion of the reaction as monitored by TLC. The mixture was cooled to room temperature. The mixture was concentrated under reduced pressure. The residue was purified by chromatography on silica gel using hexane/EtOAc (10:1) as the eluent to afford products $\mathbf{3 g}$ and/or $\mathbf{4 g}$. $6 \mathbf{m g}$ of $\mathbf{3 g}$ and 31 mg of $\mathbf{4 g}$ were obtained when none of additive was added. 32 mg of $\mathbf{3 g}$ and 5 mg of $\mathbf{4 g}$ were obtained when $20 \mathrm{~mol} \%$ of DMAP was added. 40 mg of $\mathbf{3 g}$ was obtained when 1.1 equiv of DMAP was added.

Methyl 2-oxo-4,6-diphenyl-2H-pyran-5-carboxylate

Colorless liquid. Known compound. ${ }^{[5]}{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$):
$\delta 7.64(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.50-7.43(\mathrm{~m}, 6 \mathrm{H}), 7.37-7.35(\mathrm{~m}, 2 \mathrm{H})$, $6.29(\mathrm{~s}, 1 \mathrm{H}), 3.46(\mathrm{~s}, 3 \mathrm{H})$.

References:

[1] a) J. Lim, J. Choi, H.-S. Kim, I. S. Kim, K. C. Nam, J. Kim, S. Lee, J. Org. Chem. 2016, 81, 303; b) D. R. Stuart, P. Alsabeh, M. Kuhn, K. Fagnou, J. Am. Chem. Soc. 2010, 132, 18326.
[2] R. Balamurugan, S. Manojveer, Chem. Commun. 2011, 47, 11143.
[3] N. Latif, E. T. Kaiser, J. Org. Chem. 1969, 34, 3653.
[4] D. Schmidt, J. Conrad, I. Klaiber, U. Beifuss, Chem. Commun. 2006, 4732.
[5] R. Manikandan, M. Jeganmohan Org. Lett. 2014, 16, 652.

$\stackrel{\oplus}{1}$
$\stackrel{i}{i}$

Non

\hat{O}
$\stackrel{0}{6}$
1

钲鹏
$\xrightarrow{\infty}$

~~


```
ivisinisisisis)
```


$\stackrel{\curvearrowleft}{2}$
$\stackrel{\text { \% }}{\substack{\text { § } \\ i \\ i}}$
$\stackrel{\rightharpoonup}{\circ}$
$\stackrel{0}{1}$

ininisu
$\stackrel{n}{\sim}$

$$
\begin{gathered}
\text { qu } \\
\dot{\sim} \\
\dot{i}
\end{gathered}
$$

T	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0

11

