Poly(isophthalic acid)(ethylene oxide) as a Macromolecular Modulator for Metal-Organic Polyhedra

Teng-Hao Chen ${ }^{\dagger}$, Le Wang ${ }^{\dagger}$, Jonathan V. Trueblood ${ }^{\dagger}$, Vicki H. Grassian ${ }^{\dagger \dagger}$, and Seth M. Cohen ${ }^{\dagger}$,*
${ }^{\dagger}$ Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California, 92093, USA
${ }^{\ddagger}$ Department of Nanoengineering and Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California, 92093, USA

Supporting Information

[^0]
Experimental

General. Starting materials and solvents were purchased and used without further purification from commercial suppliers (Sigma-Aldrich, Alfa Aesar, EMD, TCI, and others). Chromatography was performed using a CombiFlash Rf 200 automated system from TeledyneISCO (Lincoln, USA). ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ nuclear magnetic resonance (NMR) spectra were collected on Varian Mercury spectrometers running at 400 and 500 MHz , respectively. Chemical shifts are quoted in parts per million (ppm) referenced to the appropriate solvent peak or 0 ppm for TMS. Electrospray ionization mass spectrometry (ESI-MS) and matrix-assisted laser desorption ionization coupled with time of flight (MALDI-TOF) mass spectroscopy were performed at the Molecular Mass Spectrometry Facility (MMSF) in the Department of Chemistry \& Biochemistry at the University of California, San Diego. $\sim 5-10 \mathrm{mg}$ of dried material was used for thermogravimetric analysis (TGA) measurements. Samples were analyzed under a stream of dinitrogen (80 $\mathrm{mL} / \mathrm{min}$) using a Mettler Toledo TGA/DSC $1 \mathrm{STAR}^{\mathrm{e}}$ System running from 30 to $500{ }^{\circ} \mathrm{C}$ with a ramping rate of $5^{\circ} \mathrm{C} / \mathrm{min}$.

Synthesis of Polymer 1'
Dimethyl 4,6-dihydroxy-isophthalate ${ }^{1}$ ($500 \mathrm{mg}, 2.2 \mathrm{mmol}$), 1-bromo-2-[2-[2-(2bromoethoxy)ethoxy]ethoxy]ethane ${ }^{2}$ ($700 \mathrm{mg}, 2.2 \mathrm{mmol}$), and $\mathrm{K}_{2} \mathrm{CO}_{3}(1.2 \mathrm{~g}, 8.8 \mathrm{mmol}$) were added into 10 mL of DMF. The suspension was stirred for overnight and then heated at $100{ }^{\circ} \mathrm{C}$ for 24 h . After cooling down, 20 mL of DMF was added to the mixture and the solid was separated from solution by centrifugation. The collected solution was dried in vacuo by rotary evaporation to give oily product. The oil was washed by acetone $(3 \times 5 \mathrm{~mL})$ and dried in a $60{ }^{\circ} \mathrm{C}$ oven. Yield: $608 \mathrm{mg}(72 \%) .{ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO- d_{6}): $\delta 8.15(\mathrm{~s}, 1 \mathrm{H}, \mathrm{ArH}), 6.73(\mathrm{~s}, 1 \mathrm{H}, \mathrm{ArH}), 4.23\left(\mathrm{t}, 4 \mathrm{H}, \mathrm{CH}_{2}, J=4.8 \mathrm{~Hz}\right), 3.75(\mathrm{t}$, $\left.4 \mathrm{H}, \mathrm{CH}_{2}, J=4.8 \mathrm{~Hz}\right), 3.72\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{CH}_{3}\right), 3.62\left(\mathrm{t}, 4 \mathrm{H}, \mathrm{CH}_{2}, J=4.8 \mathrm{~Hz}\right), 3.52\left(\mathrm{t}, 4 \mathrm{H}, \mathrm{CH}_{2}\right.$, $J=4.8 \mathrm{~Hz}$). FT-IR: $\tilde{v}=2948$ (m), 2872 (m), 1715 (s), 1604 (s), 1563 (m), 1507 (w), 1433 (m), 1350 (w), 1284 (s), 1228 (s), 1191 (s), 1099 (s), 1046 (s), 975 (m), 812 (m),
$772(\mathrm{~m}), 695(\mathrm{~m}), 614(\mathrm{w}) \mathrm{cm}^{-1} . \mathrm{GPC}: M_{\mathrm{n}}=12,200 \mathrm{Da}, M_{\mathrm{w}}=22,243 \mathrm{Da}, \mathrm{PDI}=1.8$, degree of polymerization $=31$.

Synthesis of Polymer 2'

Dimethyl 4,6-dihydroxy-isophthalate ($500 \mathrm{mg}, 2.2 \mathrm{mmol}$), 1,11-dibromoundecane (690 $\mathrm{mg}, 2.2 \mathrm{mmol})$, and $\mathrm{K}_{2} \mathrm{CO}_{3}(1.2 \mathrm{~g}, 8.8 \mathrm{mmol})$ were added into 10 mL of DMF. The suspension was stirred for overnight and then heated at $100^{\circ} \mathrm{C}$ for 24 h . After cooling down, 50 mL of water was added to the mixture and the precipitate was washed with water and methanol (MeOH), then isolated by centrifugation. The residue was dried in a $60{ }^{\circ} \mathrm{C}$ oven to obtain solid product. Yield: $518 \mathrm{mg}(62 \%) .{ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO$\left.d_{6}\right): \delta 8.16(\mathrm{~s}, 1 \mathrm{H}, \mathrm{ArH}), 6.53(\mathrm{~s}, 1 \mathrm{H}, \mathrm{ArH}), 3.98\left(\mathrm{brt}, 4 \mathrm{H}, \mathrm{CH}_{2}\right), 3.66\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{CH}_{3}\right), 1.58$ (br t, 4H, CH2), $1.32\left(\right.$ br t, $\left.4 \mathrm{H}, \mathrm{CH}_{2}\right), 1.14\left(\mathrm{~m}, 10 \mathrm{H}, \mathrm{CH}_{2}\right)$. FT-IR: $\tilde{v}=2922(\mathrm{~m}), 2852$ (m), 1701 (s), 1604 (s), 1562 (m), 1507 (w), 1447 (m), 1460 (m), 1420 (m), 1390 (m), 1288 (s), 1224 (s), 1190 (s), 1104 (s), 999 (s), 820 (m), 773 (m), 691 (m), 617 (m) cm ${ }^{-1}$. Due to the low solubility of polymer in organic solvents, the GPC result is not available.

Synthesis of Polymer 1

The ester precursor ($600 \mathrm{mg}, 1.6 \mathrm{mmol}$) were placed in a $1: 1$ mixture of water and DMF (30 mL total) with 1.0 g of KOH . The mixture was heated at $100^{\circ} \mathrm{C}$ for 24 h to produce a clear solution. After cooling down, the solution was acidified to a pH value of ~ 2 with a 1.0 M HCl solution. Solvents were removed by rotary evaporation and more 1.0 M HCl solution was added to the resulting mixture. The mixture was filtered and washed with water, then dried at $80^{\circ} \mathrm{C}$ in vacuo to obtain offwhite solids. Yield: $540 \mathrm{mg}(95 \%)$. ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}): $\delta 8.18(\mathrm{~s}, 1 \mathrm{H}, \mathrm{ArH}), 6.74(\mathrm{~s}, 1 \mathrm{H}, \mathrm{ArH}), 4.25(\mathrm{t}, 4 \mathrm{H}$, $\left.\mathrm{CH}_{2}, J=4.8 \mathrm{~Hz}\right), 3.77\left(\mathrm{t}, 4 \mathrm{H}, \mathrm{CH}_{2}, J=4.8 \mathrm{~Hz}\right), 3.61\left(\mathrm{t}, 4 \mathrm{H}, \mathrm{CH}_{2}, J=4.8 \mathrm{~Hz}\right), 3.51(\mathrm{t}, 4 \mathrm{H}$, $\mathrm{CH}_{2}, J=4.8 \mathrm{~Hz}$). ${ }^{13} \mathrm{C}$ NMR (125 MHz, DMSO- d_{6}): 165.8, 162.5, 136.0, 112.2, 99.0, 70.1, 69.9, 68.8, 68.7. FT-IR: $\tilde{v}=3265$ (m), 2870 (m), 1708 (s), 1605 (s$), 1567$ (m), 1499 (w), 1447 (m), 1348 (m), 1282 (s), 1104 (s), 1067 (s), 1034 (s), 943 (m), 910 (m),
$843(\mathrm{~m}), 774(\mathrm{w}), 728(\mathrm{w}), 646(\mathrm{~m}), 617(\mathrm{~m}) \mathrm{cm}^{-1} . \mathrm{GPC}: M_{\mathrm{n}}=9,667 \mathrm{Da}, M_{\mathrm{w}}=17,756$ $\mathrm{Da}, \mathrm{PDI}=1.8$, degree of polymerization $=27$.

Synthesis of Polymer 2

The ester precursor ($500 \mathrm{mg}, 1.3 \mathrm{mmol}$) were placed in a $1: 1$ mixture of water and DMF (100 mL total) with 4.0 g of KOH . The mixture was heated at $100^{\circ} \mathrm{C}$ for 2 d to produce a clear solution. The solution was acidified to a pH value of ~ 2 with a 1.0 M HCl solution. The mixture was concentrated by rotary evaporation, then added 10 mL of 1.0 M HCl solution. The resulting precipitate was collected by centrifugation, and subsequently washed with water $(3 \times 20 \mathrm{~mL})$ and $\mathrm{MeOH}(3 \times 20 \mathrm{~mL})$. The isolated polyacid polymers were dried at $60^{\circ} \mathrm{C}$ oven overnight. Yield: $380 \mathrm{mg}(83 \%) .{ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}): $\delta 8.18$ (s, $1 \mathrm{H}, \mathrm{ArH}$), $6.64(\mathrm{~s}, 1 \mathrm{H}, \mathrm{ArH}), 4.09\left(\mathrm{t}, 4 \mathrm{H}, \mathrm{CH}_{2}, J=6.0\right.$ $\mathrm{Hz}), 1.69\left(\mathrm{t}, 4 \mathrm{H}, \mathrm{CH}_{2}, J=6.0 \mathrm{~Hz}\right), 1.42\left(\mathrm{t}, 4 \mathrm{H}, \mathrm{CH}_{2}, J=6.0 \mathrm{~Hz}\right), 1.25\left(\mathrm{~m}, 10 \mathrm{H}, \mathrm{CH}_{2}, J=\right.$ $4.8 \mathrm{~Hz}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$): 166.0, 162.8, 136.2, 111.7, 98.1, 68.5, 29.1, 29.0, 28.8, 28.5, 25.4. FT-IR: $\tilde{v}=2923$ (m), 2852 (m), 1686 (s), 1602 (s), 1560 (m), 1461 (m), 1401 (m), 1278 (s), 1243 (s), 1208 (s), 1106 (s), 1070 (s), 992 (m), 945 (m), $819(\mathrm{~m}), 775(\mathrm{w}), 722(\mathrm{w}), 668(\mathrm{w}), 611(\mathrm{w}) \mathrm{cm}^{-1} . \mathrm{GPC}: M_{\mathrm{n}}=4,000 \mathrm{Da}, M_{\mathrm{w}}=9,900$ $\mathrm{Da}, \mathrm{PDI}=2.5$, degree of polymerization $=12$.

Synthesis of Compound 3 (4,6-Bis[2-[2-[2-(2-methoxyethoxy)ethoxy]ethoxy]ethoxyl] isophthalic acid)

4,6-dihydroxy-isophthalate ($200 \mathrm{mg}, 0.88 \mathrm{mmol}$), $\mathrm{K}_{2} \mathrm{CO}_{3}(486 \mathrm{mg}, 3.5 \mathrm{mmol}$), and 2-[2-[2-(2-methoxyethoxy)ethoxy]ethoxy]ethyl bromide ($950 \mathrm{mg}, 3.5 \mathrm{mmol}$) were dissolved in 10 mL of DMF. The mixture was heated at $100^{\circ} \mathrm{C}$ overnight and was then filtered to remove $\mathrm{K}_{2} \mathrm{CO}_{3}$. DMF in the mixture was removed in vacuo by rotary evaporation. The remainder was purified by silica gel column chromatography $\left(\mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$ gradient: 0 to $20 / 80$) and the solvent was removed under vacuum by rotary evaporation. Water (50
mL) and $\mathrm{KOH}(500 \mathrm{mg})$ were added to the resulting solid and the solution was heated to reflux overnight. After cooling down to room temperature, the solution was acidified with 1 M HCl solution to $\mathrm{pH} \sim 2$ in an ice bath. Water was removed by rotary evaporation. The mixture was dissolved in ethyl acetate and filtered, then the solution was dried to obtain oil product. Yield: $488 \mathrm{mg}(96 \%)$. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$): $\delta 8.18$ (s, $1 \mathrm{H}, \mathrm{ArH}$), $6.78(\mathrm{~s}, 1 \mathrm{H}, \mathrm{ArH}), 4.28\left(\mathrm{t}, 4 \mathrm{H}, \mathrm{CH}_{2}, J=4.8 \mathrm{~Hz}\right), 3.79\left(\mathrm{t}, 4 \mathrm{H}, \mathrm{CH}_{2}, J=4.8 \mathrm{~Hz}\right)$, $3.63\left(\mathrm{t}, 4 \mathrm{H}, \mathrm{CH}_{2}, J=4.8 \mathrm{~Hz}\right), 3.50\left(\mathrm{~m}, 16 \mathrm{H}, \mathrm{CH}_{2}\right), 3.41\left(\mathrm{q}, 4 \mathrm{H}, \mathrm{CH}_{2}, J=3.2 \mathrm{~Hz}\right), 3.22(\mathrm{t}$, $6 \mathrm{H}, \mathrm{CH}_{3}, J=3.2 \mathrm{~Hz}$). ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$): 165.8, 162.5, 136.0, 112.2, 99.1, $71.3,70.1,69.9,69.8,69.8,69.6,68.8,68.7,58.1$. FT-IR: $\tilde{v}=3398(\mathrm{~s}), 2928(\mathrm{~m}), 2778$ (m), 1708 (s , 1606 (s , 1567 (m), 1467 (m), 1350 (m), 1285 (m), 1249 (m), 1201 (m), 1074 (s , 1022 (s$), 946$ (m), 888 (m), 845 (m), $542(\mathrm{~m}) \mathrm{cm}^{-1}$. ESI-MS: [M-H] 577.11.

Synthesis of MOP-H $\left[\mathbf{C u}_{\mathbf{2 4}}(\boldsymbol{m} \text {-bdc })_{\mathbf{2 4}}(\mathbf{S})_{\mathbf{2 4}}\right]$. ($\mathrm{S}=$ terminal solvent molecule) $\mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2} \cdot 2.5 \mathrm{H}_{2} \mathrm{O}\left(9.5 \mathrm{mg}, 4.1 \times 10^{-2} \mathrm{mmol}\right)$ and isophthalic acid $\left(\mathrm{H}_{2} m-\mathrm{bdc}, 6.8 \mathrm{mg}\right.$, $4.1 \times 10^{-2} \mathrm{mmol}$) were dissolved in 0.75 mL of DMF and 0.25 mL of ethanol (EtOH) in a 4 mL scintillation vial. The vial was placed in a sand bath in a preheated isothermal oven at $80^{\circ} \mathrm{C}$ for 16 h . The isolated product $(52 \%$ based on Cu$)$ was washed with DMF $(3 \times 5$ mL) and EtOH ($3 \times 5 \mathrm{~mL}$), and then air-dried for 5 min . FT-IR: $\tilde{v}=1606(\mathrm{~s}), 1535(\mathrm{~s})$, 1482 (m), 1442 (m), 1382 (s), 1276 (m), 1161 (w), 1078 (w), 1039 (w), 739 (s), 719 (s), $660(\mathrm{~m}), 485(\mathrm{~m}) \mathrm{cm}^{-1}$.

Synthesis of MOP-OH [Cu $\left.\mathbf{C u}_{\mathbf{2 4}}(\mathbf{5 - O H}-\boldsymbol{m} \text {-bdc })_{\mathbf{2 4}}(\mathbf{S})_{\mathbf{2 4}}\right] . \mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2} \cdot 2.5 \mathrm{H}_{2} \mathrm{O}(9.5 \mathrm{mg}$, $4.1 \times 10^{-2} \mathrm{mmol}$) and 5-hydroxyisophthalic acid ($5-\mathrm{OH}-\mathrm{H}_{2} \mathrm{~m}$-bdc, $7.5 \mathrm{mg}, 4.1 \times 10^{-2} \mathrm{mmol}$) were dissolved in 0.75 mL of N, N-diethylformamide (DEF) and 0.25 mL of MeOH in a 4 mL scintillation vial. The vial was placed in a sand bath in a preheated isothermal oven at $80^{\circ} \mathrm{C}$ for 16 h . The isolated product (36% based on Cu) was washed with DEF (3×5 $\mathrm{mL})$ and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 5 \mathrm{~mL})$, and then air-dried for 5 min . FT-IR: $\tilde{v}=1610(\mathrm{~s}), 1573(\mathrm{~s})$, 1508 (m), 1376 (s), 1273 (m), 1210 (m), 1127 (w), 1001 (m), 979 (m), 899 (w), 809 (m), 770 (s), 731 (s), 481 (m) cm^{-1}.

Synthesis of MOP-NO $\mathbf{2 l}_{\mathbf{2}}\left[\mathbf{C u}_{\mathbf{2 4}}\left(\mathbf{5}-\mathrm{NO}_{\mathbf{2}} \text { - } \boldsymbol{m} \text {-bdc }\right)_{\mathbf{2 4}}(\mathbf{S})_{\mathbf{2 4}}\right] \cdot \mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2} \cdot 2.5 \mathrm{H}_{2} \mathrm{O}(9.5 \mathrm{mg}$, $4.1 \times 10^{-2} \mathrm{mmol}$) and 5-nitroisophthalic acid ($5-\mathrm{NO}_{2}-\mathrm{H}_{2} m-\mathrm{bdc}, 8.7 \mathrm{mg}, 4.1 \times 10^{-2} \mathrm{mmol}$) were dissolved in 0.40 mL of DMF and 0.60 mL of MeOH in a 4 mL scintillation vial. The vial was placed in a sand bath in a preheated isothermal oven at $60^{\circ} \mathrm{C}$ for 2 d . The
isolated product (55% based on Cu) was washed with DMF $(3 \times 5 \mathrm{~mL})$ and $\mathrm{MeOH}(3 \times 5$ mL), and then air-dried for 5 min . FT-IR: $\tilde{v}=3088$ (w), 1625 (m), 1534 (m), 1459 (m), 1375 (s), 1341 (s), 1086 (m), 1038 (w), 925 (m), 782 (m), 723 (s$), 480(\mathrm{~m}) \mathrm{cm}^{-1}$.

Synthesis of MOF-CH $\mathbf{3}_{\mathbf{3}}$ - \boldsymbol{m}-bdc $\left[\mathbf{C u}\left(\mathbf{5}-\mathbf{C H}_{\mathbf{3}} \text { - } \boldsymbol{m} \text {-bdc) }\left(\mathbf{H}_{\mathbf{2}} \mathbf{O}\right)\right]_{\mathbf{n}} \cdot \mathbf{C u}\left(\mathrm{NO}_{3}\right)_{2} \cdot 2.5 \mathrm{H}_{2} \mathrm{O}\right.$ $\left(9.5 \mathrm{mg}, 4.1 \times 10^{-2} \mathrm{mmol}\right)$ and $5-\mathrm{methylisophthalic} \mathrm{acid}\left(5-\mathrm{CH}_{3}-\mathrm{H}_{2} \mathrm{~m}\right.$-bdc, $7.4 \mathrm{mg}, 4.1 \times 10^{-2}$ mmol) were dissolved in 0.40 mL of DMF and 0.40 mL of MeOH in a 4 mL scintillation vial. The vial was placed in a sand bath in a preheated isothermal oven at $60^{\circ} \mathrm{C}$ for 2 d . The isolated product (55% based on Cu) was washed with $\mathrm{DMF}(3 \times 5 \mathrm{~mL}$) and MeOH $(3 \times 5 \mathrm{~mL})$, and then air-dried for 5 min . FT-IR: $\tilde{v}=3416(\mathrm{~m}), 1627(\mathrm{~s}), 1588(\mathrm{~s}), 1420$ (m), 1375 (m), 1249 (m), 1113 (w), 792 (m), 770 (s$), 731$ (s$), 495(\mathrm{~m}) \mathrm{cm}^{-1}$.

Synthesis of MOF-NH $\mathbf{N}_{\mathbf{2}}$-m-bdc $\left[\mathbf{C u}\left(5-\mathbf{N H}_{\mathbf{2}} \text { - } \boldsymbol{m} \text {-bdc)(DMF) }\right]_{\mathbf{n}} \cdot \mathbf{C u}\left(\mathrm{NO}_{3}\right)_{2} \cdot 2.5 \mathrm{H}_{2} \mathrm{O}\right.$ $\left(9.5 \mathrm{mg}, 4.1 \times 10^{-2} \mathrm{mmol}\right)$ and 5 -aminoisophthalic acid ($5-\mathrm{NH}_{2}-\mathrm{H}_{2} \mathrm{~m}$-bdc, $7.4 \mathrm{mg}, 4.1 \times 10^{-2}$ mmol) were dissolved in 0.75 mL of DMF and 0.25 mL of MeOH in a 4 mL scintillation vial. The vial was placed in a sand bath in a preheated isothermal oven at $60^{\circ} \mathrm{C}$ for 2 d . The isolated product (51% based on Cu) was washed with DMF $(3 \times 5 \mathrm{~mL})$ and MeOH ($3 \times 5 \mathrm{~mL}$), and then air-dried for 5 min . FT-IR: $\tilde{v}=3440(\mathrm{~m}), 3353(\mathrm{~m}), 1657(\mathrm{~m}), 1579$ (s), 1480 (m), 1418 (m), 1388 (s), 1250 (m), 1150 (w), 1103 (m), 1060 (w), 1000 (m), 896 (m), 784 (s$), 727$ (s$), 669(\mathrm{~m}), 526(\mathrm{~m}), 480(\mathrm{~s}) \mathrm{cm}^{-1}$.

Synthesis of pm-MOP-H $\left[\mathbf{C u}_{\mathbf{2 4}}(\boldsymbol{m} \text {-bdc })_{\mathbf{2 4}}(\mathbf{S})_{\mathbf{2 4}}\right] . \quad \mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2} \cdot 2.5 \mathrm{H}_{2} \mathrm{O}(9.5 \mathrm{mg}$, $4.1 \times 10^{-2} \mathrm{mmol}$), isophthalic acid ($\mathrm{H}_{2} \mathrm{~m}-\mathrm{bdc}, 5.8 \mathrm{mg}, 3.5 \times 10^{-2} \mathrm{mmol}$), and polymer $\mathbf{1}(2.0$ $\mathrm{mg}, 5.6 \times 10^{-3} \mathrm{mmol}$) were dissolved in 0.75 mL of DMF and 0.25 mL of EtOH in a 4 mL scintillation vial. The vial was placed in a sand bath in a preheated isothermal oven at $80^{\circ} \mathrm{C}$ for 16 h . The isolated product (43% based on Cu) was washed with DMF ($3 \times 5 \mathrm{~mL}$) and $\mathrm{EtOH}(3 \times 5 \mathrm{~mL})$, and then air-dried for 5 min . FT-IR: $\tilde{v}=1604$ (s), 1534 (s), 1481 (m), 1438 (m), 1375 (s), 1276 (m), 1160 (m), 1076 (m), 1039 (w), 935 (w), 825 (w), 717 (s), 659 (m), 487 (m) cm ${ }^{-1}$.

Synthesis of pm-MOP-OH [Cu $\mathbf{C u}_{\mathbf{2 4}} \mathbf{(5 - O H} \mathbf{- m}$-bdc $\left.)_{\mathbf{2 4}}(\mathbf{S})_{\mathbf{2 4}}\right] . \mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2} \cdot 2.5 \mathrm{H}_{2} \mathrm{O}(9.5$

 $\mathrm{mg}, 4.1 \times 10^{-2} \mathrm{mmol}$), 5 -hydroxyisophthalic acid ($5-\mathrm{OH}-\mathrm{H}_{2} \mathrm{~m}$-bdc, $6.8 \mathrm{mg}, 3.7 \times 10^{-2} \mathrm{mmol}$), and polymer $\mathbf{1}\left(1.2 \mathrm{mg}, 3.5 \times 10^{-3} \mathrm{mmol}\right)$ were dissolved in 0.75 mL of DEF and 0.25 mL of MeOH in a 4 mL scintillation vial. The vial was placed in a sand bath in a preheated isothermal oven at $80^{\circ} \mathrm{C}$ for 16 h . The isolated product (36% based on Cu) was washedwith DMF $(3 \times 5 \mathrm{~mL})$ and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 5 \mathrm{~mL})$, and then air-dried for 5 min . FT-IR: $\tilde{v}=$ 1625 (s), 1588 (s), 1388 (s), 1268 (m), 1209 (m), 1122 (m), 1002 (m), 977 (m), 776 (s), 734 (s , $670(\mathrm{~m}), 646(\mathrm{~m}), 486(\mathrm{~m}) \mathrm{cm}^{-1}$.

Synthesis of pm-MOP-NO $\mathbf{2}_{\mathbf{2}}\left[\mathbf{C u}_{\mathbf{2 4}} \mathbf{(5 - \mathbf { N O } _ { \mathbf { 2 } } \boldsymbol { - m } \text { -bdc }) _ { \mathbf { 2 4 } } (\mathbf { S }) _ { \mathbf { 2 4 } }] . \quad \mathrm { Cu } (\mathrm { NO } _ { 3 }) _ { 2 } \cdot 2 . 5 \mathrm { H } _ { 2 } \mathrm { O } , ~}\right.$ $\left(9.5 \mathrm{mg}, 4.1 \times 10^{-2} \mathrm{mmol}\right)$, 5 -nitroisophthalic acid $\left(5-\mathrm{NO}_{2}-\mathrm{H}_{2} \mathrm{~m}\right.$-bdc, $7.9 \mathrm{mg}, 3.7 \times 10^{-2}$ $\mathrm{mmol})$, and polymer $1\left(1.2 \mathrm{mg}, 3.5 \times 10^{-3} \mathrm{mmol}\right)$ were dissolved in 0.40 mL of DMF and 0.60 mL of MeOH in a 4 mL scintillation vial. The vial was placed in a sand bath in a preheated isothermal oven at $60^{\circ} \mathrm{C}$ for 2 d . The isolated product (59% based on Cu) was washed with DMF $(3 \times 5 \mathrm{~mL})$ and $\mathrm{MeOH}(3 \times 5 \mathrm{~mL})$, and then air-dried for 5 min . FT-IR: $\tilde{v}=3089(\mathrm{w}), 1624$ (s), 1532 (s), 1457 (m), 1343 (s$), 1083$ (m), 924 (m), 782 (m), 724 (s$)$, 468 (m) cm ${ }^{-1}$.

Synthesis of pm-MOP-CH $\mathbf{H}_{\mathbf{3}} \quad\left[\mathbf{C u}_{\mathbf{2 4}}\left(\mathbf{5}-\mathbf{C H}_{\mathbf{3}} \text { - } \boldsymbol{m} \text {-bdc }\right)_{\mathbf{2 4}}(\mathbf{S})_{\mathbf{2 4}}\right] . \quad \mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2} \cdot 2.5 \mathrm{H}_{2} \mathrm{O}$ $\left(9.5 \mathrm{mg}, 4.1 \times 10^{-2} \mathrm{mmol}\right)$, 5 -methylisophthalic acid $\left(5-\mathrm{CH}_{3}-\mathrm{H}_{2} \mathrm{~m}\right.$-bdc, $6.8 \mathrm{mg}, 3.7 \times 10^{-2}$ mmol), and polymer $1\left(1.2 \mathrm{mg}, 3.5 \times 10^{-3} \mathrm{mmo}\right.$) were dissolved in 0.40 mL of DMF and 0.40 mL of MeOH in a 4 mL scintillation vial. The vial was placed in a sand bath in a preheated isothermal oven at $60^{\circ} \mathrm{C}$ for 2 d . The isolated product (55% based on Cu) was washed with DMF ($3 \times 5 \mathrm{~mL}$) and $\mathrm{MeOH}(3 \times 5 \mathrm{~mL})$, and then air-dried for 5 min . FT-IR: $\tilde{v}=2916$ (w), 1610 (m), 1541 (s), 1422 (s$), 1371$ (s$), 1276$ (m), 1112 (w), 933 (w), 769 (s), 727 (s), 495 (m) cm^{-1}.

Synthesis of pm-MOP-NH2 $\left[\mathrm{Cu}_{\mathbf{2 4}}\left(\mathbf{5}-\mathrm{NH}_{\mathbf{2}}-\boldsymbol{m} \text {-bdc }\right)_{\mathbf{2 4}}(\mathbf{S})_{\mathbf{2 4}}\right]\left[\mathrm{Cu}_{0.5}\left(\mathbf{S}^{\prime}\right)\left(\mathbf{S}^{\prime \prime}\right)\right]_{8}\left(\boldsymbol{S}, \boldsymbol{S}^{\prime}\right.$, and $\boldsymbol{S}^{\prime \prime}$ are unassigned solvent molecules). $\mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2} \cdot 2.5 \mathrm{H}_{2} \mathrm{O}\left(9.5 \mathrm{mg}, 4.1 \times 10^{-2} \mathrm{mmol}\right)$, 5 -aminoisophthalic acid ($5-\mathrm{NH}_{2}-\mathrm{H}_{2} \mathrm{~m}$-bdc, $6.8 \mathrm{mg}, 3.7 \times 10^{-2} \mathrm{mmol}$), and polymer $1(1.2$ $\mathrm{mg}, 3.5 \times 10^{-3} \mathrm{mmol}$) were dissolved in 0.75 mL of DMF and 0.25 mL of MeOH in a 4 mL scintillation vial. The vial was placed in a sand bath in a preheated isothermal oven at $60{ }^{\circ} \mathrm{C}$ for 2 d . The isolated product $(61 \%$ based on Cu$)$ was washed with DMF $(3 \times 5$ $\mathrm{mL})$ and $\mathrm{MeOH}(3 \times 5 \mathrm{~mL})$, and then air-dried for 5 min . FT-IR: $\tilde{v}=3258(\mathrm{w}), 3119(\mathrm{w})$, 1619 (m), 1546 (s$), 1476$ (m), 1364 (s$), 1103$ (m), 1001 (m), 957 (m), 772 (s$), 725$ (s), $670(\mathrm{~m}), 457(\mathrm{~m}) \mathrm{cm}^{-1}$.

Figure S1. ${ }^{1}$ H NMR spectrum of polymer $\mathbf{1}^{1}$.

Figure S2. ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{2}$ '.

Figure S3. ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectrum of polymer $\mathbf{1}$.

Figure S4. ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectrum of polymer 2.

Figure S5. ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectrum of compound 3 .

Figure S6. GPC traces of polymer 1, 1', and $\mathbf{2}$.

Figure S7. MALDI-TOF mass spectrum of polymer 1'. Polymer 1' was dissolved in THF and α-cyano-4-hydroxycinnamic acid (HCCA) was used as the matrix. The low resolution of spectrum is due to the low solubility of polymer $\mathbf{1}^{\prime}$ and only shorter chains were detected (e.g. $5331.20 \mathrm{~g} / \mathrm{mol}$ corresponding to a degree of polymerization of ~ 14 repeat units). The $\Delta m / z$ numbers at ~ 176 and $\sim 208 \mathrm{~g} / \mathrm{mol}$ are highly characteristic of the repeating units of the polymer.

Figure S8. Left: Crystal structure of MOP-H (terminal DMF and $\mathrm{H}_{2} \mathrm{O}$ ligands have been omitted for clarity). Cu , blue; O, red; C, black. The yellow sphere serves to highlight the void space within the cage. Right: Molecular packing of MOP-H. The lines represent the unit cell of the crystal structure. The packed MOP molecules are presented in different colors for clarity.

Figure S9. Optical images of products from the solutions containing 0.027 mmol of $\mathrm{H}_{2} m$-bdc and 0.014 mmol of polymer 1 (2:1 ratio, left), 0.031 mmol of $\mathrm{H}_{2} m$-bdc and 0.010 mmol of polymer 1 ($3: 1 \mathrm{ratio}$, middle), and 0.039 mmol of $\mathrm{H}_{2} m$-bdc and 0.002 mmol of polymer 1 (20:1 ratio, right) under identical reaction conditions (0.75 mL DMF/0.25 mL EtOH at $80^{\circ} \mathrm{C}$ for 16 h).

Figure S10. ${ }^{1} \mathrm{H}$ NMR spectrum of digested $\mathrm{pm}-\mathrm{MOP}-\mathrm{H}$ that shows the molar ratio of $\mathrm{H}_{2} m$-bdc to polymer $\mathbf{1}$ is $\sim 25: 1$.

Figure S11. PXRD patterns of amorphous solid (blue) obtained from the reaction of 0.04 mmol of polymer 1 and $\mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2} \cdot 2.5 \mathrm{H}_{2} \mathrm{O}$. A combination of amorphous solid and CuO (green) obtained from the reaction of 0.04 mmol of polymer 1 and 0.12 mmol of $\mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2} \cdot 2.5 \mathrm{H}_{2} \mathrm{O}$. Identical reaction conditions were used as for the preparation of pm -MOP-H (0.75 mL DMF/0.25 mL EtOH at $80^{\circ} \mathrm{C}$ for 16 h).

Figure S12. Top: Optical images of MOP-H (left to right) using no modulator, TEG, PEG-400, and PEG-4000. These additives increase the abundance of the smaller, cubic crystals (see red circle), but still result in a mixed phase and do not increase the physical dimensions of these crystals significantly. Bottom: Optical images of products with difference concentrations of PEG-4000 (left to right: $2.0 \times 10^{-3}, 7.0 \times 10^{-4}, 4.0 \times 10^{-4}$, and $1.0 \times 10^{-4} \mathrm{mmol}$), which again, increase the abundance of the smaller, cubic crystals, but still result in a mixed phase and do not increase the physical dimensions of these crystals significantly. The reaction conditions for all samples were 0.75 mL DMF/ 0.25 mL EtOH at $80^{\circ} \mathrm{C}$ for 16 h .

Figure S13. PXRD patterns of products using TEG, PEG-400, and PEG-4000 (2.0×10 ${ }^{-3}$ mmol) as modulators under identical reaction conditions as that of $\mathrm{pm}-\mathrm{MOP}-\mathrm{H}$ synthesis (0.75 mL DMF $/ 0.25 \mathrm{~mL} \mathrm{EtOH}$ at $80^{\circ} \mathrm{C}$ for 16 h).

Figure S14. Optical images of products using polymer 1' (left), polymer 2 (middle), and compound 3 (right) as modulators under identical reaction conditions as that of pm-MOP-H synthesis (0.75 mL DMF/0.25 mL EtOH at $80^{\circ} \mathrm{C}$ for 16 h).

Figure S15. PXRD patterns of products using polymer 1', polymer 2, and compound 3 $\left(6.0 \times 10^{-3} \mathrm{mmol}\right)$ as modulators under the same reaction condition as that of $\mathrm{pm}-\mathrm{MOP}-\mathrm{H}$ synthesis.

Figure S16. ${ }^{1} \mathrm{H}$ NMR spectrum of digested MOP-H that shows the molar ratio of H_{2} mbdc to polymer $\mathbf{2}$ is $\sim 33: 1$.

Figure S17. ${ }^{1} \mathrm{H}$ NMR spectrum of digested pm-MOP-OH, $-\mathrm{NO}_{2},-\mathrm{CH}_{3}$, and $-\mathrm{NH}_{2}$. These spectra show that the molar ratio of $\mathrm{H}_{2} m$-bdc ligand to polymer $\mathbf{1}$ is: $\sim 20: 1$ for pm-MOP$\mathrm{OH}, \sim 25: 1$ for $\mathrm{pm}-\mathrm{MOP}-\mathrm{NO}_{2}, \sim 16: 1$ for $\mathrm{pm}-\mathrm{MOP}-\mathrm{CH}_{3}$, and $\sim 25: 1$ for $\mathrm{pm}-\mathrm{MOP}-\mathrm{NH}_{2}$.

Figure $\mathbf{S 1 7}$ (cont). ${ }^{1} \mathrm{H}$ NMR spectrum of digested pm-MOP-OH, $-\mathrm{NO}_{2},-\mathrm{CH}_{3}$, and $-\mathrm{NH}_{2}$. These spectra show that the molar ratio of $\mathrm{H}_{2} \mathrm{~m}$-bdc ligand to polymer $\mathbf{1}$ is: $\sim 20: 1$ for pm -MOP-OH, $\sim 25: 1$ for pm-MOP-NO $2, \sim 16: 1$ for $\mathrm{pm}-\mathrm{MOP}-\mathrm{CH}_{3}$, and $\sim 25: 1$ for pm-MOPNH_{2}.

Figure S18. Images of MOP-OH (left), pm-MOP-OH (middle), and pm-MOP-OH deposited on a glass surface (right).

Figure S19. Left: Crystal structure of MOP-OH (terminal $\mathrm{H}_{2} \mathrm{O}$ ligands have been omitted for clarity). Cu , blue; O , red; C , black. The yellow sphere serves to highlight the void space within the cage. Right: Molecular packing of MOP-OH. The lines represent the unit cell of the crystal structure. The packed MOP molecules are presented in different colors for clarity.

Figure S20. Left: Crystal structure of pm-MOP-OH (terminal $\mathrm{H}_{2} \mathrm{O}$ ligands have been omitted for clarity). Cu , blue; O , red; C , black. The yellow sphere serves to highlight the void space within the cage. Right: Molecular packing of pm-MOP-OH. The lines represent the unit cell of the crystal structure. The packed MOP molecules are presented in different colors for clarity.

Figure S21. PXRD patterns of materials synthesized from 5-OH- $\mathrm{H}_{2} m-b d c, 5-\mathrm{NO}_{2}-\mathrm{H}_{2} m-$ bdc, and $5-\mathrm{CH}_{3}-\mathrm{H}_{2} m$-bdc as free-standing crystals and as films on glass.

Figure S22. Images of $\mathrm{MOP}-\mathrm{NO}_{2}$ (left), pm- $\mathrm{MOP}-\mathrm{NO}_{2}$ (middle), and pm-MOP- NO_{2} deposited on a glass surface (right).

Figure S23. Left: Crystal structure of MOP- NO_{2} (terminal $\mathrm{H}_{2} \mathrm{O}$ ligands have been omitted for clarity). Cu , blue; O , red; C, black; N , light blue. The yellow sphere serves to highlight the void space within the cage. Right: Molecular packing of MOP-NO2. The lines represent the unit cell of the crystal structure. The packed MOP molecules are presented in different colors for clarity.

Figure S24. Left: Crystal structure of pm-MOP- NO_{2} (terminal MeOH and $\mathrm{H}_{2} \mathrm{O}$ ligands have been omitted for clarity). Cu , blue; O , red; C, black; N, light blue. The yellow sphere serves to highlight the void space within the cage. Right: Molecular packing of $\mathrm{pm}-\mathrm{MOP}-\mathrm{NO}_{2}$. The lines represent the unit cell of the crystal structure. The packed MOP molecules are presented in different colors for clarity.

Figure S25. Images of MOF- $\mathrm{CH}_{3}-m$-bdc (left), pm-MOP- CH_{3} (middle), and pm-MOPCH_{3} deposited on glass surface (right).

Figure S26. Crystal structure of MOF-CH3-m-bdc. ${ }^{4} \mathrm{Cu}$, blue; O, red; C, black. Hydrogen atoms have been omitted for clarity.

Figure S27. Left: Crystal structure of pm-MOP- CH_{3} (terminal $\mathrm{H}_{2} \mathrm{O}$ ligands have been omitted for clarity). Cu , blue; O , red; C, black. The yellow sphere serves to highlight the void space within the cage. Right: Molecular packing of $\mathrm{pm}-\mathrm{MOP}-\mathrm{CH}_{3}$. The lines represent the unit cell of the crystal structure. The packed MOP molecules are presented in different colors for clarity.

Figure S28. Crystal structure of MOF-NH2-m-bdc. ${ }^{5} \mathrm{Cu}$, blue; O, red; C, black; N, light blue. Hydrogen atoms have been omitted for clarity.

Figure S29. Raman spectrum of polymer 1.
(a) MOP-H

Raman shift (cm-1)	Assignment	References
502	Cu-O	6,7
669	Y(COO)	8,9
743	out of plane ring bending	6
743	COO of Isophthalate	9
845	out of plane CH bending, CC stretching	6,9
1010	C=C stretching, CC	$6,9,8$
1192	stretching	
1414	COO symmetric stretch	7
1460	symmetric COO stretch	6,7
1460	CC stretching	9
1542	asymmetric COO stretching	6,7
1586	asymmetric stretching CC	9
1612	CC, C=C stretching	$6,7,8,9$

(b) pm-MOP-H

(c) MOP-OH

(d) pm-MOP-OH

Figure S30. Confocal microscopic images (left), Raman spectra (middle), and peak assignments (right) for MOPs (a, c, e), MOFs (g, i), and pm-MOPs (b, d, f, h, j). No peak assignment for pm -MOPs are provided due to the absence of characteristic peaks.
(e) $\mathrm{MOP}-\mathrm{NO}_{2}$

Raman shift (cm^{-1})	Assignment	References
486	$\mathrm{Cu}-\mathrm{O}$	6,7
733	NO_{2} wagging	11
746	out of plane ring bending	6
804	symmetric stretch CN	12
828	out of plane CH bending, scissoring of NO_{2}	6,11
930	CH	11
1009	$\mathrm{C}=\mathrm{C}$ stretching, CC stretching	6,8,9
1210		
1352	symmetric stretch NO_{2}	11
1417	COO symmetric stretch	7
1452	COO stretch	6,7
1452	CC	9
1541	COO and asymmetric NO_{2}	11,12
1581	C-C stretch	11
1624	$\mathrm{C}=0$	8

(f) pm-MOP-NO ${ }_{2}$

(g) MOF- $\mathrm{CH}_{3}-m$-bdc

Raman shift $\left(\mathbf{c m}^{-1}\right)$ 495	Assignment Cu-O	References
532	ring deformation	6,7
743	out of plane ring bending	13
797	ring deformation	6
811	out of plane CH bending	13
1014	C=C stretching, CC	6
1255	stretching	$6,8,9$
1381	CH bend (methyl)	
1427	COO symmetric stretch	13
1460	COO stretch	7
1460	CC	6,7
1535	CC	9
1609	CC, C=C	$9,7,8,9$

(h) pm-MOP- CH_{3}

Figure $\mathbf{S 3 0}$ (cont). Confocal microscopic images (left), Raman spectra (middle), and peak assignments (right) for MOPs (a, c, e), MOFs (g, i), and pm-MOPs (b, d, f, h, j). No peak assignment for pm-MOPs are provided due to the absence of characteristic peaks.

Raman shift (cm^{-1})	Assignment	References
497	$\mathrm{Cu}-\mathrm{O}$	6,7
548		
678	out of plane ring deformation	13
734	out of plane CH bending	6
753		
794	ring deformation	13
806	symmetric stretch CN	12
819	out of plane CH bending	6
984	ring breathing	13
1007	$\mathrm{C}=\mathrm{C}$ stretching, CC stretching	6,8,9
1111		
1301		
1425	COO symmetric stretch	7
1439	COO stretch	6,7
1439	CC	9
1539	CC	9
1603	$\mathrm{CC}, \mathrm{C}=\mathrm{C}$	6,7,8,9

Figure $\mathbf{S 3 0}$ (cont). Confocal microscopic images (left), Raman spectra (middle), and peak assignments (right) for MOPs (a, c, e), MOFs (g, i), and pm-MOPs (b, d, f, h, j). No peak assignment for pm-MOPs are provided due to the absence of characteristic peaks.

Figure S31. Optical images of reaction products on glass using PEG-4000 as a modulator to produce thin films. PEG-4000 was unable to induce thin film formation in these materials.

Figure S32. PXRD patterns of products using PEG-4000 as a modulator.

Figure S33. TGA traces for polymer 1 (left), activated MOPs and MOFs (middle), and pm-MOPs (right). The samples were analyzed under a stream of $\mathrm{N}_{2}(80 \mathrm{~mL} / \mathrm{min})$ from 30 to $500^{\circ} \mathrm{C}$ with a ramping rate of $5^{\circ} \mathrm{C} / \mathrm{min}$.

Figure S34. $\mathrm{N}_{2}\left(77 \mathrm{~K}\right.$: red; 298 K : blue) and CO_{2} (195 K : magenta, 298 K : green) sorption isotherms of activated MOF-NH2-m-bdc and MOF-CH3-m-bdc. Filled shape: adsorption; open shape: desorption.

Figure S35. $\mathrm{N}_{2}\left(77 \mathrm{~K}\right.$: red; 298 K : blue) and CO_{2} (195 K : magenta, 298 K : green) sorption isotherms of activated MOP-OH, pm-MOP-OH, MOP-NO ${ }_{2}$, pm-MOP-NO ${ }_{2}$, pm-MOP- CH_{3}, and pm-MOP- NH_{2}. Filled symbols: adsorption; open symbols: desorption.

Table S1. Reactions to explore conditions for preparing uniform cubic MOP-H crystals. Reactions include $\mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2} \cdot 2.5 \mathrm{H}_{2} \mathrm{O}\left(9.5 \mathrm{mg}, 4.1 \times 10^{-2} \mathrm{mmol}\right)$ and 0.75 mL DMF/0.25 mL EtOH at $80^{\circ} \mathrm{C}$ for 16 h . Products were characterized by PXRD and ${ }^{1} \mathrm{H}$ NMR.

$\mathrm{H}_{2} \boldsymbol{m}$-bde	Polymers	Additives	Results
$\begin{aligned} & 4.5 \mathrm{mg}, 2.7 \times 10^{-2} \\ & \mathrm{mmol} \end{aligned}$	Polymer 1 (4.8 mg , $1.4 \times 10^{-2} \mathrm{mmol}$)		Cubic crystals with no clear shape; m-bdc: $\mathbf{1}=2: 1$
$5.1 \mathrm{mg}, 3.1 \times 10^{-2}$ mmol	Polymer 1 (3.6 mg , $\left.1.0 \times 10^{-2} \mathrm{mmol}\right)$	-	Cubic crystals with non-uniform size; m-bdc: $\mathbf{1}=8: 1$
$\begin{aligned} & 6.5 \mathrm{mg}, 3.9 \times 10^{-2} \\ & \mathrm{mmol} \end{aligned}$	Polymer 1 (0.7 mg , $\left.2.0 \times 10^{-3} \mathrm{mmol}\right)$	-	A mixture of cubic and prismatic crystals; m-bdc: $\mathbf{1}=25: 1$
$\begin{aligned} & 4.5 \mathrm{mg}, 2.7 \times 10^{-2} \\ & \mathrm{mmol} \end{aligned}$	Polymer 1' (5.4 mg , $1.4 \times 10^{-2} \mathrm{mmol}$)	-	A mixture of cubic and prismatic crystals; no polymer incorporated
$5.1 \mathrm{mg}, 3.1 \times 10^{-2}$ mmol	Polymer 1' (3.9 mg, $1.0 \times 10^{-2} \mathrm{mmol}$)	-	A mixture of cubic and prismatic crystals; no polymer incorporated
$\begin{aligned} & 5.8 \mathrm{mg}, 3.5 \times 10^{-2} \\ & \mathrm{mmol} \end{aligned}$	Polymer 1' (2.3 mg , $6.0 \times 10^{-3} \mathrm{mmol}$)	-	A mixture of cubic and prismatic crystals; no polymer incorporated
$6.5 \mathrm{mg}, 3.9 \times 10^{-2}$ mmol	Polymer 1' (0.8 mg , $\left.2.0 \times 10^{-3} \mathrm{mmol}\right)$	-	A mixture of cubic and prismatic crystals; no polymer incorporated
$4.5 \mathrm{mg}, 2.7 \times 10^{-2}$ mmol	Polymer 2 (4.9 mg , $\left.1.4 \times 10^{-2} \mathrm{mmol}\right)$	-	A mixture of cubic and prismatic crystals; m-bdc: $\mathbf{2}=25: 1$
$\begin{aligned} & 5.8 \mathrm{mg}, 3.5 \times 10^{-2} \\ & \mathrm{mmol} \end{aligned}$	Polymer $2(2.0 \mathrm{mg}$, $\left.6.0 \times 10^{-3} \mathrm{mmol}\right)$	-	A mixture of cubic and prismatic crystals; m-bdc: $\mathbf{2}=33: 1$
$\begin{aligned} & 6.5 \mathrm{mg}, 3.9 \times 10^{-2} \\ & \mathrm{mmol} \end{aligned}$	Polymer 2 (0.7 mg , $\left.2.0 \times 10^{-3} \mathrm{mmol}\right)$	-	A mixture of cubic and prismatic crystals; m-bdc: $\mathbf{2}=33: 1$
$5.1 \mathrm{mg}, 3.1 \times 10^{-2}$ mmol	-	Compound 3 (5.8 mg , $1.0 \times 10^{-2} \mathrm{mmol}$)	A mixture of cubic and prismatic crystals; no additive incorporated
$5.8 \mathrm{mg}, 3.5 \times 10^{-2}$ mmol	-	Compound 3 (3.5 mg , $6.0 \times 10^{-3} \mathrm{mmol}$)	A mixture of cubic and prismatic crystals; no additive incorporated
$\begin{aligned} & 6.5 \mathrm{mg}, 3.9 \times 10^{-2} \\ & \mathrm{mmol} \end{aligned}$	-	Compound 3 (1.2 mg , $2.0 \times 10^{-3} \mathrm{mmol}$)	A mixture of cubic and prismatic crystals; no additive incorporated
$\begin{aligned} & 6.8 \mathrm{mg}, 4.1 \times 10^{-2} \\ & \mathrm{mmol} \end{aligned}$	-	Tetraethylene glycol $\left(8.0 \mathrm{mg}, 4.1 \times 10^{-2} \mathrm{mmol}\right)$	A mixture of cubic and prismatic crystals; no additive incorporated
$\begin{aligned} & 6.8 \mathrm{mg}, 4.1 \times 10^{-2} \\ & \mathrm{mmol} \end{aligned}$	-	Tetraethylene glycol ($2.6 \mathrm{mg}, 1.4 \times 10^{-2} \mathrm{mmol}$)	A mixture of cubic and prismatic crystals; no additive incorporated
$\begin{aligned} & 6.8 \mathrm{mg}, 4.1 \times 10^{-2} \\ & \mathrm{mmol} \end{aligned}$	-	Tetraethylene glycol $\left(1.4 \mathrm{mg}, 7.0 \times 10^{-3} \mathrm{mmol}\right)$	A mixture of cubic and prismatic crystals; no additive incorporated
$\begin{aligned} & 6.8 \mathrm{mg}, 4.1 \times 10^{-2} \\ & \mathrm{mmol} \end{aligned}$	-	Tetraethylene glycol $\left(0.4 \mathrm{mg}, 2.0 \times 10^{-3} \mathrm{mmol}\right)$	A mixture of cubic and prismatic crystals; no additive incorporated
$\begin{aligned} & 6.8 \mathrm{mg}, 4.1 \times 10^{-2} \\ & \mathrm{mmol} \end{aligned}$	PEG-400 ${ }^{\mathrm{a}}(8.0 \mathrm{mg}$, $\left.2.0 \times 10^{-2} \mathrm{mmol}\right)$	-	A mixture of cubic and prismatic crystals; no polymer incorporated
$\begin{aligned} & 6.8 \mathrm{mg}, 4.1 \times 10^{-2} \\ & \mathrm{mmol} \end{aligned}$	PEG-400 (2.6 mg , $\left.7.0 \times 10^{-3} \mathrm{mmol}\right)$	-	A mixture of cubic and prismatic crystals; no polymer incorporated
$\begin{aligned} & 6.8 \mathrm{mg}, 4.1 \times 10^{-2} \\ & \mathrm{mmol} \end{aligned}$	PEG-400 (1.4 mg , $\left.4.0 \times 10^{-3} \mathrm{mmol}\right)$	-	A mixture of cubic and prismatic crystals; no polymer incorporated
$\begin{aligned} & 6.8 \mathrm{mg}, 4.1 \times 10^{-2} \\ & \mathrm{mmol} \end{aligned}$	PEG-400 (0.4 mg , $\left.1.0 \times 10^{-3} \mathrm{mmol}\right)$	-	A mixture of cubic and prismatic crystals; no polymer incorporated
$\begin{aligned} & 6.8 \mathrm{mg}, 4.1 \times 10^{-2} \\ & \mathrm{mmol} \end{aligned}$	PEG-4, $000^{\mathrm{b}}(8.0 \mathrm{mg}$, $\left.2.0 \times 10^{-3} \mathrm{mmol}\right)$	-	A mixture of cubic and prismatic crystals; no polymer incorporated

$\begin{aligned} & 6.8 \mathrm{mg}, 4.1 \times 10^{-2} \\ & \mathrm{mmol} \end{aligned}$	PEG-4,000 (2.6 mg, $\left.7.0 \times 10^{-4} \mathrm{mmol}\right)$	-
$\begin{aligned} & 6.8 \mathrm{mg}, 4.1 \times 10^{-2} \\ & \mathrm{mmol} \end{aligned}$	PEG-4,000 (1.4 mg, $\left.4.0 \times 10^{-4} \mathrm{mmol}\right)$	-
$\begin{aligned} & 6.8 \mathrm{mg}, 4.1 \times 10^{-2} \\ & \mathrm{mmol} \end{aligned}$	PEG-4,000 (0.4 mg , $\left.1.0 \times 10^{-4} \mathrm{mmol}\right)$	-
$\begin{aligned} & 6.8 \mathrm{mg}, 4.1 \times 10^{-2} \\ & \mathrm{mmol} \end{aligned}$	$\begin{aligned} & \mathrm{PVP}^{\mathrm{c}} \quad(0.5 \mathrm{mg}, \\ & \left.1.3 \times 10^{-5} \mathrm{mmol}\right) \end{aligned}$	TMDP ${ }^{\text {d }}$ $\left(1.0 \mathrm{mg}, 5.0 \times 10^{-3} \mathrm{mmol}\right)$
$\begin{aligned} & 6.8 \mathrm{mg}, 4.1 \times 10^{-2} \\ & \mathrm{mmol} \end{aligned}$	$\begin{aligned} & \text { PVP }(1.0 \quad \mathrm{mg}, \\ & \left.2.5 \times 10^{-5} \mathrm{mmol}\right) \end{aligned}$	TMDP $\left(1.0 \mathrm{mg}, 5.0 \times 10^{-3} \mathrm{mmol}\right)$
$\begin{aligned} & 6.8 \mathrm{mg}, 4.1 \times 10^{-2} \\ & \mathrm{mmol} \end{aligned}$	$\text { PVP }(0.5 \mathrm{mg},$	TMDP ($2.1 \mathrm{mg}, 1.0 \times 10^{-2} \mathrm{mmol}$)
$\begin{aligned} & 6.8 \mathrm{mg}, 4.1 \times 10^{-2} \\ & \mathrm{mmol} \end{aligned}$	PVP (1.0 mg,	TMDP $\left(2.1 \mathrm{mg}, 1.0 \times 10^{-2} \mathrm{mmol}\right)$
$\begin{aligned} & 6.8 \mathrm{mg}, 4.1 \times 10^{-2} \\ & \mathrm{mmol} \end{aligned}$	$\begin{aligned} & \text { PVP } \quad(0.5 \quad \mathrm{mg}, \\ & \left.1.3 \times 10^{-5} \mathrm{mmol}\right) \end{aligned}$	$\begin{aligned} & \mathrm{N}\left(\mathrm{CH}_{3}\right)_{4} \mathrm{NO}_{3} \\ & \left(0.7 \mathrm{mg}, 5.0 \times 10^{-3} \mathrm{mmol}\right) \end{aligned}$
$\begin{aligned} & 6.8 \mathrm{mg}, 4.1 \times 10^{-2} \\ & \mathrm{mmol} \end{aligned}$	PVP (1.0 mg,	$\begin{aligned} & \mathrm{N}\left(\mathrm{CH}_{3}\right)_{4} \mathrm{NO}_{3} \\ & \left(0.7 \mathrm{mg}, 5.0 \times 10^{-3} \mathrm{mmol}\right) \end{aligned}$
$\begin{aligned} & 6.8 \mathrm{mg}, 4.1 \times 10^{-2} \\ & \mathrm{mmol} \end{aligned}$	$\text { PVP (} 0.5 \mathrm{mg},$	$\begin{aligned} & \mathrm{N}\left(\mathrm{CH}_{3}\right)_{4} \mathrm{NO}_{3} \\ & \left(1.4 \mathrm{mg}, 1.0 \times 10^{-2} \mathrm{mmol}\right) \end{aligned}$
$\begin{aligned} & 6.8 \mathrm{mg}, 4.1 \times 10^{-2} \\ & \mathrm{mmol} \end{aligned}$	$\begin{aligned} & \text { PVP }(1.0 \quad \mathrm{mg}, \\ & \left.2.5 \times 10^{-5} \mathrm{mmol}\right) \end{aligned}$	$\begin{aligned} & \mathrm{N}\left(\mathrm{CH}_{3}\right)_{4} \mathrm{NO}_{3} \\ & \left(1.4 \mathrm{mg}, 1.0 \times 10^{-2} \mathrm{mmol}\right) \end{aligned}$
$\begin{aligned} & 6.8 \mathrm{mg}, 4.1 \times 10^{-2} \\ & \mathrm{mmol} \end{aligned}$	-	TMDP $\left(1.0 \mathrm{mg}, 5.0 \times 10^{-3} \mathrm{mmol}\right)$
$\begin{aligned} & 6.8 \mathrm{mg}, 4.1 \times 10^{-2} \\ & \mathrm{mmol} \end{aligned}$	-	TMDP ($2.1 \mathrm{mg}, 1.0 \times 10^{-2} \mathrm{mmol}$)
$6.8 \mathrm{mg}, 4.1 \times 10^{-2}$	-	TMDP ($4.2 \mathrm{mg}, 2.0 \times 10^{-2} \mathrm{mmol}$)
$\begin{aligned} & 6.8 \mathrm{mg}, 4.1 \times 10^{-2} \\ & \mathrm{mmol} \end{aligned}$	$\begin{aligned} & \text { PVP } \quad(0.5 \mathrm{mg}, \\ & \left.1.3 \times 10^{-5} \mathrm{mmol}\right) \end{aligned}$	(
$\begin{aligned} & 6.8 \mathrm{mg}, 4.1 \times 10^{-2} \\ & \mathrm{mmol} \end{aligned}$	$\begin{aligned} & \text { PVP }(1.0 \quad \mathrm{mg}, \\ & \left.2.5 \times 10^{-5} \mathrm{mmol}\right) \end{aligned}$	-
$\begin{aligned} & 6.8 \mathrm{mg}, 4.1 \times 10^{-2} \\ & \mathrm{mmol} \end{aligned}$	$\begin{aligned} & \text { PVP }(2.0 \quad \mathrm{mg}, \\ & \left.5.0 \times 10^{-5} \mathrm{mmol}\right) \end{aligned}$	-
$\begin{aligned} & 6.8 \mathrm{mg}, 4.1 \times 10^{-2} \\ & \mathrm{mmol} \end{aligned}$	$-$	$\begin{aligned} & \mathrm{N}\left(\mathrm{CH}_{3}\right)_{4} \mathrm{NO}_{3} \\ & \left(0.7 \mathrm{mg}, 5.0 \times 10^{-3} \mathrm{mmol}\right) \end{aligned}$
$\begin{aligned} & 6.8 \mathrm{mg}, 4.1 \times 10^{-2} \\ & \mathrm{mmol} \end{aligned}$	-	$\begin{aligned} & \mathrm{N}\left(\mathrm{CH}_{3}\right)_{4} \mathrm{NO}_{3} \\ & \left(1.4 \mathrm{mg}, 1.0 \times 10^{-2} \mathrm{mmol}\right) \end{aligned}$
$\begin{aligned} & 6.8 \mathrm{mg}, 4.1 \times 10^{-2} \\ & \mathrm{mmol} \end{aligned}$	-	$\begin{aligned} & \mathrm{N}\left(\mathrm{CH}_{3}\right)_{4} \mathrm{NO}_{3} \\ & \left(2.8 \mathrm{mg}, 2.0 \times 10^{-2} \mathrm{mmol}\right) \end{aligned}$

A mixture of cubic and prismatic crystals; no polymer incorporated
A mixture of cubic and prismatic crystals; no polymer incorporated
A mixture of cubic and prismatic crystals; no polymer incorporated
A mixture of cubic and prismatic crystals; no polymer incorporated
A mixture of cubic and prismatic crystals; no polymer incorporated
A mixture of cubic and prismatic crystals; no polymer incorporated
A mixture of cubic and prismatic crystals; no polymer incorporated
A mixture of cubic and prismatic crystals; no polymer incorporated
A mixture of cubic and prismatic crystals; no polymer incorporated
A mixture of cubic and prismatic crystals; no polymer incorporated
A mixture of cubic and prismatic crystals; no polymer incorporated
A mixture of cubic and prismatic crystals; no additive incorporated
A mixture of cubic and prismatic crystals; no additive incorporated
A mixture of cubic and prismatic crystals; no additive incorporated
A mixture of cubic and prismatic crystals; no polymer incorporated
A mixture of cubic and prismatic crystals; no polymer incorporated

A mixture of cubic and prismatic crystals; no polymer incorporated

A mixture of cubic and prismatic crystals; no additive incorporated

A mixture of cubic and prismatic crystals; no additive incorporated

A mixture of cubic and prismatic crystals; no additive incorporated
${ }^{\text {a }}$ PEG-400 $=$ polyethylene glycol, average molecular weight $400 \mathrm{Da} ;{ }^{\text {b }}$ PEG- $4000=$ polyethylene glycol, average molecular weight $4000 \mathrm{Da} ;{ }^{\text {c }}$ PVP $=$ polyvinylpyrrolidone, average molecular weight $40,000 \mathrm{Da} ;{ }^{\text {d }}$ TMDP $=4,4^{\prime}$-trimethylenedipiperidine

Table S2. Reaction conditions with $\mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2} \cdot 2.5 \mathrm{H}_{2} \mathrm{O}\left(9.5 \mathrm{mg}, 4.1 \times 10^{-2} \mathrm{mmol}\right)$ for deposition of crystals on a glass surface. All products were characterized by PXRD.

	$\mathrm{H}_{2} \boldsymbol{m}$-bdc Derivatives	Polymer 1	Reaction Conditions	Results
MOP-H	$\mathrm{H}_{2} m$-bdc $6.8 \mathrm{mg}, 4.1 \times 10^{-2}$ mmol	-	DMF/EtOH $0.56 \mathrm{~mL} / 0.19 \mathrm{~mL}$ $80^{\circ} \mathrm{C}, 16 \mathrm{~h}$	No deposition
MOP-OH	$5-\mathrm{OH}-\mathrm{H}_{2} \mathrm{~m}$-bdc $7.5 \mathrm{mg}, 4.1 \times 10^{-2}$ mmol	-	DEF/MeOH $0.56 \mathrm{~mL} / 0.19 \mathrm{~mL}$ $80^{\circ} \mathrm{C}, 16 \mathrm{~h}$	No deposition
MOP- NO_{2}	$5-\mathrm{NO}_{2}-\mathrm{H}_{2} m$-bdc $8.7 \mathrm{mg}, 4.1 \times 10^{-2}$ mmol	-	DMF/MeOH $0.30 \mathrm{~mL} / 0.45 \mathrm{~mL}$ $60^{\circ} \mathrm{C}, 2 \mathrm{~d}$	A layer of crystals
$\begin{aligned} & \text { MOF-CH }- \text { - }- \\ & \text { bdc } \end{aligned}$	$5-\mathrm{CH}_{3}-\mathrm{H}_{2} m$-bdc $7.4 \mathrm{mg}, 4.1 \times 10^{-2}$ mmol	-	DMF/MeOH $0.30 \mathrm{~mL} / 0.30 \mathrm{~mL}$ $60^{\circ} \mathrm{C}, 2 \mathrm{~d}$	A layer of crystals
$\begin{aligned} & \text { MOF-NH }-m- \\ & \text { bdc } \end{aligned}$	5-NH2- $\mathrm{H}_{2} m$-bdc $7.4 \mathrm{mg}, 4.1 \times 10^{-2}$ mmol	-	DMF/MeOH $0.56 \mathrm{~mL} / 0.19 \mathrm{~mL}$ $60^{\circ} \mathrm{C}, 2 \mathrm{~d}$	No deposition
pm-MOP-H	$\mathrm{H}_{2} m$-bdc $5.8 \mathrm{mg}, 3.5 \times 10^{-2}$ mmol	$\underset{6.9 \times 10^{-3} \mathrm{mmol}}{\substack{\mathrm{mg} \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline}}$	DMF/EtOH $0.56 \mathrm{~mL} / 0.19 \mathrm{~mL}$ $80^{\circ} \mathrm{C}, 16 \mathrm{~h}$	A layer of crystals
pm-MOP-OH	$5-\mathrm{OH}-\mathrm{H}_{2} m$-bdc $6.8 \mathrm{mg}, 3.7 \times 10^{-2}$ mmol	$\underset{3.7 \times 10^{-3} \mathrm{mmol}}{\substack{\mathrm{mg} \\ \hline \\ \hline \\ \hline \\ \hline}}$	DEF/MeOH $0.56 \mathrm{~mL} / 0.19 \mathrm{~mL}$ $80^{\circ} \mathrm{C}, 16 \mathrm{~h}$	A layer of crystals
pm-MOP- NO_{2}	$5-\mathrm{NO}_{2}-\mathrm{H}_{2} m$-bdc $7.9 \mathrm{mg}, 3.7 \times 10^{-2}$ mmol	$\underset{\substack{1.2}}{ } \quad \mathrm{mg}, 10^{-3} \mathrm{mmol}, ~$	DMF/MeOH $0.30 \mathrm{~mL} / 0.45 \mathrm{~mL}$ $60^{\circ} \mathrm{C}, 2 \mathrm{~d}$	A layer of crystals
pm-MOP-CH3	$5-\mathrm{CH}_{3}-\mathrm{H}_{2} m$-bdc $6.8 \mathrm{mg}, 3.7 \times 10^{-2}$ mmol	$\begin{aligned} & 1.2 \mathrm{mg}, \\ & 3.7 \times 10^{-3} \mathrm{mmol} \end{aligned}$	DMF/MeOH $0.30 \mathrm{~mL} / 0.30 \mathrm{~mL}$ $60^{\circ} \mathrm{C}, 2 \mathrm{~d}$	A layer of crystals
pm-MOP- NH_{2}	5- NH_{2} - $\mathrm{H}_{2} m$-bdc $6.8 \mathrm{mg}, 3.7 \times 10^{-2}$ mmol	$\underset{1.2}{3.7 \times 10^{-3} \mathrm{mmol}}$	DMF/MeOH $0.56 \mathrm{~mL} / 0.19 \mathrm{~mL}$ $60^{\circ} \mathrm{C}, 2 \mathrm{~d}$	A layer of crystals

Table S3. Control experiments with $\mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2} \cdot 2.5 \mathrm{H}_{2} \mathrm{O}\left(9.5 \mathrm{mg}, 4.1 \times 10^{-2} \mathrm{mmol}\right)$ and PEG-4000 for deposition of crystals on a glass surface. All products were characterized by PXRD.

$\mathrm{H}_{2} \boldsymbol{m}$-bdc Derivatives	PEG-4000	Reaction Conditions	Results
$\mathrm{H}_{2} m$-bdc $5.8 \mathrm{mg}, 3.5 \times 10^{-2} \mathrm{mmol}$	$9.0 \mathrm{mg}, 2.3 \times 10^{-3} \mathrm{mmol}$ $1.5 \mathrm{mg}, 3.8 \times 10^{-4} \mathrm{mmol}$ $0.9 \mathrm{mg}, 2.3 \times 10^{-4} \mathrm{mmol}$	DMF/EtOH $0.56 \mathrm{~mL} / 0.19 \mathrm{~mL}$ $80^{\circ} \mathrm{C}, 16 \mathrm{~h}$	MOP-H No deposition
5-OH- H_{2} m-bdc $7.5 \mathrm{mg}, 3.7 \times 10^{-2} \mathrm{mmol}$	$9.0 \mathrm{mg}, 2.3 \times 10^{-3} \mathrm{mmol}$ $1.5 \mathrm{mg}, 3.8 \times 10^{-4} \mathrm{mmol}$ $0.9 \mathrm{mg}, 2.3 \times 10^{-4} \mathrm{mmol}$	DEF/MeOH $0.56 \mathrm{~mL} / 0.19 \mathrm{~mL}$ $80^{\circ} \mathrm{C}, 16 \mathrm{~h}$	MOP-OH No deposition
$\begin{aligned} & 5-\mathrm{NO}_{2}-\mathrm{H}_{2} \mathrm{~m} \text {-bdc } \\ & 8.7 \mathrm{mg}, 3.7 \times 10^{-2} \mathrm{mmol} \end{aligned}$	$9.0 \mathrm{mg}, 2.3 \times 10^{-3} \mathrm{mmol}$ $1.5 \mathrm{mg}, 3.8 \times 10^{-4} \mathrm{mmol}$ $0.9 \mathrm{mg}, 2.3 \times 10^{-4} \mathrm{mmol}$	DMF/MeOH $0.30 \mathrm{~mL} / 0.45 \mathrm{~mL}$ $60^{\circ} \mathrm{C}, 2 \mathrm{~d}$	MOP-NO A layer of crystals
$\begin{aligned} & 5-\mathrm{CH}_{3}-\mathrm{H}_{2} m-\mathrm{bdc} \\ & 7.4 \mathrm{mg}, 3.7 \times 10^{-2} \mathrm{mmol} \end{aligned}$	$9.0 \mathrm{mg}, 2.3 \times 10^{-3} \mathrm{mmol}$ $1.5 \mathrm{mg}, 3.8 \times 10^{-4} \mathrm{mmol}$ $0.9 \mathrm{mg}, 2.3 \times 10^{-4} \mathrm{mmol}$	DMF/MeOH $0.30 \mathrm{~mL} / 0.30 \mathrm{~mL}$ $60^{\circ} \mathrm{C}, 2 \mathrm{~d}$	MOF-CH3-m-bdc A layer of crystals
$\begin{aligned} & 5-\mathrm{NH}_{2}-\mathrm{H}_{2} m \text {-bdc } \\ & 7.4 \mathrm{mg}, 3.7 \times 10^{-2} \mathrm{mmol} \end{aligned}$	$9.0 \mathrm{mg}, 2.3 \times 10^{-3} \mathrm{mmol}$ $1.5 \mathrm{mg}, 3.8 \times 10^{-4} \mathrm{mmol}$ $0.9 \mathrm{mg}, 2.3 \times 10^{-4} \mathrm{mmol}$	DMF/MeOH $0.56 \mathrm{~mL} / 0.19 \mathrm{~mL}$ $60^{\circ} \mathrm{C}, 2 \mathrm{~d}$	MOF-NH ${ }_{2}$-m-bdc No deposition

Table S4. Crystallographic Data for MOP-H.

Identification code
Empirical formula
Formula weight
Temperature/K
Crystal system
Space group
a / \AA
b / \AA
c / \AA
$\alpha /{ }^{\circ}$
$\beta /{ }^{\circ}$
$\gamma /{ }^{\circ}$
Volume $/ \AA^{3}$
Z
$\rho_{\text {calc }} \mathrm{g} / \mathrm{cm}^{3}$
μ / mm^{-1}
$F(000)$
Radiation
2θ range for data collection $/{ }^{\circ}$
Index ranges
Reflections collected
Independent reflections
Data/restraints/parameters
Goodness-of-fit on F^{2}
Final R indexes $[I>2 \sigma(I)]$
Final R indexes [all data]
Largest diff. peak/hole / e \AA^{-3}

MOP-H
$\mathrm{C}_{196} \mathrm{Cu}_{24} \mathrm{O}_{120}$
5799.16
296.15

Triclinic
$P-1$
24.3070(19)
24.5206(18)
25.3072(18)
118.393(2)
111.787(2)
93.769(2)
11767.2(16)

1
0.8183
1.109
2841.8
$\operatorname{MoK} \alpha(\lambda=0.71073)$
2.06 to 47.66
$-27 \leq \mathrm{h} \leq 27,-27 \leq \mathrm{k} \leq 27,-28 \leq 1 \leq 19$
114820
$35288\left[R_{\text {int }}=0.0871, R_{\text {sigma }}=0.1679\right]$
35288/72/1530
0.8030
$R_{1}=0.0603, \mathrm{w} R_{2}=0.1582$
$R_{1}=0.1153, \mathrm{w} R_{2}=0.1721$
1.83/-0.99

Table S5. Crystallographic Data for MOP-OH.

Identification code	MOP-OH
Empirical formula	$\mathrm{C}_{192} \mathrm{Cu}_{24} \mathrm{O}_{144}$
Formula weight	6135.12
Temperature/K	296(2)
Crystal system	Tetragonal
Space group	I4/m
a / \AA	27.401(11)
b / \AA	27.401(11)
c / \AA	35.409(14)
$\alpha /{ }^{\circ}$	90
$\beta /{ }^{\circ}$	90
$\gamma /{ }^{\circ}$	90
Volume/ \AA^{3}	26585(18)
Z	2
$\rho_{\text {calc }} \mathrm{g} / \mathrm{cm}^{3}$	0.7664
μ / mm^{-1}	0.987
$F(000)$	6020.2
Radiation	Mo K $\alpha(\lambda=0.71073)$
2θ range for data collection/ ${ }^{\circ}$	2.98 to 31.1
Index ranges	$-15 \leq \mathrm{h} \leq 20,-20 \leq \mathrm{k} \leq 16,-26 \leq 1 \leq 20$
Reflections collected	9448
Independent reflections	$3090\left[R_{\text {int }}=0.0934, R_{\text {sigma }}=0.1160\right]$
Data/restraints/parameters	3097/234/411
Goodness-of-fit on F^{2}	0.9139
Final R indexes [$I>2 \sigma(I)]$	$R_{1}=0.0529, \mathrm{w} R_{2}=0.1339$
Final R indexes [all data]	$R_{1}=0.0808, \mathrm{w} R_{2}=0.1406$
Largest diff. peak/hole / e \AA^{-3}	0.44/-0.57

Table S6. Crystallographic Data for MOP- NO_{2}.

Identification code
Empirical formula
Formula weight
Temperature/K
Crystal system
Space group
a / \AA
b / \AA
c / \AA
$\alpha{ }^{\circ}$
$\beta{ }^{\circ}$
$\gamma /{ }^{\circ}$
Volume $/ \AA^{3}$
Z
$\rho_{\text {calc }} \mathrm{g} / \mathrm{cm}^{3}$
μ / mm^{-1}
$F(000)$
Radiation
2θ range for data collection $/{ }^{\circ}$
Index ranges
Reflections collected
Independent reflections
Data/restraints/parameters
Goodness-of-fit on F^{2}
Final R indexes $[I>2 \sigma(I)]$
Final R indexes [all data]
Largest diff. peak/hole / e \AA^{-3}
$\mathrm{MOP}-\mathrm{NO}_{2}$
$\mathrm{C}_{192} \mathrm{Cu}_{24} \mathrm{~N}_{24} \mathrm{O}_{168}$
6855.36

100(2)
Trigonal
R-3
36.076(2)
36.076(2)
29.2307(19)

90
90
120
32946(3)
3
1.0365
1.206
10111.2

Mo K $\alpha(\lambda=0.71073)$
1.9 to 33.08
$-28 \leq \mathrm{h} \leq 28,-25 \leq \mathrm{k} \leq 28,-23 \leq 1 \leq 23$
23188
$3936\left[R_{\text {int }}=0.0625, R_{\text {sigma }}=0.0523\right]$
3936/360/606
1.022
$R_{1}=0.0797, \mathrm{w} R_{2}=0.2159$
$R_{1}=0.0989, \mathrm{w} R_{2}=0.2353$
1.33/-0.67

Table S7. Crystallographic Data for pm-MOP-H.

Identification code	pm-MOP-H
Empirical formula	$\mathrm{C}_{192} \mathrm{H}_{96} \mathrm{Cu}_{24} \mathrm{O}_{120}$
Formula weight	5847.89
Temperature/K	296.15
Crystal system	Cubic
Space group	Im-3m
a / \AA	27.570(2)
b / \AA	27.570(2)
c / \AA	27.570(2)
$\alpha /^{\circ}$	90
$\beta /{ }^{\circ}$	90
$\gamma /{ }^{\circ}$	90
Volume/ \AA^{3}	20957(3)
Z	2
$\rho_{\text {calc }} \mathrm{g} / \mathrm{cm}^{3}$	0.9267
μ / mm^{-1}	1.245
$F(000)$	5827.7
Radiation	Mo K $\alpha(\lambda=0.71073)$
2θ range for data collection/ ${ }^{\circ}$	2.08 to 46.56
Index ranges	$-21 \leq \mathrm{h} \leq 30,-29 \leq \mathrm{k} \leq 30,-30 \leq 1 \leq 30$
Reflections collected	33648
Independent reflections	$1496\left[R_{\text {int }}=0.0955, R_{\text {sigma }}=0.0355\right]$
Data/restraints/parameters	1496/12/73
Goodness-of-fit on F^{2}	0.9908
Final R indexes [$I>2 \sigma(I)]$	$R_{1}=0.0618, \mathrm{w} R_{2}=0.1657$
Final R indexes [all data]	$R_{1}=0.0828, \mathrm{w} R_{2}=0.1773$
Largest diff. peak/hole / e \AA^{-3}	0.76/-2.10

Table S8. Crystallographic Data for pm-MOP-OH.

Identification code	$\mathrm{pm}-\mathrm{MOP}-\mathrm{OH}$
Empirical formula	$\mathrm{C}_{200} \mathrm{Cu}_{24} \mathrm{O}_{145}$
Formula weight	6247.20
Temperature/K	$100(2)$
Crystal system	Tetragonal
Space group	$I 4 / m$
a / \AA	$27.571(4)$
b / \AA	$27.571(4)$
c / \AA	$35.456(5)$
$\alpha /{ }^{\circ}$	90
$\beta /{ }^{\circ}$	90
$\gamma /{ }^{\circ}$	90
Volume $/ \AA^{3}$	$26952(6)$
Z	2
$\rho_{\text {calc }} \mathrm{g} / \mathrm{cm}{ }^{3}$	0.7697
μ / mm^{-1}	0.975
$F(000)$	6132.3
Radiation	$\mathrm{Mo} \mathrm{K} \alpha(\lambda=0.71073)$
2θ range for data collection $/{ }^{\circ}$	2.08 to 39.78
Index ranges	$-19 \leq \mathrm{h} \leq 25,-24 \leq \mathrm{k} \leq 25,-26 \leq 1 \leq 33$
Reflections collected	16595
Independent reflections	$5033\left[R_{\text {int }}=0.0535, R_{\text {sigma }}=0.0841\right]$
Data/restraints $/$ parameters	$5033 / 234 / 422$
Goodness-of-fit on F^{2}	0.9157
Final R indexes $[I>2 \sigma(I)]$	$R_{1}=0.0661, \mathrm{w} R_{2}=0.1831$
Final R indexes $[$ all data $]$	$0.61 /-0.73$
Largest diff. peak/hole $/ \mathrm{e} \AA \AA^{-3}$	
	$R_{1}=0.0911, \mathrm{w} R_{2}=0.1935$

Table S9. Crystallographic Data for pm-MOP-NO ${ }_{2}$.

Identification code	pm-MOP-NO ${ }_{2}$
Empirical formula	$\mathrm{C}_{297} \mathrm{Cu}_{36} \mathrm{~N}_{36} \mathrm{O}_{252}$
Formula weight	6565.56
Temperature/K	100(2)
Crystal system	Trigonal
Space group	R-3
a / \AA	36.173(7)
b / \AA	36.173(7)
c / \AA	29.289(6)
$\alpha /{ }^{\circ}$	90
$\beta /{ }^{\circ}$	90
$\gamma /{ }^{\circ}$	120
Volume/ \AA^{3}	33190(11)
Z	2
$\rho_{\text {calc }} \mathrm{g} / \mathrm{cm}^{3}$	1.0397
μ / mm^{-1}	1.198
$F(000)$	10188.0
Radiation	Mo K $\alpha(\lambda=0.71073)$
2θ range for data collection $/{ }^{\circ}$	2.26 to 40
Index ranges	$-34 \leq \mathrm{h} \leq 34,-34 \leq \mathrm{k} \leq 34,-28 \leq 1 \leq 28$
Reflections collected	13020
Independent reflections	$6892\left[R_{\text {int }}=0.0633, R_{\text {sigma }}=0.1531\right]$
Data/restraints/parameters	6699/336/601
Goodness-of-fit on F^{2}	1.02
Final R indexes [$I>2 \sigma(I)]$	$R_{1}=0.0857, \mathrm{w} R_{2}=0.1988$
Final R indexes [all data]	$R_{1}=0.1442, \mathrm{w} R_{2}=0.2186$
Largest diff. peak/hole / e \AA^{-3}	1.23/-0.82

Table S10. Crystallographic Data for pm-MOP- CH_{3}.

Identification code	pm-MOP-CH3
Empirical formula	$\mathrm{C}_{36} \mathrm{Cu}_{4} \mathrm{O}_{20}$
Formula weight	1006.57
Temperature/K	100.0
Crystal system	Trigonal
Space group	R-3
a / \AA	35.660(3)
b / \AA	35.660(3)
c / \AA	30.219(3)
$\alpha{ }^{\circ}$	90
$\beta /{ }^{\circ}$	90
$\gamma /{ }^{\circ}$	120
Volume/ \AA^{3}	33279(5)
Z	18
$\rho_{\text {calc }} \mathrm{g} / \mathrm{cm}^{3}$	0.9040
μ / mm^{-1}	1.178
$F(000)$	8885.7
Radiation	Mo K $\alpha(\lambda=0.71073)$
2θ range for data collection $/{ }^{\circ}$	1.88 to 30.04
Index ranges	$-25 \leq \mathrm{h} \leq 12,0 \leq \mathrm{k} \leq 26,0 \leq 1 \leq 21$
Reflections collected	2974
Independent reflections	$2974\left[R_{\text {int }}=0.0000, R_{\text {sigma }}=0.0485\right]$
Data/restraints/parameters	2974/330/540
Goodness-of-fit on F^{2}	1.026
Final R indexes [$I>2 \sigma(I)]$	$\mathrm{R}_{1}=0.0713, \mathrm{wR}_{2}=0.1872$
Final R indexes [all data]	$\mathrm{R}_{1}=0.0921, \mathrm{wR}_{2}=0.2031$
Largest diff. peak/hole / e \AA^{-3}	0.89/-0.42

Table S11. Crystallographic Data for pm-MOP-NH2.

Identification code
Empirical formula
Formula weight
Temperature/K
Crystal system
Space group
a / \AA
b / \AA
c / \AA
$\alpha{ }^{\circ}$
$\beta{ }^{\circ}$
$\gamma /{ }^{\circ}$
Volume $/ \AA^{3}$
Z
$\rho_{\text {calc }} \mathrm{g} / \mathrm{cm}^{3}$
μ / mm^{-1}
$F(000)$
Radiation
2θ range for data collection $/{ }^{\circ}$
Index ranges
Reflections collected
Independent reflections
Data/restraints/parameters
Goodness-of-fit on F^{2}
Final R indexes $[I>2 \sigma(I)]$
Final R indexes [all data]
Largest diff. peak/hole / e \AA^{-3}
pm-MOP-NH2
$\mathrm{C}_{192} \mathrm{Cu}_{28} \mathrm{~N}_{24} \mathrm{O}_{132}$
6533.56

100(2)
Tetragonal
I4/mmm
26.217(2)
26.217(2)
44.813(5)

90
90
90
30801(5)
2
0.7044
0.987
6398.7

Mo K $\alpha(\lambda=0.71073)$
2.86 to 41.66
$-26 \leq \mathrm{h} \leq 13,-25 \leq \mathrm{k} \leq 24,-44 \leq 1 \leq 26$
33610
$4507\left[R_{\text {int }}=0.0630, R_{\text {sigma }}=0.0501\right]$
4507/69/235
0.979
$R_{1}=0.0967, \mathrm{w} R_{2}=0.2659$
$R_{1}=0.1303, \mathrm{w} R_{2}=0.2954$
1.69/-0.58

References

[1] Wu, X.; Liang, G.; Ji, G.; Fun, H.-K.; He, L.; Gong, B. Chem. Commun. 2012, 48, 2228.
[2] Chen, T.-H.; Schneemann, A.; Fischer, R. A.; Cohen, S. M. Dalton Trans. 2016, 45, 3063.
[3] Eddaoudi, M.; Kim, J.; Wachter, J. B.; Chae, H. K.; O’Keeffe, M.; Yaghi, O. M. J. Am. Chem. Soc. 2001, 123, 4368.
[4] Zou, R.-Q.; Sakurai, H.; Han, S.; Zhong, R.-Q.; Xu, Q. J. Am. Chem. Soc. 2007, 129, 8402.
[5] Xiao, H.-P.; Li, X.-H.; Morsali, A.; Wang, J.-G.; Zhang, W.-B. Z. Anorg. Allg. Chem. 2007, 633, 1107.
[6] Prestipino, C.; Regli, L.; Vitillo, J. G.; Bonino, F.; Damin, A.; Lamberti, C.; Zecchina, A.; Solari, P. L.; Kongshaug, K. O.; Bordiga S. Chem. Mater. 2006, 18, 1337.
[7] Tan, K.; Nijem, N.; Canepa, P.; Gong, Q.; Li, J.; Thonhauser, T.; Chabal, Y. J. Chem. Mater. 2012, 23, 3153.
[8] Jehlička, J.; Edwards, H. G. M.; Culka A. Phil. Trans. R. Soc. A. 2010, 368, 3109.
[9] Arenas, J. F.; Marcos, J. I. Spectrochim. Acta A 1980, 36, 1075.
[10] Prystupa, D. A.; Anderson, A.; Torrie, B. H. J. Raman Spectrosc. 1994, 25,175.
[11] Laposa, J. D. Spectrochim. Acta A 1979, 35, 66.
[12] Shlyapochnikov, V. A.; Khaikin, L. S.; Grikina, O. E.; Bock, C. W.; Vilkov, L. V. J. Mol. Struct. 1994, 326, 1.
[13] Xie, Y.; Boggs, J. E. J. Comput. Chem. 1986, 7, 158.

[^0]: * To whom correspondence should be addressed. E-mail: scohen@ucsd.edu

