Supporting Information for:

Cation Dependant Carbonate Speciation and the Effect of Water

Greg A. Mutch¹, Sara Morandi^{2,3}, Rebecca Walker¹, James A. Anderson¹, David Vega-Maza¹, Lorenza Operti^{2,3}, Giuseppina Cerrato^{2,3*}

¹ Materials and Chemical Engineering Group, School of Engineering, Fraser Noble Building, King's College, University of Aberdeen, Aberdeen, AB24 3UE (UK).
² Department of Chemistry & NIS Interdept. Centre, University of Torino, via P. Giuria, 7 – 10125 Torino (Italy).

³ Consorzio INSTM, UdR Torino, via G. Giusti, 9 - 50121 Firenze (Italy).

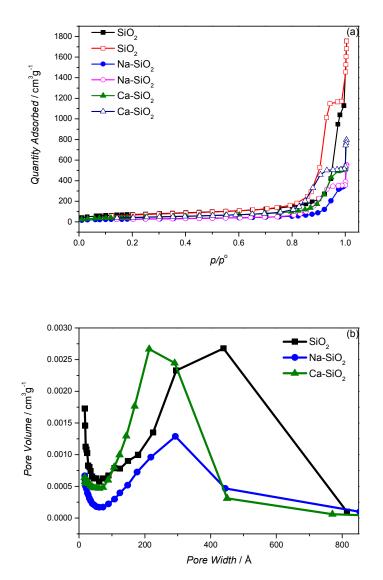
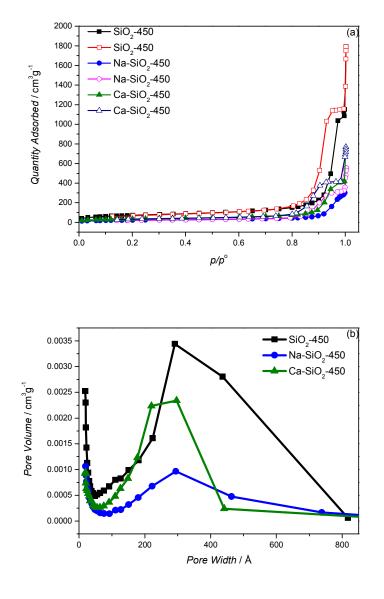



Figure S1 - (a) N₂ adsorption-desorption isotherms and (b) pore size distribution plots of SiO₂, Na-SiO₂ and Ca-SiO₂ as prepared. Isotherms are of Type IV classification and exhibit H1 hysteresis loops, indicating that the parent material is mesoporous, a feature preserved following doping. A shift to smaller pore width values is evidenced upon doping, with a decrease in total pore volume more evident for Na-SiO₂.

Figure S2 - (a) N₂ adsorption-desorption isotherms and (b) pore size distribution plots of SiO₂, Na-SiO₂ and Ca-SiO₂ after calcination. Isotherms are of Type IV classification and exhibit H1 hysteresis loops, indicating that upon calcination the material is mesoporous. A general loss in pore volume is evidenced across a wide range of pore values as compared to Figure S1.

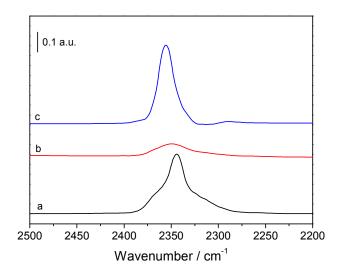


Figure S3 – FTIR spectra in the 2500-2200 region relative to v_3 mode of molecular (physi)sorbed CO₂. Curves a-b-c refers to plain SiO₂, Na-SiO₂ and Ca-SiO₂, respectively, after thermal treatment at 400 °C *in vacuo*.

Calculation of surface coverage after cation-exchange

Concentration of surface hydroxyl groups taken -4.6 and 4.9 OH nm⁻² for least-squares and arithmetical mean respectively.

Water treated silica surface area = 252 m² g⁻¹

Considering the surface area and the concentration of OH groups on the surface, there will be 1.16×10^{21} and 1.23×10^{21} surface hydroxyl groups per gram of SiO₂.

Considering the EDX results for Na-SiO₂ determining a value of 4.85 wt% Na⁺, this equates to 1.27 x 10^{21} atoms (2.11 mmol) of Na per gram of Na-SiO₂.

Considering the EDX results for Ca-SiO₂ determining a value of 4.16 wt% Ca²⁺, this equates to 6.25 x 10^{20} atoms (1.04 mmol) of Ca per gram of Ca-SiO₂.

Given the concentration of OH groups, the amount of available Na^+ ions and an assumption of direct exchange of one H⁺ for each Na^+ it can be determined that the surface coverage is 109.6 and 102.9 % for least-squares and arithmetical mean OH concentration respectively.

Given the concentration of OH groups, the amount of available Ca^{2+} ions and an assumption of direct exchange of two H⁺ for each Ca^{2+} it can be determined that the surface coverage is 107.9 and 101.2 % for least-squares and arithmetical mean OH concentration respectively.

Coverage (θ) is defined as the amount of adsorption sites (OH) occupied by adsorbate ions (Na/Ca), expressed as a percentage of available surface sites based on the assumed concentrations for amorphous silica above.