
 

 

Supporting Information 

 

Umbrella sampling with path integrals 

In the path-integral method, trace averages over the quantum density matrix are obtained 

from discretising a closed-loop path in which each of the discretised segments can be 

thought of as a replica of the classical system, connected to its neighbours by a harmonic 

spring term which acts between each atom and its neighbour in next and previous replica.  

The total system comprising all the replicas may then be described by an effective 

classical Hamiltonian, which in the PIMD algorithm is sampled via standard constant 

temperature molecular dynamics. 

Fortunately, it is relatively simple to adapt PIMD to umbrella sampling.  In our 

implementation, the reaction coordinate becomes a function of the centroid of each atom’s 

path, where the centroid is defined to be the geometrical centre of that atom’s coordinates 

across all replicas.  The resulting free-energy profiles then correspond to the free energy 

of moving the centre of the two H centroids in a tagged H2 molecule between two cages.  

For those who require it, this will be described in more mathematical detail in the following 

section. 

To gauge the accuracy of the path-integral calculations we examined the convergence of 

the free energy curves with respect to the number of replicas used.  Fig. S1 shows path-

integral calculations of the free energy curve for the quadruple occupation case, with the 

barrier heights plotted in Fig. S2.  Results are shown for 1, 2, 4 and 8 replicas, where 1 

replicas is identical to the classical calculation. 

The free energy curve converges quite rapidly with the number of replicas, with there 

being no statistically significant difference in the barrier height between 4 and 8 replicas.  

This may seem surprising given that typically, path-integral simulations of water require in 

the regions of tens of replicas for accurate energy convergence at around 200K. However, 

there is no contradiction; the barrier energy simply converges faster than the bulk energy. 

 

Path-integral calculations 
 

In this section, we describe the path-integral calculations in more mathematical detail. 

 



 

 

In the path-integral method, the P-replica approximation to the quantum partition function 

is given by (e.g. see the treatment of Smith 1)  

  

 

where P is the number of replicas, β0 = β / P is an effective inverse temperature and ΦPIMD 

is the path-integral effective potential-energy surface. ΦPIMD is a function of 3NP 

coordinates, P being the number of replicas of the system and N the number of nuclei in 

each replica. The above integral is carried out over all 3NP coordinates with rp being the 

coordinates of the pth replica, having 3N components. 

The path-integral effective potential-energy surface is given by the sum of the potential 

energies of each replica and a sum over quadratic spring terms which connect the same 

atom in neighbouring replicas along a path. 

 

 

 

where rp,i is the coordinate of the ith atom in the pth replica,  r-1,i = rp-1,i such that the path 

forms a closed loop, and κi is a mass and temperature dependent spring constant given by  

 

 

 

Formulation in normal-mode coordinates 

It Is convenient to convert the spring term to normal-mode coordinates.  Working with 

one particle moving in the x direction and setting κ = 1, we first recast the quadratic term in 

terms of a matrix product, 

 

 

where 

 

and M is a matrix of dimension P×P elements, with non-zero elements given by  



 

 

 

 

where it is assumed that M0,j = MP,j and Mi,0= Mi,P. 

It is then possible to perform a unitary transformation which diagonalises M, i.e. a unitary 

matrix U can be chosen such that UMU† is diagonal.  Then  

 

 

where q = Ux, and λp are the eigenvalues forming the (real) diagonal elements of UMU†. 

It can be shown that the particular unitary matrix which diagonalises M is given by  

 

 

with eigenvalues given by  

 

so the transform is equivalent to a Fourier expansion of x, with q being the normal modes 

of the ring.   

It is somewhat inconvenient to work with a complex valued unitary transform.  

Fortunately, it is not too difficult to convert to a real valued orthogonal transformation. We 

begin by noting that if e is an eigenvector of M, then if e* ≠ e, then e* must also be a  

separate linearly independent eigenvector with the same eigenvalue.  Indeed, it is simple 

to show that the eigenvectors and their complex conjugates are paired according to 

 

with associated eigenvalues  

 

Taking the sum and difference of each pair gives us a new set of this time real-valued 

linearly independent eigenvectors.  For P being odd: 

 

 

 



 

 

 

 

 

with associated eigenvalues 

 

 

When P is even, the above is slightly modified to include 

 

 

The resulting matrix is orthogonal, obeying OOT= I, and OMOT is diagonal and defining 

real-valued normal mode coordinates s from s = O x, we have  

 

 

The effective potential-energy surface in normal-mode coordinates is then given by  

 

 

where si,k is the coordinate of the kth normal mode on the ith particle, being a Cartesian 

vector with x, y and z components, and mi,k is the mass of that mode. 

In the path-integral molecular-dynamics method, the effective potential-energy surface is 

augmented by a kinetic energy term to form an effective, or de facto, Hamiltonian. The 

kinetic term does not have any physical meaning per se, but it is necessary in order to 

derive an equation of motion for the particles so that the averages can be evaluated via 

constant-temperature molecular dynamics. In normal-mode coordinates, the effective 

Hamiltonian is given by  

 

 

where pi,m and m,m  are the momentum and mass of the mth normal mode of the ith particle.   

The masses may be chosen freely, but it is usual to give the 0th mode the full particle mass 



 

 

and the higher-modes masses which oscillate at frequencies in the range of the normal 

modes of the classical system.  

 

Free-energy calculations using the centroid coordinate 

The s0
 normal mode coordinate is proportional to the centroid of the path, being the 

average position of all the replicas of a particle. We have 

 

 

and so 

  

 

 

Thus, the zeroth normal mode which has a zero eigenvalue corresponds to the centroid 

coordinate, whereas the other normal modes describe fluctuations in the path. 

Returning now to the problem of calculating the free-energy profile of moving a hydrogen 

molecule when quantum nuclear effects are included, we observe that since each particle 

no longer has a definite position, it is no longer possible to attach the umbrella spring to a 

particular nuclear coordinate, or any function of nuclear coordinates. However, we can use 

the centroids, and so, for our calculation we attach the spring to the midpoint of the 

centroids of the two hydrogen nuclei. Although the path-integral centroids do not have an 

obvious physical interpretation, the resulting free-energy barriers will give the total free-

energy barrier, including quantal corrections, for moving the hydrogen molecule between 

the cages. 

This free-energy is given by 

where ℘PIMD is given by  

 

  



 

 

Adapting the path-integral technique to our umbrella-sampling method is then achieved by 

simply augmenting the path-integral effective Hamiltonian by the umbrella-biasing potential 

 

 

where, as in the classical case, � is the reaction coordinate, which is given by 

 

 

with l1 and l2 being the distances of the hydrogen-molecule centre to each of the two cage-

centres in a cage-pair, with the H-molecule centre being taken as the centre of the two 

centroid coordinates of the nuclei in the tagged H-molecule. Note that this means the 

reaction coordinate a function of the s0 path coordinates only.  



 

 

Table S1. 
 

  

� (H2O), Å    3.1589 

ε (H2O), kJ/mol    0.7749 

� (H2), Å    3.038 

ε (H2), kJ/mol    0.2852 

qH (H2O), Coulombs    0.5564  e 

qM  (H2O), Coulombs    -1.1128 e 

qH  (H2), Coulombs    0.4932 e 

qM  (H2), Coulombs    -0.9864 e 

kHH, (H2), kJ / mol Å-2    3475.0 

rHH (H2), Å    0.7417 

γ (H2O)    0.264 

 
 
The Lennard Jones interactions are of the form: 

 
 

 
where r is the inter-nuclear separation, and the following combining rules are used:    
 
 
 
 
 
 
The H2O LJ interaction site is positioned on each water molecules’ O site, whereas the H2 LJ 
molecule interaction site is positioned on the midpoint between the two H nuclei on each molecule. 
 
Each water molecule has a positive charge, qH, on each H atom, with a charge of -2qH positioned 
on a massless ‘M-site’, given by  
 
 
 
Similarly, there is a negative charge placed on the midpoint of each neutral hydrogen molecule. 
 
The intramolecular H2 potential energy surface is given by  
 
 
 
  



 

 

Fig S1. 
 
Path-integral free-energy curves for the quadruple occupation case for 1, 2, 4 and 8 replicas, with 1 
replica being the classical free-energy curve. 
 
  



 

 

Fig S2. 
 
Convergence of the path-integral barrier height for the quadruple occupation case as a function of 
the number of replicas.  The calculated error in each value is ~0.1 kJ/mol.  
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