Low Temperature Chemical Synthesis of CoWO₄ Nanospheres for Sensitive Non-Enzymatic Glucose Sensor

Mani Sivakumar[†], Rajesh Madhu^{†,‡}, Shen-Ming Chen^{†,*} Vediyappan Veeramani[†], Arumugam Manikandan[¥], Wei Hsuan Hung⁺⁺, Nobuyoshi Miyamoto[‡], and Yu-Lun Chueh^{¥,*}

[†] Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei 10608, Taiwan, R.O.C

^{*}Department of Materials Science & Engineering, National Tsing-Hua University, Hsinchu 30013, Taiwan, R.O.C

[‡] Department of Life, Environment, and Materials Science, Fukuoka Institute of Technology, 3-30-1, Wajirohigashi, Higashiku, Fukuoka 811-0295, Japan.

⁺⁺Department of Materials Science and Engineering, Feng Chia University, Taichung 407, Taiwan, R.O.C

* E-mail: smchen78@ms15.hinet.net and ylchueh@mx.nthu.edu.tw

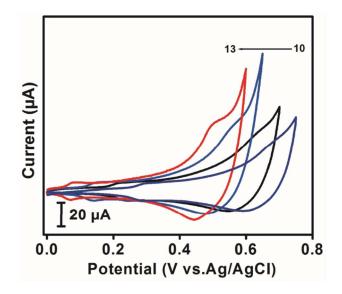
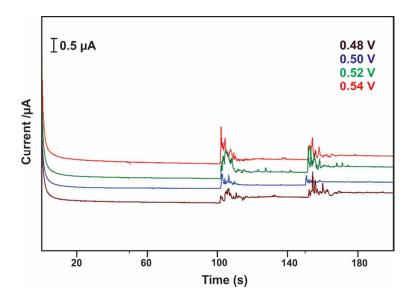
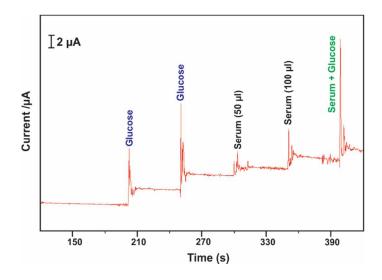




Figure S1 CV curves of CoWO₄-2 modified electrodes in the presence of 290 μ M glucose with different pH values.

Figure S2 Amperometry curves for the CoWO₄-2 modified GCE with different applied potentials in the presence of glucose concentration. Supporting electrolyte: 0.5 M NaOH aqueous solution; applied potential: 0.52 V.

Figure S3 Real sample analysis for the CoWO₄-2 modified GCE with glucose (blue), serum (black) and glucose + serum (green) samples. Supporting electrolyte: 0.5 M NaOH aqueous solution; applied potential: 0.52 V.

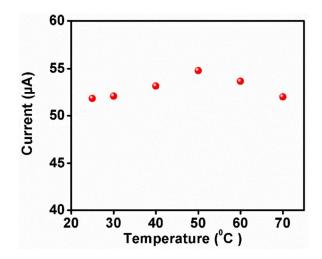


Figure S4 The peak current *vs* temperature for CoWO₄-2 modified GCE in the presence glucose.