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MODEL AND SYSTEM SETUP

We considered solutions of rigid templates of semi-circular, semi-elliptical and helical

shapes composed of touching hard spheres, or beads, of diameter σ, see Figs. 1a, 3a and 4a.

The model parameters are analogous to those used in the study of self-assembly knots of

ref. [1]. Excluded volume effects are accounted for by a Weeks-Chandler-Anderson repulsive

potential acting between pairs of hard spheres belonging to different templates:
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where d is the beads distance, ε is the system energy unit, κhs =150 is the interaction

strength and θ(x) is the Heaviside function that takes on the values 1 or 0 for x greater or

smaller than 0, respectively.

The template termini are functionalised with patchy particles whose centers are placed

at the inersection of the template centerline with the exposed surface of the terminal beads.

Patchy particles interact one to another via the attractive potential:

Up(d) = −ε κp exp
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where κp =25 and σp =0.1σ are the magnitude and spatial range of the attractive interaction,

respectively. The positioning and size of the patchy particles favours the collinear binding

of templates[1].

The system was initialised by placing randomly N =500 non-overlapping templates inside

square slits of height H and side L. The slit is periodic in the x and y (unbound) directions

and the impenetrability of the slit walls (parallel to the xy Cartesian plane, see Fig. 1b) is

enforced by the same potential of eq. 1, where d is the distance along the z axis of the beads

and the slit.

For the three cases, we considered monodispersed solutions with the following properties:

(i) N = 500 semi-circular templates of diameter 2r (taken as the unit of length), bead

thickness σ = {1/16, 1/8} placed inside slits of width H in the [0.5,10] range, and at solution

densities ρ ≡ N/(H · L2) = {1, 2}; (ii) N = 500 semi-elliptical templates with ellipticity

(long to short arms) ratio equal to χ = {1, 4, 9}, area equal to πr2/2 (again 2r is the unit of

length), bead thickness σ=1/16 placed inside slits of height H in the [0.5,8] range, and at

solution density ρ ≡ N/(H ·L2) = 1 ; (iii) helical templates projecting a circle of diameter 2r
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(taken as the unit length) with vertical span h and angular span α, bead thickness σ=1/8,

placed inside slits of width H/2r, in the [1,5] range as well as in bulk. The data in Fig. 5

pertain to a solution of N = 500 helical templates with h = 0.375 and α = 1.7π at density

ρ ≡ N/(H · L2) = 1. The representative links and computed probabilities where obtained

from systems of N = 250 unconstrained templates with h in the [0,0.75] range, α in the

[1.5π,2π] range and ρ in the [2,45] range.

DYNAMICAL EVOLUTION

The system was evolved with a Langevin dynamics and the system energy unit, ε was

set equal to the thermal energy KBT . The dynamics was integrated with the LAMMPS

numerical package[2] with standard parameters for the beads mass, m and friction coefficient,

γ, and integration time step equal to 0.012τLJ , with τLJ = σ
√
m/ε[3]. For each considered

combination of system parameters (template geometry, density, slit height) the dynamics

was followed over several independent runs, mostly from 20 to 200, and each run typically

lasting 2·107 integration time steps, which suffice to reach a stable concentration of closed

constructs for systems of this type[1].

TOPOLOGICAL PROFILING

Links were identified in two steps. First, each final configuration of the simulations

was analysed to identify the rings, i.e. those self-assembled constructs that closed over

themselves, and their knotted state based on the Alexander determinants [4]. The rare

system configurations featuring constructs propagating ”endlessly” through the bound-

ary conditions were discarded. Linked constructs were next identified by computing

the two-variable Alexander polynomial ∆(s, t) evaluated at different pair values (s, t) ∈

{(−1,−1); (2, 2); (2, 3); (3, 2); (3, 3)} for all pairs of rings. This topological invariant (see,

for instance [5] for a justification and [6] for details of the algorithm) can detect homotopy-

cally linked rings, and is more powerful than the linking number which detects the smaller

set of homological links [7]. Here, we also used it in conjunction with the knotted state of

each linked components, which was established from the single-variable Alexander determi-

nants calculated for each component. The matrix of pairwise homotopycal links is also used
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to identify multi-component links.

(a) (b)

Figure S 1: Relative incidence of non-trivial links with different number of components, nc, self-

assembled from the semi-circular templates of Fig. 1a and at density ρ = 1 and ρ = 2. Note that

the data are for the abundance of links and not for the number of involved rings (or templates)

which clearly increases with nc. Because of the simple geometry of the templates, every pair of

homotopically-linked rings in binary or multi-components links has the Hopf topology.
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Figure S 2: Linking probability versus slit height for a system of 1000 infinitely thin circular rings

at (ring) density ρ = 0.1 (the rings diameter is taken as the unit of length). The linking probability

was computed over 104 samples independently generated by randomly placing the rings in the slit

and discarding the samples where the rings intersect the boundaries. Notice that the circular rings

are pre-formed by construction, and are not self-assembled. The linking probabilities at weak and

strong slit confinement are well fitted by the indicated functions based on the arguments presented

in the main manuscript.
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(a) (b)

Figure S 3: Relative incidence of non-trivial links with different number of components, nc, self-

assembled from the semi-elliptical templates of Fig. 3 and at density ρ = 1 and χ = 4 and χ = 9.

Note that the data are for the abundance of links and not for the number of involved rings (or

templates) which clearly increases with nc. Because of the simple geometry of the templates, every

pair of homotopically-linked rings in binary or multi-components links has the Hopf topology.
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Figure S 4: Effect of template thickness, σ, on the linking probability of 1000 confined elliptical

templates at (ring) density ρ = 1. The templates geometry is the same as in Fig. 3, but the

system samples (at least 104 for each data point) were generated starting from preformed (i.e.

not self-assembled) elliptical rings with the same stochastic procedures described in the caption of

Fig. S2 but complemented with the steric hindrance constraints on the rings. Except for very thin

rings, the increase of template thickness brings about a general decrease of the linking probability

due to the reduction of the area available for template intersection.

7



(a)

Figure S 5: (a) Relative incidence of non-trivial links with different number of components, nc,

self-assembled from the helical templates of Fig. 4 and at density ρ = 1. Note that the data are

for the abundance of links and not for the number of involved rings (or templates) which clearly

increases with nc.
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