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Figure S1. Determining the length of an Ets-1 binding site. (A) Schematic showing a site-size 

selection experiment, where a modified dideoxynucleotide extension procedure was used to 

generate a pool of truncated DNA duplexes differing in length from 12 to 41 base pairs. The 

starting 32P-labeled (*) DNA was based on the MSV LTR enhancer,1 and extension was 

randomly stopped upon incorporation of a dideoxynucleotide. The probes capable of binding 
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autoinhibited ΔN280 and uninhibited ΔN331 (lacking the SRR and N-terminal inhibitory helices) 

were selected from this pool in an electrophoretic gel mobility shift assay. (B) Autoradiography 

of a denaturing polyacrylamide gel used to size ΔN331-bound and unbound DNA molecules 

with single nucleotide resolution. Lane 1: the original pool of DNA; lane 2: the unbound 

fraction; lane 3: the ΔN331-bound fraction. Lanes 4 - 6 are replicates of the first experiment, 

with the additional step of treating the original pool of DNA with Mung Bean Nuclease to 

remove single stranded extensions. (C) The plotted relative affinities for each protein were 

calculated from the band intensities corresponding to duplex oligonucleotides of varying lengths 

versus that for the longest oligonucleotide. The core GGA is underlined and the optimal 13 - 14 

bp binding site is boxed. Uninhibited ΔN331 and autoinhibited ΔN280 exhibited the same DNA 

length dependence. These experiments were contributed by Qing Ping Xu and reproduced from 

Gillespie.2 
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Figure S2. Selection of the oligonucleotide for detailed studies of Ets-1 complexed with 

specific DNA. Shown are overlaid 15N-HSQC spectra of the following saturated complexes: 

ΔN301 with DNASP9 (1.5:1 DNA:protein ratio, yellow); ΔN301 with DNASP12 (1.5:1 ratio, red); 

and ΔN279 with DNASP14 (2:1 ratio, purple/green). Resolved aliased amide and arginine 15NεH+ 

signals from the ΔN279/DNASP14 complex (green) do not overlap with those from the other 

complexes due to differing 15N spectral widths. The spectra with DNASP12 and DNASP14 are most 

similar, whereas DNASP9 yielded slightly smaller chemical shift perturbations relative to the free 

protein (Figure 1B). Thus, DNASP12 was chosen as the optimal oligonucleotide that recapitulated 

the full complement of interactions with Ets-1, while also having a small size for favorable NMR 

spectroscopic behavior. Note also that the similarity of the dispersed signals of most amides in 

ΔN301 and ΔN279 indicates that the presence of the SRR does not perturb the structure of the 

bound complexes. The signals from amides in the unstructured SRR and the unfolded HI-1 and 

HI-2 are clustered around 8 - 8.5 ppm in the 1H dimension.  
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Figure S3. Selection of the oligonucleotide for detailed studies of Ets-1 complexed with non-

specific DNA. Shown are 15N-HSQC spectra of 15N-labeled ΔN301 alone (cyan) and in complex 

with the non-specific oligonucleotides DNANSP9 (3.3:1 DNA:protein ratio, purple), DNANSP12 

(5:1, blue), and DNANSP15 (3.8:1, orange) at 28 °C. The three lower panels are expanded views of 

selected regions. Fewer signals are detected with the DNANSP15 complex than the smaller 

DNANSP9 or DNANSP12 complexes. For example, signals from the indoles of W338 and W375, and 

the amides of Q419, L337 and Y386 are broadened beyond detection in the DNANSP15 complex, 

but are observed with DNANSP9 and DNANSP12. This is attributed in part to conformational 

exchange between multiple binding sites on the longer oligonucleotide. In support of this 
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argument, the complex of ΔN301 with the palindromic DNANSP12 yielded better quality spectra 

than with the other DNAs, possibly due to degenerate binding modes. However, the ΔN301 was 

13C-labeled and 70% deuterated for studies with DNANSP12, the latter of which also leads to 

sharper NMR signals.  

 It is difficult to estimate the stoichiometry, and hence molecular mass, of these non-

specific complexes due to the presence of multiple binding sites. At initial titration points with 

DNA:ΔN301 molar ratios < 1, an oligonucleotide molecule may be bound by more than one 

protein molecule. However, the end-point spectra presented here were recorded with 

DNA:ΔN301 molar ratios > 3 and thus the proteins appeared to be saturated and most likely 

bound via the canonical H3 interface to a single oligonucleotide (albeit with a statistical 

distribution of KD-weighted stoichiometries). In support of this argument, the 15N-HSQC spectra 

of the complexes did not change appreciably when the DNA:ΔN301 ratios were increased from  

~ 2 to ~ 3 (not shown). However, 15N relaxation studies (Figure S7) showed that the 1:5 

ΔN301:DNANSP12 complex had an effective 22 nsec correlation time for global tumbling, which is 

indicative of higher order oligomerization.  
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Figure S4. Assigned amide 15N-HSQC spectra of DNA-bound ΔN301. 15N-HSQC spectra of 

the saturated (A) specific DNASP12 complex (1.1:1 DNA:protein ratio) and (B) non-specific 

palindromic DNANSP12 complex (5:1 DNA:protein ratio) recorded on an 850 MHz spectrometer. 

Aliased backbone amide and indole and arginine sidechains signals are colored green and 

yellow, respectively. Samples were in 20 mM MES pH 6.5, 50 mM NaCl, 0.5 mM EDTA, 
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0.02% NaN3, 5 mM DTT and 5% D2O at 28 °C. Several isotopic labelling schemes (Material 

and Methods) in combination with conventional and TROSY-based experiments allowed the 

assignment of signals from at least three nuclei for ~ 94 % of the residues in the specific complex 

and 86 % for the non-specific complex. Most of the missing signals are from amides located in 

helices HI-1 and H1 and at the DNA-binding interface. 
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Figure S5. Although predominantly unfolded, residues corresponding to helices HI-1 and 

HI-2 undergo conformational exchange in both specific and non-specific complexes. Shown 

are 1H projections through a small 15N region of the 15N-HSQC spectra of the ΔN301/DNASP12 

complex recorded with 850 and 600 MHz NMR spectrometers. The signals (arrows) 

corresponding to Gly331 (at the C-terminus of HI-2) and Gly423 (at the interface between 

helices HI-1 and H4) are weak and their intensities decrease with increasing spectrometer field 

strength (see also Supplemental Figure S4). This is diagnostic of conformational exchange in the 

intermediate to fast exchange regime.3 Similar behavior was observed with non-specific DNA 

(not shown). Given that ΔN301 is fully saturated with DNASP12 or DNANSP12, we attribute this 

behavior to exchange of inhibitory module (HI-1 and HI-2) residues between unfolded and 

possible folded conformations within the context of the bound complexes. 
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Figure S6. Comparison of the magnitudes and signs of the ΔN301 amide chemical shift 

perturbations (CSPs) resulting from binding specific versus non-specific DNA. The 

histograms show the magnitudes and signs of the amide (A) 15N (ΔδN) and (B) 1HN (ΔδH) 

chemical shift changes in ΔN301 upon forming the specific DNASP12 (red) and non-specific 

DNANSP12 (blue) complexes. (C) The relative magnitudes and directions of the CSPs for each 

residue in the two complexes are also compared by a vector projection analysis (lower inset 

diagram).4 The green bars show the projections of the CSP vectors for the non-specific complex 

along the corresponding vectors for the specific complex. The cosines of the angles θ between 

the two vectors are given by the magenta dots. Shaded boxes indicate the primary residues 

involved in DNA binding. Blank values correspond to prolines or unassigned amides. 

 Residues associated with helices HI-1, HI-2 and those in the helices onto which they pack 

(H1/H4/H5), exhibit projection values ~ 1 and cos(θ) ~ 1. This pattern indicates that their 

corresponding amide 15N and 1HN signals shift in the same direction, with a similar magnitude, 

upon binding DNANSP12 relative to DNASP12. This is further evidence that HI-1 and HI-2 unfold 

upon binding either DNA oligonucleotide. As seen in Figure 1B (assignments in Figure S4), a 

second subset of peaks shows amide 15N and 1H signals that shift in the same direction (cos(θ) ~ 

1), but with a magnitude < 1, upon binding non-specific versus specific DNA. Many of these 

residues are located in helix H1 (e.g., Leu337), the wHTH turn, and the N-terminal portion of the 

recognition helix H3 (e.g., Tyr386 and Ser390), which is on the edge of the DNA binding motif. 

This indicates that ΔN301 forms generally similar, albeit less well-defined, time-averaged 

interactions with DNANSP12 that DNASP12. Such interactions likely involve electrostatic contacts 

between the positively charged DNA-binding interface of the ETS domain and the negatively 

charged phosphodiester backbone of DNA, rather than base-specific hydrogen bonds. In 
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addition, smaller net CSPs could arise due to averaging of potential positive and negative 

chemical shift changes as the protein rapidly exchanges between binding sites along DNANSP12. 

As also seen in Figure 1B, a third subset of amides, such as Gly392, Arg394, Tyr397 and Ala406 

located in helices H2, H3 and strand S3, show distinctly different patterns of chemical shift 

changes (including changing in opposite directions, cos(θ) ~ -1, and hence yielding negative 

projection values). This indicates that these regions of ΔN301 interact differently with specific 

and non-specific DNA. These differences likely reflect the formation of base-specific hydrogen-

bonding contacts with the 5'GGA(A/T)3' motif in DNASP12 that are absent in the looser non-

specific DNA complex.  Collectively, these analyses support the conclusion that Ets-1 binds non-

specific and specific DNA by a similar canonical interface of the ETS domain.  
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Figure S7. Amide longitudinal (R1) and transverse (R2) relaxation of ΔN301 bound to 

specific and non-specific DNA. Amide 15N R1 (upper) and R2 (lower) relaxation rate constants 

for ΔN301 in the saturated specific DNASP12 complex (1.1:1 DNA:protein ratio; left, red) and 

non-specific DNANSP12 complex (5:1 DNA:protein ratio; right, blue). Samples were in 20 mM 

MES pH 6.5, 50 mM NaCl, 0.5 mM EDTA, 0.02% NaN3, 5 mM DTT and 5% D2O and the data 

were recorded at 31 °C using a 500 MHz spectrometer. Decreasing R1 and increasing R2 values 

reflect slower motion of the 1HN-15N bond vector.3,5 and analysis of these data for well-ordered 

ETS domain residues yielded global tumbling correlation times of 12.3 nsec and 22.0 nsec for 

the DNASP12 and DNANSP12 complexes, respectively. Fitting to an anisotropic rotational diffusion 

tensors with modeled structure of the Ets-1/DNA complex did not change these results. The 
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correlation times demonstrate that ΔN301 forms a 1:1 complex with DNASP12 and higher order 

oligomers with DNANSP12. Consistent with the 1H{15N}-NOE data of Figure 5, the faster R1 and 

slower R2 relaxation of amides within the N-terminal IM confirm that helices HI-1 and HI-2 are 

unfolded in the presence of either DNA. 
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Figure S8. The presence of the SRR does not change the DNA-binding interface or 

dynamics of Ets-1 bound to specific DNA. (A) Overlaid 15N-HSQC spectra of the saturated 
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(red/pink) ΔN301/DNASP12 (1.1:1 DNA:protein ratio) and (black/orange) ΔN279/DNASP12 (2:1 

DNA:protein ratio) complexes. Aliased signals are in pink or orange, respectively. (B) Chemical 

shift perturbations observed upon binding specific DNA by ΔN279 and ΔN301. (C) 

Heteronuclear 1H{15N}-NOE observed in both complexes at 31 °C using a 500 MHz 

spectrometer. Histogram bars with values below -1.0 have been clipped. Samples were in 20 mM 

MES pH 6.5, 50 mM NaCl, 0.5 mM EDTA, 0.02% NaN3, 5 mM DTT and 5% D2O. With the 

exception of the additional signals from the disordered SRR residues (with random coil 1HN 

chemical shifts near 8 - 8.5 ppm), the two complexes show very similar spectra, CSPs, and 

relaxation behavior. 
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Figure S9. Characterizing the interactions of ΔN301 arginine sidechains with DNA. 

Selected 15N-HSQC spectral regions showing 15NεH+ (~ 85 ppm) and 15NηH2
+ (~ 70 ppm) signals 

from the arginine guanidinium moieties of ΔN301 when (A) free, (B) bound to non-specific 

DNANSP12, and (C) bound to specific DNASP12 (pH 6.5 and 13 oC). Due HX and/or rotation about 

the Nε-Cζ and Cζ-Nη partial double bonds,6 only broad 15NηH2
+ signals are seen with free and 

DNANSP12-bound ΔN301. In contrast, when bound to DNASP12, at least three arginines yielded 

sharper, dispersed 15NηH2
+

 signals that are non-degenerate (connected by horizontal lines) due to 

restricted rotation within the guanidinium moiety. This likely arises from hydrogen bonding of 

the arginine sidechains with DNANSP12. 
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