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1. Trajectory simulation  

Monte Carlo transition simulation. All simulations are carried out with a Dell Optiplex 9020 desktop computer 

equipped with an Intel i7 3.4 GHz CPU, 8 GB memory, and MATLAB 2014b with the Curve Fitting Toolbox. 

The MATLAB codes for the simulations have been included in a separate file. 

 

 The FRET trajectories are simulated with Monte Carlo method using several parameters. The key parameters 

include the number of states, FRET values of the states, transition rate constants between any states (a matrix), 

emission intensities, number of molecules, dye bleaching lifetime, simulation step time, binning time, etc. A few 

of these are listed in Figure S1, including the number of states, N, the transition rate constant between the state i 

and j, kij, and the FRET values. The code is written in such a way that one can easily change any of the parameters 

to generate time trajectories for any number of states and any rate constant matrix. If a transition is irreversible, 

its back-transition rate can be set to 0. The molecule is assigned to have an initial state, e.g. state 1, and its 

statistical transition probability is calculated based on the sum of all rate constants from state 1:1  

𝒑𝟏 = 𝟏 − 𝒆− ∑ 𝒌𝟏𝒊∆𝒕𝑵
𝒊=𝟐    (1) 

where Δt is the simulation time resolution in second. If the molecule is confirmed to change states at a certain 

step, the transition probabilities to each state p2, p3, … pN are set to be proportional to the corresponding rate 

constant.1  

𝒑𝟏𝒊 =
𝒌𝟏𝒊

∑ 𝒌𝟏𝒋
𝒋=𝑵
𝒋=𝟏

    (2) 

where p1i is the probability of transferring to the ith state, k1i and k1j is the rate constant of  state 1 to state i and j 

respectively, k11 and p11 is set to 0 for convenience (𝒌𝒊𝒊 ≡  𝟎 and 𝒑𝒊𝒊 ≡  𝟎 do not have physical meanings).  

 Thus, one or two random numbers are used to determine whether each data point stays with its original value 

or changes to one of the other values in the next data point. For example, if the current data point is at state 1, and 

if the first random number r1 (between 0 to 1) is 𝒓𝟏 ≤ 𝒑𝟏, then the next data point will be a state different than 

state 1.  Another random number r2 (between 0 to 1) is generate and is compared to an N-element vector 𝑽𝒑(𝒋) =

∑ 𝒑𝟏𝒊
𝒊=𝒋
𝒊=𝟏 , where j is a vector {1,2,3...N}. Thus, N state gives an N×N transition probability matrix. The range 

where r2 locate in this vector determines its final state, e.g. if 𝑽𝒑(𝟐) ≤ 𝒓𝟐 ≤ 𝑽𝒑(3), then the new state will be 

state 3. The simulation stops when the trajectory reaches the desired simulation time (dye bleaching time). After 

the simulation, the states are assigned to the FRET values. Then donor and acceptor photon counts are calculated 

for each FRET data point and binned into new trajectories. Redefine the probability matrix to add the 

probabilities of staying unchanged (set to 𝒑𝒊𝒊 ≡  𝟎 now) will allow determining the states using one random 

number. 

 

 

 
Figure S1. Input parameters for the Monte Carlo simulation. Assuming transitions happen between any two of the N states, all 

the transition rate constants kij >= 0 (s-1), with 0 equivalent to transition forbidden. An N×N rate constant matrix is initialized. 

State FRET values Si are assigned to the ith state after simulation.  

 

 Molecules and photobleaching. Multiple molecules (e.g. 100) are simulated to mimic common experiments, 

with each dye-pair having a bleaching time that is exponentially distributed around the average value of the 

bleaching lifetime (typically set to 5 s). The initial state of each molecule is randomly distributed based on the 

ratio of the state lifetime over the sum of the lifetimes of all states, i.e. the equilibrium concentrations of the 

states. These 100 molecules are then combined into a single trajectory. The trajectory length of each molecule is 

stored so that the information can be used to exclude the first and the last state-transitions of every molecule. This 

exclusion is to avoid the edge effect of each trajectory (starting and stopping observation during the lifetime of a 
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state) and is performed after the state identification. Trajectories that have fewer than 2 transitions will thus be 

excluded from transition analysis, but they will still contribute to the state identification. 

 

 Binning the data. Each state is then split into donor and acceptor channels, with total photon counts set to be 

20 at step time 1 ms. Noise is not considered in this work. The photon counts of the two channels are then binned. 

The binned FRET value is calculated from the binned photon counts of the two channels:2  

FRET = IA/(IA+ID)  (3) 

where ID and IA are the respective fluorescence intensities of the donor and acceptor molecules respectively.  

 

2. Data analysis 

Any of the established packages can be used to analyze the data. But for a fast demonstration, we wrote our own 

code to analyze the simulated noise-free smFRET trajectories. The accuracy of this rate constant analysis is the 

same as the established software package when dealing with noise free or low noise (signal-to-noise ratio >10) 

trajectories, with <5% deviation from HaMMy or SMART for non-binned or binned data (see below for details). 

Because our codes make use of the known FRET values, it is ultrafast for rate constant analysis. The detailed 

method is explained in the next few parts. 

 

 State identification. The nearest state assignment via a thresholding algorithm is adapted in this study. 

Briefly, if the number of states and the FRET values of the states are known, while the dwell times are not known, 

the data on the time trajectory can be assigned simply to its nearest state. For example, for 2 states at FRET values 

0.9 and 0.1 with a 0.8 gap, 0.4 will be assigned to state 0.1, and 0.6 will be assigned to state 0.9. This state 

assignment method is extremely fast, and it is suitable to analyze data with no or relatively small noise to gap 

ratio. 

 

 One-point-data state reassignment. The method has been explained in vbFRET.3 This option is switchable 

in postFRET but it should be consistent in both experimental data analysis and postFRET analysis. For a 

trajectory with slow transitions, the camera blurring effect can be corrected by reassigning any state that lasts only 

one data point,3 e.g. if state A jumps to state B then to state C, and state B lasts only one data point, then merge 

state B into state A or C. Thus the questionable transition AB is now relatively more reliably reassigned to AC and 

questionable transition BC is removed.  

 

 Rate constants analysis. Once the states are identified, the next step is to determine the rate constant for each 

transition. The dwell-times of transitions from one state to other states are summarized in histograms (Figure S2). 

For each transition, the lifetime of the initial state (before transfer to another state) can be easily calculated by the 

average dwell-time (model-free) or fit the histograms with a first order exponential decay function (first order 

reactions as simulated). However, it is not trivial to obtain rate constants from these lifetimes, because knf ≠ 1/τnf, 

where knf is the rate constant from state n to state f. The fitted decay time constants in Figure S2, for well-

behaved distributions of single exponential decays, are rather the combination of multiple rate constants from 

each state Sn to all other states Sj based on the nature of parallel reactions:1,4–6 

𝝉𝒏𝒇 =
𝟏

∑ 𝒌𝒏𝒋
𝒋=𝑵
𝒋=𝟏

        (4) 

where τnf is the observed lifetime of state Sn that is transferring to state Sf, knj is the true rate constant of the 

transfer from state Sn to Sj, and N is the total number of states. This equation means that the transitions from a 

given state to all other states have the same time decay constant, even though the rate constants and the 

probabilities of these transitions are very different. For example in Figure S2, lifetimes from State 1 to 2 and state 

1 to 3 are 0.64 s and 0.71 s respectively. Both are close to 1/(0.5+1) = 0.67 s. This confirms that our Monte Carlo 

simulation function works as expected. Only for a one-in and one-out situation such as two-state transition, this 

equation can be simplified to k12 = 1/τ12, and k21 = 1/τ21. 
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Figure S2. Scheme of summarizing state transitions. (A) The dwell times of the transitions are recorded (molecules are 

combined with alternative blue and red colors, a small Poisson noise added), e.g. t1 is a transition from state S3 to state S2 with 

dwell-time t1 for molecule #1; t3 is a transition from state 2 to state 1 for molecule #2. (B) Simulation conditions with rate 

constants showed, 100 molecules, bleaching lifetime 5 s; total time ~460 s; time step 1 ms; binning time 10 ms; and FRET 

values 0.9, 0.5, and 0.1. (C) The dwell times are then summarized as a modified reverse cumulative distribution histograms of 

occurrence counts, e.g. t1 and t2 contribute to two occurrence counts of the transition from state S3 to S2 in their dwell time 

ranges. The modification is made to remove the constant cumulative probability between two adjacent discrete dwell times as 

shown by the gaps between the bars. This modification reduces the importance of the long dwell time data points during fitting 

comparing to regular cumulative distribution. Because first-order reactions are simulated, the distribution of these histograms 

exponentially decays over the dwell time, y = Ae-x/τ. The lifetime of each transition is the average dwell time of the histogram, 

which is represented by the decay constant τ; and the total occurrence is the y-intercept which is represented by the pre-

exponential factor A. Note: the last 2% counts on the longer dwell time side (tail) are excluded from the fitting because of its 

statistical insignificance (rare events, represented by the lower density bars near the tails). 
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Figure S3. Scheme of counting the transition number for two-state transitions. The dwell times are summed to 2 subtotal of 

times (Nnf and Nfn) for the two states Sn and Sf. The probability of each state is the subtotal time over total experimental time 

ttotal. The number of transitions is then counted. 

   

 We then connect the smFRET trajectories to macroscopic ensemble results using simple chemical-kinetic 

arguments. The fraction of each state in the ensemble is linearly proportional to the probability of observing this 

state in single-molecule experiments, which is given by the ratio of the dwell time of this state over the sum of the 

dwell times of all states, i.e., the effective total experimental time (Figure S3).  

𝑷𝒏 =
𝒕𝒏

𝒕𝒕𝒐𝒕𝒂𝒍
=

∑ 𝒕𝒏𝒇
𝒇=𝑵
𝒇=𝟏

𝒕𝒕𝒐𝒕𝒂𝒍
    (5) 

where tnf is the dwell-time for transition events from the state Sn to Sf. Because these parallel transitions have been 

assumed to be first order reactions, the overall rate of each state is equal to 

𝒓𝒏 =
𝒅𝑷𝒏

𝒅𝒕
= − ∑ 𝒌𝒏𝒇

𝒇=𝑵
𝒇=𝟏 𝑷𝒏   (6) 

where knf is the rate constant of the transition from state Sn to one of the final states Sf. By the rate constant 

definition, the overall rate of each state is the number of transitions per time scale: 

𝒓𝒏 =
𝒅𝑷𝒏

𝒅𝒕
= −

𝑵𝒏

𝒕𝒕𝒐𝒕𝒂𝒍
= −

∑ 𝑵𝒏𝒇
𝒇=𝑵
𝒇=𝟏

𝒕𝒕𝒐𝒕𝒂𝒍
   (7) 

where Nn is the number of transition events from state Sn to all other four states, Nnf is the number of transition 

events from state Sn to Sf.  

 From Equation 4 to Equation 7, one obtains 

∑ 𝒌𝒏𝒇
𝒇=𝑵
𝒇=𝟏 ≡

𝟏

𝝉𝒏𝒊
=

𝑵𝒏

𝒕𝒏
=

∑ 𝑵𝒏𝒇
𝒇=𝑵
𝒇=𝟏

∑ 𝒕𝒏𝒇
𝒇=𝑵
𝒇=𝟏

   (8) 

 

 For parallel first order reactions, the probability of the transitions always obeys 

𝒌𝒏𝒊

𝒌𝒏𝒋
=

𝑵𝒏𝒊

𝑵𝒏𝒋
     (9) 

where n represents the initial state and i or j represents one of the final states. From Equation 8 and 9, the rate 

constant from state Sn to any other state Sf is 

𝒌𝒏𝒇 =
𝑵𝒏𝒇

∑ 𝒕𝒏𝒇
𝒇=𝒏
𝒇=𝟏

=
𝑵𝒏𝒇

𝒕𝒏
    (10) 

 Equation 10 is a reasonable result because the rate constant of each transition Sn to Sf is just the frequency of 

the transitions within the effective subtotal observation time for the state of Sn. Using Equation 10, any individual 

transition rate constant knf can be evaluated from the simulated data. 

 

The same Equation 10 can be obtained with another simple argument based on the ergodic principle. It is worth 

noting that the ergodicity of an individual molecule is broken due to the limited time of each measurement.7 

Because a given single molecule is statistically the same as all other molecules in the simulation, we can assume 
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that the smFRET trajectory is a random combination of the steady-state FRET efficiencies of multiple molecules 

with each molecule occupying a very short duration time δt’. Thus, the time trajectory of one molecule is 

converted to many molecules that are measured at the same time. So the dwell time tn represents the total number 

of molecules Nn’ = tn/δt’ at state Sn. So by the ensemble definition, for a first order reaction, the transition rate 

from the state Sn to another state Sf is the number of molecules that transfer during the time δt’: 

𝒓𝒏𝒇 = −
𝑵𝒏𝒇

𝛅𝒕′ = −𝒌𝒏𝒇𝑵𝒏′   (11) 

 Substituting Nn’ = tn/δt’ into Equation 11 leads to Equation 10. The value tn/ttotal represents the equilibrium 

concentration of the state Sn in all molecules.  

 

 The fitting in Figure S2 is a method to obtain the average lifetimes of first order transitions. The concept in 

Equation 10 should be general to other conditions. Thus, the average dwell time is still provided in the analysis 

for less statistically significant data when the number of transitions is small and fitting is less reliable than 

averaging. The error of such a treatment, however, has to be statistically evaluated with multiple simulations. 

With Equation 10, it becomes simple to calculate the rate constants of the transitions in Figure S2:   

𝒌𝒏𝒇 =  
𝑨𝒏𝒇

∑ 𝑨𝒏𝒇𝝉𝒏𝒇
𝒇=𝑵
𝒇=𝟏

    (12) 

where A and τ are the fitting parameters shown in Figure S2, representing the number and the lifetime of the 

transitions respectively. 

   

3. Comparing our rate-constant analysis code with established software packages 

The performance of the MATLAB code for rate constant analysis is compared to HaMMy and vbFRET for both 

non-binned trajectories and binned trajectories. The average error on rate constants (the weighted L1 norm 

explained in the main text) wL1AT scores have been listed in Table S1. The relatively small values and variations 

(<5%, highlighted in red) between the different methods confirm that both our trajectory simulation codes and the 

rate constant analysis codes work as designed. For the binned trajectory, larger variation is observed for different 

method due to camera blurring and the different state identification method employed.  

 The exponential decay fitting used in our method does correct some of the false transitions with very short 

dwell time. For example, in Figure S2C, the distributions from state 2 to state 1 and 3 have many false transitions 

that have a dwell time of just one data point. These transitions will be excluded by the fitting to bring down the 

number of transitions. However, for a false transition that has a longer dwell time and at the end of which a false 

state is assigned, this method is not able to correct it. Thus, the overall performance of our method is at the same 

level of those used in the other software packages that take the average dwell time of all transitions as the lifetime 

with no corrections on the number of transitions. 

 For a smFRET trajectory with relatively slow transition rate, the one-point-data reassigned method of our 

code works as well as that in vbFRET-C (Table S2). Both methods are able to reduce the average error on rate 

constants wL1AT <10%. 

 

Table S1. An example of simulated smFRET trajectory analyzed by different methods for rate constants. 

  Preset values HaMMy vbFRET Our codes 

  1 2 3 1 2 3 1 2 3 1 2 3 

Not binned 

(true) 

1  15a 25  14 26  14 26  15 25 

2 5  30 5  32 5  29 5  31 

3 10 20  10 21  10 20  10 19  

wL1AT N/A 3.7% 2.3% 1.3% 

Binnedb 

1     18 11  17 2  18 14 

2    9  27 13  41 11  37 

3    4 15  1 12  3 13  

wL1AT  42% 72% 52% 
aRate constants unit in s-1. True trajectory simulated at 1 ms time resolution. bTen data points binned into one, resulting a time resolution 10 

ms. 
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Table S2. A simulated trajectory analyzed with different software packages. 

 True valuesa HaMMy SMART vbFRET vbFRET-C 

Our codes with 

one-point-data 

reassigned 

 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 

1  1.63 2.64  2.6 1.2  2.6 1.2  0.3 3.8  1.7 2.4  1.6 2.8 

2 0.46  2.96 0.9  4.3 0.9  4.1 0.1  4.0 0.5  2.9 0.5  2.9 

3 0.95 1.99  0.5 2.9  0.5 3.0  1.3 3.7  0.9 1.8  0.9 1.9  

wL1AT N/A 61% 60% 60% 8% 5% 
aResults of non-binned data analyzed by vbFRET. Ten 1 ms data points binned into one 10 ms data point. 

 

4. Mimicking the camera blurring effect 

Selecting the simulation time resolution. How many data points should be binned to simulate the camera blurring 

effect?  A few simulations (Table S3) indicate that two data point binned into one is enough to simulate the 

camera blurring effect for this set of rate constants. We choose 1 ms time resolution for all the rest simulations, 

which simulates the true transition point within each data point at 1/10 accuracy of the experimental time 

resolution, which is set to 10 ms. We speculate that transitions faster than this resolution will be unobservable 

during an experiment with a typical signal-to-noise ratio.   

 

 

Table S3.The effect of simulation step resolution on rate constant analysis (binning time 10 ms).  

 Preset values 
10 ms (no 

binning)a 
5 ms (2 in 1) 1 ms (10 in 1) 0.5 ms (20 in 1) 0.05 ms (200 in 1) 

 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 

1  15 25  15 25  16 13  17 13  18 12  18c 12 

2 5  30 5  30 11  42 11  39 11  38 10  38 

3 10 20  10 20  4 14  4 15  3 15  4 15  

wL1AT N/A 0%b 52% 48% 51% 48% 
aThe smFRET trajectories are simulated at given step resolution and then binned into 10 ms for each data point; total length 500 s; FRET 

values 0.9, 0.5, and 0.1; results are averages of 5 simulations. bThe score is the rate constants analyzed from the binned trajectories 

referenced to the results from the non-binned trajectories which are ±1% of the preset values. cThe standard deviation of each rate constant 

is <6% of its value. 

 

 

 

5. Estimate the desired simulation length in postFRET 

Use a given experimental rate constants as the initial guess to generate simulated smFRET trajectories at a 

different length (Figure S4). For each length, five simulations are carried out to obtain the standard deviations on 

the final rate constants from this set of initial guess. The fractions of the standard deviations to the resulting rate 

constants are taken as an estimation of the variation of the simulations.  

 

 The longer the trajectory length, the better the confidence level for the obtained rate constant with a 

computational time proportional to the trajectory length. A length that gives a variation within 3% to 10% is taken 

in this report. Thus, when using the simulated results to compare with the experimental results, the confidence on 

the simulation is roughly expected at the same level.  
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Figure S4. The standard deviation of five simulations over the resulting rate constants with the initial guess shown in the 

inset. The y-axis is the average values of the error bars for the six rate constants. The x-axis is the length of the smFRET 

trajectories for the simulations. FRET states 0.9, 0.4, and 0.1. 

 

 

 

6. The converging rate of postFRET simulations 

The curve of wL1SE scores vs the iteration numbers reflects the converging rate of the example postFRET 

simulations. Note that this wL1AT score is the guessed rate constants references to the true rate constant values. 

While in the postFRET simulation the wL1SE score is the analyzed results of simulated trajectories vs the analyzed 

results of the experimental trajectory.  

 

 The results (Figure S5) indicates that postFRET quickly reached a wL1 score of <5% within 3 iterations (red 

curve), which gives guesses of ~10% off the true values (blue curve). Then the wL1 scores vary around 4±1% 

(red curve). Post-analysis shows that the guesses vary around the true values with a standard deviation of ~2% 

(blue curve). Thus, we conclude that the converging rate of this example postFRET simulation is 3 iterations.  

 

 

 

 
Figure S5. The converging rate of an example postFRET simulation. Red data show the wL1SE scores between the 

simulated postFRET trajectories and the simulated experimental trajectories. Blue data show the wL1AT scores between 

the best guess and the true values. The inset shows the true values in the wL1AT calculation. Simulation length of each 

trajectory is 1500 s. FRET states 0.9, 0.4, and 0.1. 

 

7. Estimate the errors in postFRET simulations 

We hypothesize that the average error bar of the guesses will estimate the error of postFRET analysis. The actual 

relationship, however, requires comprehensive study in the future. This hypothesis is consistent with the 
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simulation results (Table S4). For Monte Carlo simulated experimental data whose true rate constants are known, 

it is obvious that the uncertainty level of the results is 7% (Table S4). Assuming the true values are unknown, 

Table S4 shows an estimated error ~6% from the standard deviations of several iterations. This value is 

consistent with our hypothesis. However, the accuracy of this estimation is subjected to the number of 

simulations and the accuracy of each Monte Carlo simulation.  

 

Table S4. Estimated errors in postFRET of main text table 1. 

 Preset true values Our codes postFRET 

 1 2 3 1 2 3 

1  15 25  14.9±1.3a 27.3±1.0 

2 5  30 5.8±0.4  28.1±2.0 

3 10 20  9.5±0.2 19.1±1.2  

Average error bar N/A 6% 

wL1AT N/A 7% 
aThe error bar is the standard deviation of the guessing rate constant of the 5-10 iterations of the simulation (Figure S5), which gives an 

error bar 1.3/14.9 = 8.7%. 

 

 

8. Sequential-reaction model 

For a sequential reaction model instead of a network transition model (Figure S6 inset), when the kinetics is fast 

enough, the existing methods have difficulties in analyzing the true rate constants. At simulation length 1000 s, 

~5% standard deviations for 5 simulations (Figure S6), postFRET is able to mimic the trajectories and find 

acceptable matches at wL1AT ~ 2% (Table S5).  

 

 

 

Figure S6. The standard deviation of ten simulations over the resulting rate constants with the preset values shown in the 

inset. Trajectories simulated at 1 ms time resolution and then binned at 10 ms. Transitions between state S1 and S3 are 

forbidden and the rate constants are set to 0 in the matrix. FRET states 0.9, 0.5, and 0.1. 
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Table S5. Data analysis results for a three-state smFRET trajectory (each trajectory length 1000 s). 

 Preset values Our code one-step 
Our code one-data-point 

removed one-step 

 1 2 3 1 2 3 1 2 3 

1  20 0a  18.7 2.7  18.1 9.6 

2 10  50 8.4  37.1 7.5  30.4 

3 0a 30  0.7 22.2  2.0 21.2  

wL1AT N/A 19% 29% 

 vbFRET vbFRET-C 
Our code two-step 

postFRET 

1  12.4 0.05  11.7 3.3  20.6 0.01 

2 9.4  39.2 8.6  34.6 9.7  50.0 

3 0.01 10.7  0.7 9.9  0.03 29.9  

wL1AT 32% 38% 2% 
aThe highlighted transitions are forbidden and the rate constant is set to zero. The wL1AT calculation excludes these rate constants. 

 

9. A four-state trajectory 

An experimental trajectory with preset rate constants shown in Table S6 is simulated and analyzed by vbFRET 

and postFRET. A trajectory length of 1000 s is adapted during postFRET simulation. The standard deviation of 

the rate constants obtained with the initial guess is ~5% in this case (Figure S7). The wL1AT score for postFRET 

is 8%.  

 

Table S6. Data analysis results for a four-state smFRET trajectory (1000 s). 

 Preset vbFRET vbFRET-C 

 1 2 3 4 1 2 3 4 1 2 3 4 

1  15 15 15a  11.5 0.9 0.8  7.6 8.3 7.2 

2 15  15 15 34.7  34.7 33.1 11.1  12.8 12.1 

3 15 15  15 0.9 11.9  2.1 11.8 12.6  11.2 

4 15 15 15  0.9 11.3 2.0  7.1 8.1 7.4  

wL1AT N/A 83% 35% 

  Our codesb postFRETc 

     1 2 3 4 1 2 3 4 

1      16.4 7.7 3.6  17.5 14.0 15.1 

2     26.7  22.7 13.9 14.4  15.6 14.2 

3     13.3 21.3  24.3 15.5 11.4  14.8 

4     4.1 8.5 14.2  13.1 16.9 16.1  

wL1AT  42% 8% 
aHighlighting one rate constant in different methods. bOne-point-data reassignment option OFF. cResults are the averages of 5 simulations, 

each length is 1000 s. 

 

 

 
Figure S7. The standard deviation of five simulations over the resulting rate constants with the initial guess shown in the 

inset. FRET states are set to 0.8, 0.6, 0.4, and 0.2. 

 

10. A “whack-a-mole” like searching algorithm 

An experimental trajectory with four random FRET states and random rate constants is generated to further test 

the postFRET method (Table S7 True).  
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 A “whack-a-mole” like optimization algorithm (WAM) is adapted for this search, which is also suitable for 

other searches of more complicated systems shown later. The transition contributing the biggest to the wL1SE are 

identified, and an optimization of this rate constant is carried out to find the minimum wL1SE score. Because this 

algorithm alone may have difficulty to overcome local minimums and be locked in a few transitions during 

searching for a complicated model, an addition selection rule of simulated annealing is applied to the scanning. 

Because the outer transitions e.g. 1 to 4 or 4 to 1 are affected more by the camera blurring effect, the searching 

frequency is favorably applied to these transitions. The weight is set to abs(i-j) for a transition i to j, meaning 

transition 1 to 4 is three times more likely to be searched than transition 1 to 2. First, the transition giving the 

biggest error is identified. Then the searching engine will decide that there is an e-E/Δn probability of adding an 

addition scan, where E is set to 4 and Δn is the normalized difference between the scanning history of the most 

frequently scanned and the least scanned transitions. If a random number generated is less or equal to the 

probability, a scan is carried out for the least scanned transition. 

 

 The experimental results are still used as the initial guess of the search which gives a set of rate constants that 

is ~35% off the experimental results (wL1SE score).The WAM searching procedure going on and wL1SE dropped 

to ~6% after 100 scans (Figure S8). The averages and standard deviations of this 100 scans are listed in Table S7. 

All averages are within the true values plus or minus one to three standard deviations except for the two 

transitions with substantially small rate constants than the others (highlighted), which is within 3.5 times the 

standard deviation. However, the right equilibrium constant between these two states is guessed. 

 

 

Table S7. Data analysis results for a four-state smFRET trajectory (1000 s). 

 Truea vbFRET 

 1 2 3 4 1 2 3 4 

1  1.3b 8.5 15.2  0.1 11.1 1.2 

2 0.4b  14.1 6.8 0.0  7.8 0.5 

3 13.4 19.3  2.6 22.9 30.9  20.4 

4 12.6 18.3 7.7  1.1 1.2 13.1  

wL1AT N/A 112%c 

 vbFRET-C postFRET 

 1 2 3 4 1 2 3 4 

1  7.7 0.6 8.8  4.8±1.0 7.7±0.9 14.1±0.8 

2 12.8  24.8 11.1 1.5±0.4  14.9±1.0 8.0±0.8 

3 0.9 16.0  0.2 11.6±0.9 16.9±1.2  2. 5±0.4 

4 7.8 13.7 0.6  12.7±0.6 18.7±0.9 7.1±0.4  

wL1AT 53%c 6%c 
aFRET state 0.98, 0.88, 0.60, and 0.43. Highlighting one rate constant in different methods. bThese two rate constants are excluded from 

the final wL1AT calculation because they are statistically rare during the 1000 s simulation. They contain larger errors than the others. cThe 

value does not include the contributions of the highlighted transitions. 

 

 

 

 
Figure S8. The wL1SE score history of a postFRET-WAM searching. The inset shows the times of the rate constants being 

searched. 
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11. A five-state trajectory 

The preset values of the simulated experimental trajectory are listed in Table S8. vbFRET and vbFRET-C give 

analysis results contain 104% and 47% average errors. postFRET is able to reduce the error to 9%. The 

simulation length of postFRET is 500 s for each trajectory which is estimated to give an average variation ~10% 

for the rate constant analysis (Figure S9).  

 

 The sequential scanning method used in the three-state and four-state system requires very long time 

computation to work with the five-state system (a few days). While the WAM scanning algorithm reduces the 

searching to a few hours. The search optimizes the rate constants to acceptable values (Figure S10). Note that for 

such a complicated system, the one-point-data reassigned method is useful to reduce the time cost during 

searching. 

 
Table S8. Data analysis results for a five-state smFRET trajectory (each trajectory length 500 s). 

 Preset vbFRET 

 1 2 3 4 5 1 2 3 4 5 

1  10 10 10 10  14.0 1.4 3.8 0.8 

2 10  2 10 10 21.7  10.9 14.3 7.1 

3 10 10  10 10 1.6 10.3  9.8 1.6 

4 5 10 10  1 5.5 13.2 16.0  17.3 

5 10 10 10 0a  0.8 4.2 1.6 10.1  

wL1AT N/A 104% 

 vbFRET-C postFRET 

1  5.9 5.4 6.8 5.4  9.1 10.0 9.4 10.7 

2 7.8  4.3 10.1 8.2 10.4  3.4 8.8 8.6 

3 4.8 6.1  6.6 5.1 9.2 9.2  11.4 9.8 

4 6.9 10.3 9.4  3.8 5.4 10.8 9.1  0.6 

5 5.5 6.7 5.1 2.6  10.7 12.4 7.9 0.02  

wL1AT 47% 9% 

aThe transition from State 4 to 5 is forbidden (k45 = 0 s-1 and the lifetime is infinity) and its rate constant is excluded from the wL1AT 

calculation. However since the analyzed rate constant is not zero for this transition (highlighted), it is still included in the wL1SE calculation 

of postFRET and the final guess is highlighted to approaching the true value zero. Rate constants have relatively larger deviation than 

others to the true values are highlighted (>20%). 

 

 

Figure S9. The standard deviation of five simulations over the resulting rate constants with the preset values in the inset. 

FRET states are set to 0.9, 0.7, 0.5, 0.3, and 0.1. 
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Figure S10. The wL1 score history of a “whack-a-mole” like search. The threshold is set to 6%. One-point-data-

reassignment option is ON for experimental and simulated trajectories. 

 

12. A six-state trajectory  

For a system such complicated and with camera blurring effect (Figure S11), the best fitting results from vbFRET 

are not consistent with the real FRET states. HaMMy is able to fit the trajectory in six states relatively close 

(Table S9). This fitting yields a wL1AT score 41%. Our code with the one-point-data reassigned option turned ON 

yields a set of rate constants with the wL1AT score 23% (Table S9). The postFRET method with WAM searching 

mode and a searching trajectory length of 10000 s (~3% confidence, Figure S11), is able to correct the rate 

constants to wL1AT score 9% (Table S9). Note that for such a complicated system, the one-point-data reassigned 

method is critical during the search, and searching one by one works faster than WAM search.  

   

 

 
Figure S11. The standard deviation of five simulations over the resulting rate constants with the preset values in the inset. 

FRET states are set to 0.95, 0.8, 0.65, 0.5, 0.35, and 0.2. 
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Table S9. Data analysis results for a six-state smFRET trajectory.  

 Preset HaMMY 

 1 2 3 4 5 6 1 2 3 4 5 6 

1  10 10 10 10 10  11.1 6.6 3.9 3.1 1.9 

2 10  10 10 10 10 15.3  13.6 9.6 5.9 3.9 

3 10 10  10 10 10 11.0 15.1  15.4 10.7 6.0 

4 10 10 10  10 10 5.6 11.1 15.5  15.5 10.8 

5 10 10 10 10  10 3.7 5.8 9.4 13.8  14.6 

6 10 10 10 10 10  1.9 2.8 4.1 7.1 11.3  

wL1AT N/A 41% 

 
One-point-data reassigned 

(our codes) 
postFRETa 

1  6.2 6.9 6.1 7.3 5.4  10.1 7.2 9.0 10.8 9.9 

2 8.4  10.3 7.3 7.2 8.1 10.8  11.7 8.5 11.1 7.7 

3 8.4 11.3  11.7 9.9 8.3 9.5 10.8  10.8 10.6 8.7 

4 9.0 8.9 11.5  9.6 9.5 10.7 10.1 9.7  9.8 10.4 

5 7.2 7.1 8.0 9.1  8.0 8.9 9.7 10.6 12.7  10.4 

6 5.7 6.5 5.9 6.9 6.2  9.5 8.2 10.7 8.9 9.5  

wL1AT 23% 9% 

aEach trajectory length 10000 s, one-point-data reassigned option is ON, WAM searching is OFF, and searching goal wL1SE is set to 3.5%. 

Rate constants with relative large deviation from true values (>20%) are highlighted. 

 

13. A two-state trajectory  

For a two-state system, if one transition has the lifetime equals to the experimental time resolution, 63% of its 

dwell times will last shorter than one-data-point. These dwell times lose their information during the 

measurements, making the rate constant very difficult to be extracted from such a trajectory. It reaches the 

limitation of the information one has obtained.  An example trajectory is shown in Figure 3 in the main text with 

the lifetime of one transition the same as and the other twice the time resolution 10 ms.  

 

 Indeed, when forcing the HaMMy to a 2-state model, the software identified two states with FRET values 

averaged by the blurring to 0.82 and 0.24 instead of the true values 0.9 and 0.1 respectively. The wL1AT score is 

56% (Table S10). Other one-step analysis methods yield different results, but all have relatively large errors. The 

2-step method postFRET is able to reduce the score to 1%.  

 

Table S10. Data analysis results for the two-state smFRET trajectory (each trajectory length 500 s). 

 Preset values HaMMya vbFRET-Cb Our code one-stepc postFRETc 

 1 2 1 2 1 2 1 2 1 2  

1  100  46  38  73.2  99.7±1.8 

2 50  21  28  25.0  49.4±1.3  

wL1AT N/A 56% 53% 38% 1% 
aForce 2-state. States are identified to be FRET = 0.82 and 0.24. bForce 2-state. States are identified to be FRET = 0.90 and 0.45. cForce 2-

state, and FRET = 0.9 and 0.1. 
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