Direct Formation of Oxocarbenium Ions under Weakly Acidic Conditions: Catalytic Enantioselective Oxa-Pictet-Spengler Reactions

Chenfei Zhao, Shawn B. Chen and Daniel Seidel*
Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854, United States

Supporting Information

Table of Contents

I. General information..S2
II. Reaction optimization ..S3

Evaluation of other anion binding catalysts ..S3
Evaluation of other amine salts ..S5
III. Mechanistic studies ..S6

Evaluation of pyridinium salts with different pKa values ...S6
Nonlinear effects study ...S6
IV. Synthesis of catalysts ..S7
V. Preparation and characterization data of products ...S11
VI. HPLC profiles of products ..S17
VII. NMR spectra ...S33
VIII. References ..S93

I. General information:

Reagents and solvents were purchased from commercial sources and were purified by distillation or recrystallization prior to use. Toluene was freshly distilled from sodium under nitrogen prior to use. Reactions were run under a nitrogen atmosphere. Purification of reaction products was carried out by flash column chromatography using EM Reagent silica gel 60 (230-400 mesh). Analytical thin layer chromatography was performed on EM Reagent 0.25 mm silica gel $60 \mathrm{~F}_{254}$ plates. Visualization was accomplished with UV light, and potassium permanganate or Dragendorff-Munier stains, followed by heating. Melting points were recorded on a Thomas Hoover capillary melting point apparatus and are uncorrected. Infrared spectra were recorded on an ATI Mattson Genesis Series FT-Infrared spectrophotometer. Proton nuclear magnetic resonance spectra ($\left.{ }^{1} \mathrm{H}-\mathrm{NMR}\right)$ were recorded on a Varian VNMRS-500 MHz instrument and are reported in ppm using solvent as an internal standard (CDCl_{3} at $7.26 \mathrm{ppm},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}$ at $2.50 \mathrm{ppm}, \mathrm{CD}_{3} \mathrm{OD}$ at 3.31 ppm$)$. Data are reported as app $=$ apparent, $\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{dd}=$ doublet of doublets, ddd = doublet of doublet of doublets, dddd = doublet of doublet of doublet of doublets, $\mathrm{m}=$ multiplet, comp = complex; integration; coupling constant(s) in Hz . Proton-decoupled carbon nuclear magnetic resonance spectra (${ }^{13} \mathrm{C}$-NMR) were recorded on a Varian VNMRS-500 MHz instrument and are reported in ppm using solvent as an internal standard $\left(\mathrm{CDCl}_{3}\right.$ at $77.16 \mathrm{ppm},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}$ at $39.52 \mathrm{ppm}, \mathrm{CD}_{3} \mathrm{OD}$ at 49.00 ppm$)$. Mass spectra were recorded on a Finnigan LCQ-DUO mass spectrometer. HPLC analysis was carried out on an Agilent 1100 series instrument with auto sampler and multiple wavelength detectors. Optical rotations were measured using a 1 mL cell with a 1 dm path length on a Jasco $\mathrm{P}-2000$ polarimeter at 589 nm and at $20^{\circ} \mathrm{C}$. Compounds $\mathbf{1 c},{ }^{1} \mathbf{1 d},{ }^{2} \mathbf{1 i},{ }^{3} \mathbf{2 a},{ }^{4}$ $\mathbf{2 b},{ }^{5} \mathbf{2 c},{ }^{6} \mathbf{2 d},{ }^{7} \mathbf{2 e} \mathbf{e}^{8}$ were prepared according to reported procedures.

II. Reaction optimization

Evaluation of other anion binding catalysts

Evaluation of other amine salts

III. Mechanistic studies

Evaluation of pyridinium salts with different $\mathbf{p} \boldsymbol{K}_{\mathbf{a}}$ values ${ }^{9-12}$

To a flame dried vial was added the pyridine derivative ($0.0275 \mathrm{mmol}, 11 \mathrm{~mol} \%$), thiourea catalyst $\mathbf{2 a}$ $(16 \mathrm{mg}, 0.025 \mathrm{mmol}, 10 \mathrm{~mol} \%)$, tryptophol ($40 \mathrm{mg}, 0.25 \mathrm{mmol}, 1$ equiv), $4 \AA \mathrm{MS}(100 \mathrm{mg})$ and dry toluene $(2.5 \mathrm{~mL}, 0.1 \mathrm{M})$. The resulting mixture was stirred under nitrogen and $\mathrm{HCl}(10 \mathrm{~mol} \%, 3.5 \mathrm{M}$ in dioxane) was added followed by benzaldehyde ($30 \mu \mathrm{~L}, 0.3 \mathrm{mmol}, 1.2$ equiv). The reaction was stirred for 24 hours before being quenched with triethylamine $(40 \mu \mathrm{~L})$. The resulting mixture was directly purified by flash chromatography on silica gel topped with Celite.
(10 mol\%), PhCHO (1.2 equiv)

Nonlinear effects study

Following general procedure \mathbf{C} for the enantioselective oxa-Pictet-Spengler reaction (see below), the reaction was set up using catalyst $\mathbf{2 l}$ with $0 \%, 20 \%, 40 \%, 60 \%, 80 \%,>99 \%$ ee at room temperature.

IV. Synthesis of catalysts

General procedure A for the synthesis of amine salts

To a solution of the corresponding amine ($5.33 \mathrm{mmol}, 1$ equiv) in diethyl ether ($10.7 \mathrm{~mL}, 0.5 \mathrm{M}$) was added HCl (4 M in dioxane, $1.33 \mathrm{~mL}, 5.33 \mathrm{mmol}, 1$ equiv) and the resulting mixture was stirred vigorously for 10 min . After filtration, the solid was washed with cold ($\sim 0{ }^{\circ} \mathrm{C}$) diethyl ether ($3 \times 5 \mathrm{~mL}$) and dried under vacuum to afford the amine salt.
(S)-2-(methoxycarbonyl)indolin-1-ium chloride (1d•HCl): Following general procedure A, 1d•HCl
 was obtained as a white solid in 95% yield; $m p=161-163{ }^{\circ} \mathrm{C} ; ~[\alpha]_{\mathrm{D}}{ }^{20}-73.2$ (c 0.5 , CHCl_{3}); IR (KBr) 3119, 3054, 2957, 2359, 1741, 1506, 1391, 1236, 1143, 1021, 860, $758,420 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right) \delta 10.61$ (br s, 3 H , contains water), 7.28 (app d, $J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.22(\operatorname{app} \mathrm{td}, J=7.8,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.17-7.05(\mathrm{comp}, 2 \mathrm{H})$, $4.78(\mathrm{dd}, J=9.8,6.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.73(\mathrm{~s}, 3 \mathrm{H}), 3.44(\mathrm{dd}, J=16.2,9.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.28(\mathrm{dd}, J=16.2,6.9 \mathrm{~Hz}$, $1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 MHz, $\left.\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right) \delta 170.56,141.63,131.11,127.96,125.25,125.02,115.68,58.98$, 52.78, 32.73; m/z (ESI-MS) $178.1[\mathrm{M}-\mathrm{Cl}]^{+}$.
(2S)-2-(methoxycarbonyl)-1-methylindolin-1-ium chloride $\mathbf{(1 i} \cdot \mathbf{H C l}):$ Following general procedure \mathbf{A},
 $\mathbf{1 i} \cdot \mathbf{H C l}$ was obtained as a white solid in 70% yield; $\mathrm{mp}=101-103{ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{20}-58.3$ (c $0.5, \mathrm{MeOH}) ; \mathrm{IR}(\mathrm{KBr}) 3400,2904,1738,1486,1428,1368,1343,1251,1128,995$, $825,803,763,605,513,428 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right) \delta 9.83$ (br s, 2 H , contains water), 7.07-6.93 (comp, 2H), $6.60(\operatorname{app~td}, J=7.4,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.49(\operatorname{app} \mathrm{~d}$, $J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.14(\mathrm{dd}, J=10.1,8.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.69(\mathrm{~s}, 3 \mathrm{H}), 3.30(\mathrm{dd}, J=16.0,10.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.98(\mathrm{dd}$, $J=15.9,8.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.75(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.125 \mathrm{MHz},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right) \delta 172.52,151.98,127.57,126.89$, $123.89,117.67,106.67,66.72,51.90,34.39,32.75 ; \mathrm{m} / \mathrm{z}(\mathrm{ESI}-\mathrm{MS}) 192.1[\mathrm{M}-\mathrm{Cl}]^{+}$.
(S)-2-(methoxycarbonyl)indolin-1-ium bromide (1d•HBr): Following general procedure \mathbf{A}, except for
 using HBr (48% in water), $\mathbf{1 d} \cdot \mathbf{H B r}$ was obtained as a white solid in 77% yield; $\mathrm{mp}=$ $172-174{ }^{\circ} \mathrm{C} ; \quad[\alpha]_{\mathrm{D}}{ }^{20}-50.7$ (c $\left.0.5, \mathrm{MeOH}\right) ;$ IR (KBr) 3092, 3054, 2997, 2954, 2587, 2514, 1738, 1503, 1378, 1348, 1231, 1020, 860, $753 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (500 MHz , $\left.\mathrm{CD}_{3} \mathrm{OD}\right) 7.54-7.49(\mathrm{comp}, 3 \mathrm{H}), 7.49-7.44(\mathrm{~m}, 1 \mathrm{H}), 5.13(\mathrm{dd}, J=9.5,7.3 \mathrm{~Hz}, 1 \mathrm{H})$, $3.91(\mathrm{~s}, 3 \mathrm{H}), 3.73(\mathrm{dd}, J=16.5,9.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.54(\mathrm{dd}, J=16.3,7.3 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 MHz , $\left.\mathrm{CD}_{3} \mathrm{OD}\right) \delta 169.91,136.81,134.85,131.27,130.04,127.32,120.19,61.28,54.18,33.93 ; \mathrm{m} / \mathrm{z}$ (ESI-MS) $178.2[\mathrm{M}-\mathrm{Br}]^{+}$.
(S)-2-(methoxycarbonyl)indolin-1-ium iodide ($\mathbf{1 d} \cdot \mathbf{H I}$): Following general procedure A, except for
 using HI (57% in water), $\mathbf{1 d} \cdot \mathbf{H I}$ was obtained as a yellow solid in 87% yield; $\mathrm{mp}=$ $145-147{ }^{\circ} \mathrm{C} ; \quad[\alpha]_{\mathrm{D}}{ }^{20}-39.8$ (c 0.5, MeOH); IR (KBr) 3417, 3379, 2942, 2914, 2464, $1756,1428,1351,1283,1246,1208,1161,1001,763 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (500 MHz , $\left.\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right) \delta 7.14(\operatorname{appd}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.07(\operatorname{app~td}, J=7.8,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.86-$ 6.78 (comp, 2H), 6.50 (br s, 4H, contains water), 4.60 (dd, $J=10.2,6.4 \mathrm{~Hz}, 1 \mathrm{H}$), 3.70 (s, 3H), 3.37 (dd, J $=16.2,10.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.17(\mathrm{dd}, J=16.2,6.2 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(125 \mathrm{MHz},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right) \delta 172.51,146.54$, 128.44, 127.62, 124.66, 121.03, 111.73, 59.18, 52.34, 32.99; m/z (ESI-MS) 178.4 [M - I] ${ }^{+}$.

General procedure B for the synthesis of thiourea catalysts

To a solution of amino(thio)urea ${ }^{13,14}(0.39 \mathrm{mmol}, 1$ equiv) in dry THF ($3.9 \mathrm{~mL}, 0.1 \mathrm{M}$) was added o phenyl chlorothionoformate ($70 \mu \mathrm{~L}, 0.51 \mathrm{mmol}, 1.3$ equiv) and N, N-diisopropylethylamine ($68 \mu \mathrm{~L}, 0.39$ $\mathrm{mmol}, 1$ equiv). The resulting solution was stirred at room temperature for 1 h , followed by addition of the amine ($1.95 \mathrm{mmol}, 5$ equiv). The resulting mixture was stirred at room temperature for the indicated time. Subsequently, saturated aqueous $\mathrm{NaHCO}_{3}(10 \mathrm{~mL})$ was added and the mixture was extracted with EtOAc ($3 \times 10 \mathrm{~mL}$). The combined organic layers were washed with brine (10 mL), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and filtered. The resulting solution was then concentrated under reduced pressure and purified by flash chromatography on silica gel.
N-((1R,2R)-2-(3-(3,5-bis(trifluoromethyl)phenyl)thioureido)cyclohexyl)pyrrolidine-1-
 carbothioamide (2f): Following general procedure \mathbf{B}, the reaction was stirred at room temperature for 2 hours and $\mathbf{2 f}$ was isolated as a white solid in 88% yield; $\mathrm{mp}=171-173{ }^{\circ} \mathrm{C} ; \mathrm{R}_{\mathrm{f}}=0.30$ (Hexanes/EtOAc 70:30 v/v); $[\alpha]_{\mathrm{D}}{ }^{20}+68.2$ (c 0.5, CHCl_{3}); IR (KBr) 3246, 3048, 2938, 2861, 1545, 1385, $1277,1178,1132,971,885,681 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.56$ $(\mathrm{s}, 1 \mathrm{H}), 8.37(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 8.25(\mathrm{~s}, 2 \mathrm{H}), 7.57(\mathrm{~s}, 1 \mathrm{H}), 7.09(\mathrm{~d}, J=5.9$ $\mathrm{Hz}, 1 \mathrm{H}), 4.73-4.60(\mathrm{~m}, 1 \mathrm{H}), 4.07-3.82$ (comp, 2H), 3.65-3.42 (comp, 2H), 3.42-3.25 (m, 1H), 2.72-2.58 $(\mathrm{m}, 1 \mathrm{H}), 2.28-2.16(\mathrm{~m}, 1 \mathrm{H}), 2.13-1.72(\mathrm{comp}, 6 \mathrm{H}), 1.73-1.61(\mathrm{~m}, 1 \mathrm{H}), 1.51-1.37(\mathrm{~m}, 1 \mathrm{H}), 1.37-1.17$ (comp, 2H); ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 181.42,175.90,140.77,131.79\left(\mathrm{q}, J_{C-F}=33.5 \mathrm{~Hz}\right), 123.23(\mathrm{q}$, $\left.J_{C-F}=272.8 \mathrm{~Hz}\right), 122.25,117.62,62.38,56.43,52.58,48.57,32.77,32.74,26.03,25.07,24.77,24.54$; m / z (ESI-MS) $497.1[\mathrm{M}-\mathrm{H}]^{-}$.
\boldsymbol{N}-((1R,2R)-2-(3-(3,5-bis(trifluoromethyl)phenyl)ureido)cyclohexyl)pyrrolidine-1-carbothioamide

(2g): Following general procedure B, the reaction was stirred at room temperature for 2 hours and $\mathbf{2 g}$ was isolated as a white solid in 66% yield; $\mathrm{mp}>200{ }^{\circ} \mathrm{C} ; \quad \mathrm{R}_{\mathrm{f}}=0.28\left(\right.$ Hexanes $/$ EtOAc 70:30 v/v); $[\alpha]_{\mathrm{D}}{ }^{20}+31.9(\mathrm{c} 0.5$, CHCl_{3}); IR (KBr) 3349, 3307, 3282, 3207, 3087, 2938, 1697, 1571, 1474, 1391, 1275, 1186, 1130, 1023, 895, 870, 703, $673 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR (500 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.56(\mathrm{~s}, 1 \mathrm{H}), 8.00(\mathrm{~s}, 2 \mathrm{H}), 7.41(\mathrm{~s}, 1 \mathrm{H}), 6.95(\mathrm{~d}, J=5.5 \mathrm{~Hz}$, $1 \mathrm{H}), 6.90(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.14-3.92$ (m, 1H), 3.91-3.71 (comp, 2H), 3.66-3.50 (m, 1H), 3.49-3.28 (comp, 2H), 2.69-2.58 (m, 1H), 2.21-2.14 (m, 1H), 2.14-1.96 (m, 1H), 1.95-1.75 (comp, 5H), 1.64-1.52 $(\mathrm{m}, 1 \mathrm{H}), 1.47-1.37(\mathrm{~m}, 1 \mathrm{H}), 1.37-1.24(\mathrm{~m}, 1 \mathrm{H}), 1.23-1.10(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $176.22,156.72,141.52,132.25\left(\mathrm{q}, J_{C-F}=33.2 \mathrm{~Hz}\right), 123.39\left(\mathrm{q}, J_{C-F}=272.7 \mathrm{~Hz}\right), 117.48,115.03,62.88$, 53.01, 52.36, 47.42, 32.74, 32.63, 25.77, 25.31, 24.79, 24.58; m/z (ESI-MS) $481.2[\mathrm{M}-\mathrm{H}]^{-}$.
N-((1R,2R)-2-(3-(3,5-bis(trifluoromethyl)phenyl)thioureido)cyclohexyl)pyrrolidine-1-carboxamide

(2h): Following general procedure B, except for using phenyl chloroformate, the reaction was stirred at room temperature for 2 days and 2h was isolated as a white solid in 44% yield; $\mathrm{mp}=188-190^{\circ} \mathrm{C} ; \mathrm{R}_{\mathrm{f}}=0.18$ (Hexanes/EtOAc 40:60 v/v); $[\alpha]_{\mathrm{D}}{ }^{20}+41.7$ (c 0.5, CHCl_{3}); IR (KBr) 3300, 3097, 2938, 2859, 1618, 1535, 1474, 1396, 1278, 1181, 1131, 968, 880, 678 $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.74(\mathrm{~s}, 1 \mathrm{H}), 8.21(\mathrm{~d}, J=9.1 \mathrm{~Hz}, 1 \mathrm{H})$, $7.97(\mathrm{~s}, 2 \mathrm{H}), 7.56(\mathrm{~s}, 1 \mathrm{H}), 5.00(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.69-4.54(\mathrm{~m}, 1 \mathrm{H}), 3.68-3.58(\mathrm{~m}, 1 \mathrm{H}), 3.46-3.30$ (comp, 2H), 3.21-3.02 (comp, 2H), 2.28-2.18 (m, 1H), 2.14-2.05 (m, 1H), 1.98-1.67 (comp, 6H), 1.551.28 (comp, 4H); ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 182.08,157.40,141.11,131.53\left(\mathrm{q}, J_{C-F}=33.4 \mathrm{~Hz}\right.$), $124.27,123.26\left(\mathrm{q}, J_{C-F}=271.3 \mathrm{~Hz}\right), 117.87,57.39,56.25,46.33,33.77,32.65,25.34,24.94 ; \mathrm{m} / \mathrm{z}$ (ESIMS) $481.2[\mathrm{M}-\mathrm{H}]^{-}$.
\boldsymbol{N}-((1R,2R)-2-(3-(3,5-bis(trifluoromethyl)phenyl)thioureido)cyclohexyl)piperidine-1-carbothioamide

(2i): Following general procedure B, the reaction was stirred at room temperature for 5 hours and $\mathbf{2 i}$ was isolated as a white solid in 69% yield; $\mathrm{mp}=96-98^{\circ} \mathrm{C} ; \mathrm{R}_{\mathrm{f}}=0.21($ Hexanes $/$ EtOAc $80: 20 \mathrm{v} / \mathrm{v}) ;[\alpha]_{\mathrm{D}}{ }^{20}+93.1$ (c 0.5, CHCl_{3}; $\mathrm{IR}(\mathrm{KBr}) 3266,3042,2939,2859,1541,1474,1385,1333,1277$, $1178,1132,968,885,681 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.42(\mathrm{~s}$, $1 \mathrm{H}), 8.31(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 8.18(\mathrm{~s}, 2 \mathrm{H}), 7.57(\mathrm{~s}, 1 \mathrm{H}), 7.33(\mathrm{~d}, J=5.8 \mathrm{~Hz}$, $1 \mathrm{H}), 4.71-4.59(\mathrm{~m}, 1 \mathrm{H}), 4.18-4.06(\mathrm{~m}, 1 \mathrm{H}), 3.94-3.78(\mathrm{comp}, 2 \mathrm{H}), 3.78-3.66(\mathrm{comp}, 2 \mathrm{H}), 2.69-2.57(\mathrm{~m}$, $1 \mathrm{H}), 2.27-2.17(\mathrm{~m}, 1 \mathrm{H}), 1.97-1.79(\mathrm{comp}, 2 \mathrm{H}), 1.76-1.38(\mathrm{comp}, 8 \mathrm{H}), 1.38-1.18(\mathrm{comp}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 181.49,177.86,140.65,131.82\left(\mathrm{q}, J_{C-F}=33.5 \mathrm{~Hz}\right), 123.22\left(\mathrm{q}, J_{C-F}=272.9 \mathrm{~Hz}\right)$, $122.53,117.81,62.76,56.63,49.61,32.63,32.51,25.54,25.07,24.76,24.17$; m/z (ESI-MS) 511.1 [M -$\mathrm{H}]^{-}$.

3-((1R,2R)-2-(3-(3,5-bis(trifluoromethyl)phenyl)thioureido)cyclohexyl)-1,1-dicyclohexylthiourea (2j):
 Following general procedure \mathbf{B}, the reaction was stirred at room temperature for 24 hours and $\mathbf{2 j}$ was isolated as a white solid in 66% yield; $\mathrm{mp}=98-100^{\circ} \mathrm{C} ; \mathrm{R}_{\mathrm{f}}=0.36($ Hexanes $/ E t O A c 90: 10 \mathrm{v} / \mathrm{v}) ;[\alpha]_{\mathrm{D}}{ }^{20}$ -27.1 (c $0.5, \mathrm{CHCl}_{3}$); IR (KBr) 3442, 3247, 2935, 2857, 1534, 1473, 1383, 1323, 1278, 1178, 1135, 968, 885, $675 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (500 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 8.40-8.17(\mathrm{comp}, 2 \mathrm{H}), 7.91(\mathrm{~s}, 2 \mathrm{H}), 7.60(\mathrm{~s}, 1 \mathrm{H}), 5.61(\mathrm{~d}, J=$ $8.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.72-4.58(\mathrm{~m}, 1 \mathrm{H}), 4.49-3.94(\mathrm{comp}, 3 \mathrm{H}), 2.43-2.28(\mathrm{~m}, 1 \mathrm{H}), 2.25-2.13(\mathrm{~m}, 1 \mathrm{H}), 1.95-1.46$ (comp, 16H), 1.46-1.15 (comp, 8H), 1.12-1.00 (comp, 2H); ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 180.72$, $180.50,140.24,132.05\left(\mathrm{q}, J_{C-F}=36.6 \mathrm{~Hz}\right), 123.58,123.18\left(\mathrm{q}, J_{C-F}=272.7 \mathrm{~Hz}\right), 118.33,61.17,59.75$, $57.86,32.76,32.05,31.55,30.94,26.16,25.50,25.05,24.48 ; \mathrm{m} / \mathrm{z}$ (ESI-MS) $607.1[\mathrm{M}-\mathrm{H}]^{-}$.

3-((1R,2R)-2-(3-(3,5-bis(trifluoromethyl)phenyl)thioureido)cyclohexyl)-1,1-dicyclooctylthiourea (2k):

Following general procedure B (using 2.5 equivalents of dicyclooctylamine ${ }^{15}$), the reaction was stirred at room temperature for 2 days to afford $\mathbf{2 k}$ as a white solid in 61% yield; $\mathrm{mp}=105-108$ ${ }^{\circ} \mathrm{C} ; \quad \mathrm{R}_{\mathrm{f}}=0.33$ (Hexanes/EtOAc 85:15 v/v); $[\alpha]_{\mathrm{D}}{ }^{20}-31.4$ (c 0.5, CHCl_{3}); IR (KBr) 3437, 3247, 2926, 2855, 1534, 1473, 1384, 1323, $1277,1178,1135,973,880,680 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.44(\mathrm{~s}, 1 \mathrm{H}), 8.18(\mathrm{~s}, 1 \mathrm{H}), 7.93(\mathrm{~s}, 2 \mathrm{H}), 7.58(\mathrm{~s}, 1 \mathrm{H}), 5.61(\mathrm{~s}, 1 \mathrm{H})$, $5.20-5.06(\mathrm{~m}, 1 \mathrm{H}), 4.70-4.56(\mathrm{~m}, 1 \mathrm{H}), 4.33-4.19(\mathrm{~m}, 1 \mathrm{H}), 3.66-3.50(\mathrm{~m}, 1 \mathrm{H}), 2.44-2.28(\mathrm{~m}, 1 \mathrm{H}), 2.16-$ $2.07(\mathrm{~m}, 1 \mathrm{H}), 2.05-1.05(\mathrm{comp}, 34 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 180.38,178.22,140.41,131.99(\mathrm{q}$, $\left.J_{C-F}=33.4 \mathrm{~Hz}\right), 123.33,123.20\left(\mathrm{q}, J_{C-F}=272.9 \mathrm{~Hz}\right), 118.09,62.07,61.65,57.59,56.82,34.42,33.79$, 32.83, 32.69, 32.28, 32.02, 26.48, 26.23, 26.04, 25.05, 24.80, 24.45; m/z (ESI-MS) $663.2[\mathrm{M}-\mathrm{H}]^{-}$.

1-((1R,2R)-2-thioureidocyclohexyl)-3-(4-(trifluoromethyl)phenyl)thiourea: Following a procedure
 for a closely related product, ${ }^{16}(1 R, 2 R)$-cyclohexane-1,2-diamine $(2.24 \mathrm{~g}, 19.6$ mmol, 1.5 equiv), dissolved in a minimum amount of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (ca. 1 mL), was cooled to $0{ }^{\circ} \mathrm{C}$. 1-Isothiocyanato-4-(trifluoromethyl)benzene ($2.66 \mathrm{~g}, 13.1$ mmol, 1 equiv), dissolved in $262 \mathrm{~mL} \mathrm{CH}_{2} \mathrm{Cl}_{2}$, was added dropwise over 1 hour. The resulting mixture was allowed to warm to room temperature and concentrated under reduced pressure. Purification by flash chromatography on silica gel afforded the desired product as a white solid in 87% yield; $\mathrm{mp}=144-146^{\circ} \mathrm{C} ; \mathrm{R}_{\mathrm{f}}=0.10\left(\mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{Et}_{3} \mathrm{~N} 10: 89: 1\right.$ $\mathrm{v} / \mathrm{v} / \mathrm{v}) ;[\alpha]_{\mathrm{D}}{ }^{20}+125.5\left(\mathrm{c} 0.5, \mathrm{CHCl}_{3}\right) ; \operatorname{IR}(\mathrm{KBr}) 3259,2937,2854,1613,1523,1341,1161,1111,1068$, $1008,825,708 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right) \delta 7.79(\mathrm{app} \mathrm{d}, \mathrm{J}=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.60(\mathrm{app} \mathrm{d}, \mathrm{J}=8.4$ $\mathrm{Hz}, 2 \mathrm{H}), 4.08-3.75(\mathrm{~m}, 1 \mathrm{H}), 2.62-2.52(\mathrm{~m}, 1 \mathrm{H}), 2.23-1.99(\mathrm{~m}, 1 \mathrm{H}), 1.92-1.78(\mathrm{~m}, 1 \mathrm{H}), 1.73-1.50(\mathrm{comp}$, $2 \mathrm{H}), 1.34-0.98(\mathrm{comp}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(125 \mathrm{MHz},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right) \delta 180.31,143.76,125.36,124.46\left(\mathrm{q}, J_{C-F}=\right.$ $271.3 \mathrm{~Hz}), 123.25\left(\mathrm{q}, J_{C-F}=31.9 \mathrm{~Hz}\right), 121.57,60.08,54.02,35.05,31.05,24.62 . ; \mathrm{m} / \mathrm{z}(\mathrm{ESI}-\mathrm{MS}) 318.1[\mathrm{M}$ $+\mathrm{H}]^{-}$.

1,1-dicyclooctyl-3-((1R,2R)-2-(3-(4-(trifluoromethyl)phenyl)thioureido)cyclohexyl)thiourea (2l):
 Following general procedure B (using 2.5 equivalents of dicyclooctylamine ${ }^{15}$), the reaction was stirred at $50^{\circ} \mathrm{C}$ for 24 hours to afford 2 l as a white solid in 65% yield; $\mathrm{mp}=110-112{ }^{\circ} \mathrm{C} ; \mathrm{R}_{\mathrm{f}}=$ 0.31 (Hexanes/EtOAc $85: 15 \mathrm{v} / \mathrm{v}) ;[\alpha]_{\mathrm{D}}{ }^{20}-25.1\left(\mathrm{c} 0.5, \mathrm{CHCl}_{3}\right)$; IR (KBr) 3432, 3222, 2924, 2847, 1614, 1522, 1441, 1324, 1124, $1067,1011,948,828 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.96(\mathrm{~s}$, $1 \mathrm{H}), 7.71(\mathrm{~s}, 1 \mathrm{H}), 7.59(\operatorname{app~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.44(\operatorname{app~d}, J=$ $8.3 \mathrm{~Hz}, 2 \mathrm{H}), 5.65(\mathrm{~s}, 1 \mathrm{H}), 5.18-5.05(\mathrm{~m}, 1 \mathrm{H}), 4.81-4.68(\mathrm{~m}, 1 \mathrm{H}), 4.35-4.22(\mathrm{~m}, 1 \mathrm{H}), 3.67-3.50(\mathrm{~m}, 1 \mathrm{H})$, 2.44-2.31 (m, 1H), 2.15-2.06 (m, 1H), 2.05-1.23 (m, 34H); ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 179.85$, $178.51,140.74,127.17\left(\mathrm{q}, J_{C-F}=33.3 \mathrm{~Hz}\right), 126.56,124.06\left(\mathrm{q}, J_{C-F}=270 \mathrm{~Hz}\right), 123.36,61.71,61.48,57.33$, $56.60,34.33,33.82,32.94,32.66,32.36,32.07,26.59,26.27,25.05,24.90,24.52 ; \mathrm{m} / \mathrm{z}$ (ESI-MS) 595.3 $[\mathrm{M}-\mathrm{H}]^{-}$.

V Preparation and characterization data of products:

General procedure \mathbf{C} for the enantioselective oxa-Pictet-Spengler reaction

To a flame dried vial was added amine salt $\mathbf{1 d} \cdot \mathbf{H C l}(5.3 \mathrm{mg}, 0.025 \mathrm{mmol}, 10 \mathrm{~mol} \%)$, thiourea catalyst $\mathbf{2 l}$ $(15 \mathrm{mg}, 0.025 \mathrm{mmol}, 10 \mathrm{~mol} \%)$, tryptophol ($40 \mathrm{mg}, 0.25 \mathrm{mmol}, 1$ equiv), $4 \AA \mathrm{MS}(100 \mathrm{mg})$ and dry toluene $(5 \mathrm{~mL}, 0.05 \mathrm{M})$. The resulting mixture was stirred under nitrogen and cooled to $-30^{\circ} \mathrm{C}$ over 15 minutes. Aldehyde ($0.3 \mathrm{mmol}, 1.2$ equiv) was then added and the reaction was stirred for the indicated time before being quenched with triethylamine $(40 \mu \mathrm{~L})$. The resulting mixture was directly purified by flash chromatography on silica gel topped with Celite.
(R)-1-(4-chlorophenyl)-1,3,4,9-tetrahydropyrano[3,4-b]indole (3a): Following general procedure C,
 the reaction was run for 2 days and $\mathbf{3 a}$ was obtained as a white solid in 90% yield; mp $=153-155^{\circ} \mathrm{C} ; \mathrm{R}_{\mathrm{f}}=0.32($ Hexanes $/ \mathrm{EtOAc} 90: 10 \mathrm{v} / \mathrm{v}) ;[\alpha]_{20}^{\mathrm{D}}-15.7\left(\mathrm{c} 0.5, \mathrm{CHCl}_{3}, 91 \%\right.$ ee); IR (KBr) 3397, 3032, 2909, 2837, 1446, 1311, 1273, 1251, 1136, 1083, 1048, 978, $738,693,470 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.57(\operatorname{app} \mathrm{dd}, J=7.0,2.1 \mathrm{~Hz}, 1 \mathrm{H})$, 7.46 (br s, 1H), 7.42-7.36 (comp, 5H), 7.25-7.19 (m, 1H), 7.19-7.11 (comp, 2H), 5.80 $(\operatorname{app} \mathrm{t}, J=1.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.34(\mathrm{ddd}, J=11.2,5.4,2.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.00(\mathrm{ddd}, J=11.3,9.6,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.12$ (dddd, $J=15.2,9.7,5.4,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.84$ (dddd, $J=15.4,4.1,3.0,1.9 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 139.59,136.16,133.74,129.06,128.94,128.57,127.14,122.08,119.78,118.47,111.13,108.91$, $76.28,65.00,22.44 ; \mathrm{m} / \mathrm{z}(\mathrm{ESI}-\mathrm{MS}) 250.2[\mathrm{M}+\mathrm{H}]^{+}$; HPLC: Daicel Chiralpak AD-H, n-hexane $/ i-\mathrm{PrOH}=$ $90 / 10$, Flow rate $=1 \mathrm{~mL} / \mathrm{min}, \mathrm{UV}=280.16 \mathrm{~nm}, \mathrm{t}_{\mathrm{R}}=14.7 \mathrm{~min}$ (minor) and $\mathrm{t}_{\mathrm{R}}=19.6 \mathrm{~min}$ (major).

The absolute configuration was assigned by analogy.
(R)-1-(4-fluorophenyl)-1,3,4,9-tetrahydropyrano[3,4-b]indole (3b): Following general procedure C,
 the reaction was run for 2 days and $\mathbf{3 b}$ was obtained as a white solid in 82% yield; mp $=116-118{ }^{\circ} \mathrm{C} ; \mathrm{R}_{\mathrm{f}}=0.21($ Hexanes $/ \mathrm{EtOAc} 90: 10 \mathrm{v} / \mathrm{v}) ;[\alpha]^{\mathrm{D}}{ }_{20}-8.1\left(\mathrm{c} 0.5, \mathrm{CHCl}_{3}, 90 \%\right.$ ee); IR (KBr) 3389, 3292, 3047, 2957, 2914, 2847, 1713, 1606, 1509, 1446, 1224, $1153,1071,1043,830,743 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.59-7.55(\mathrm{~m}, 1 \mathrm{H})$, $7.44(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.38-7.32(\mathrm{comp}, 2 \mathrm{H}), 7.27-7.23(\mathrm{~m}, 1 \mathrm{H}), 7.21-7.12(\mathrm{comp}, 2 \mathrm{H}), 7.11-$ $7.04(\mathrm{comp}, 2 \mathrm{H}), 5.78(\mathrm{t}, J=1.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.31(\mathrm{ddd}, J=11.3,5.4,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.99$ (ddd, $J=11.3,9.6,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.10(\mathrm{dddd}, J=15.2,9.6,5.4,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.84$ (dddd, $J=15.4,4.0,3.0$, $1.8 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 163.03\left(\mathrm{~d}, J_{C-F}=247.7 \mathrm{~Hz}\right), 136.05,135.37\left(\mathrm{~d}, J_{C-F}=3.2 \mathrm{~Hz}\right)$, $133.28,130.28\left(\mathrm{~d}, J_{C-F}=8.3 \mathrm{~Hz}\right), 126.96,122.11,119.76,118.39,115.71\left(\mathrm{~d}, J_{C-F}=21.6 \mathrm{~Hz}\right), 111.01$, 109.01, 75.37, 64.82, 22.26; m/z (ESI-MS) $268.2[\mathrm{M}+\mathrm{H}]^{+}$; HPLC: Daicel Chiralpak AD-H, n-hexane/ i $\operatorname{PrOH}=90 / 10$, Flow rate $=1 \mathrm{~mL} / \mathrm{min}, \mathrm{UV}=280.16 \mathrm{~nm}, \mathrm{t}_{\mathrm{R}}=15.7 \mathrm{~min}$ (major) and $\mathrm{t}_{\mathrm{R}}=18.2 \mathrm{~min}$ (minor).

The absolute configuration was assigned by analogy.
(R)-1-(4-chlorophenyl)-1,3,4,9-tetrahydropyrano[3,4-b]indole (3c): Following general procedure C,
 the reaction was run for 2 days and $\mathbf{3 c}$ was obtained as a white solid in 91% yield; mp $=101-103{ }^{\circ} \mathrm{C} ; \mathrm{R}_{\mathrm{f}}=0.28($ Hexanes $/ E t O A c 90: 10 \mathrm{v} / \mathrm{v}) ;[\alpha]^{\mathrm{D}}{ }_{20}-9.3\left(\mathrm{c} 0.5, \mathrm{CHCl}_{3}, 94 \%\right.$ ee); IR (KBr) 3393, 3307, 3052, 2919, 2834, 1713, 1611, 1490, 1451, 1246, 1087, $1015,815,743,510 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.57(\mathrm{app} \mathrm{dd}, J=7.6,1.2 \mathrm{~Hz}$, $1 \mathrm{H}), 7.45$ (br s, 1H), 7.38-7.34 (comp, 2H), 7.33-7.29 (comp, 2H), 7.26-7.22 (m, 1H), $7.20-7.13(\mathrm{comp}, 2 \mathrm{H}), 5.76(\mathrm{app} \mathrm{t}, J=1.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.30(\mathrm{ddd}, J=11.3,5.4,3.1 \mathrm{~Hz}$, $1 \mathrm{H}), 3.98$ (ddd, $J=11.4,9.5,4.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.09$ (dddd, $J=15.0,9.5,5.3,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.90-2.79(\mathrm{~m}, 1 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 138.14,136.20,134.91,133.14,129.93,129.11,127.06,122.29,119.92$, 118.54, 111.16, 109.13, 75.47, 64.90, 22.37; m/z (ESI-MS) $284.2[\mathrm{M}+\mathrm{H}]^{+}$; HPLC: Daicel Chiralpak

AS-H, n-hexane $/ i-\operatorname{PrOH}=93 / 7$, Flow rate $=0.2 \mathrm{~mL} / \mathrm{min}, \mathrm{UV}=280.16 \mathrm{~nm}, \mathrm{t}_{\mathrm{R}}=66.4 \mathrm{~min}($ minor $)$ and $\mathrm{t}_{\mathrm{R}}=$ 69.8 min (major).

The absolute configuration was assigned by analogy.
(R)-1-(4-bromophenyl)-1,3,4,9-tetrahydropyrano[3,4-b]indole (3d): Following general procedure C,

the reaction was run for 2 days and $\mathbf{3 d}$ was obtained as a white solid in 91% yield; mp $=116-118{ }^{\circ} \mathrm{C} ; \quad \mathrm{R}_{\mathrm{f}}=0.25($ Hexanes $/ E t O A c 90: 10 \mathrm{v} / \mathrm{v}) ; \quad[\alpha]^{\mathrm{D}}{ }_{20}-7.2\left(\mathrm{c} 0.5, \mathrm{CHCl}_{3}, 93 \%\right.$ ee); IR (KBr) 3394, 3312, 3062, 2962, 2914, 2852, 2369, 2341, 1716, 1506, 1481, $1451,1253,1073,1043,1011,810,735,508 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 7.59-7.55 (m, 1H), 7.53-7.49 (comp, 2H), 7.44 (br s, 1H), 7.26-7.23 (comp, 3H), 7.20-7.12 (comp, 2H), 5.75 (app t, $J=1.9 \mathrm{~Hz}, 1 \mathrm{H}$), 4.30 (ddd, $J=11.3,5.4,3.0 \mathrm{~Hz}$, $1 \mathrm{H}), 3.98(\mathrm{ddd}, J=11.3,9.5,4.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.09(\mathrm{dddd}, J=15.4,9.5,5.4,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.84$ (dddd, $J=$ $15.5,4.1,3.1,1.9 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 138.65,136.20,133.07,132.08$, 130.23, $127.05,123.11,122.31,119.92,118.55,111.16,109.13,75.53,64.91,22.37 ; ~ m / z(E S I-M S) 328.3\left({ }^{79} \mathrm{Br}\right)$ $[\mathrm{M}+\mathrm{H}]^{+}, 330.3\left({ }^{81} \mathrm{Br}\right)[\mathrm{M}+\mathrm{H}]^{+}$; HPLC: Daicel Chiralpak AS-H, n-hexane $/ i-\mathrm{PrOH}=90 / 10$, Flow rate $=$ $0.2 \mathrm{~mL} / \mathrm{min}, \mathrm{UV}=280.16 \mathrm{~nm}, \mathrm{t}_{\mathrm{R}}=55.0 \mathrm{~min}$ (minor) and $\mathrm{t}_{\mathrm{R}}=59.5 \mathrm{~min}$ (major).

The absolute configuration of 3d was assigned by X-ray crystallography:

Compound 3d was crystallized from MeOH through slow evaporation at room temperature. The requisite CIF has been submitted to the journal.
(R)-1-(p-tolyl)-1,3,4,9-tetrahydropyrano[3,4-b]indole (3e): Following general procedure \mathbf{C}, the
 reaction was run for 2 days and 3 e was obtained as a white solid in 90% yield; $\mathrm{mp}=$ $179-180^{\circ} \mathrm{C} ; \quad \mathrm{R}_{\mathrm{f}}=0.24$ (Hexanes/EtOAc 90:10 v/v); $[\alpha]^{\mathrm{D}}{ }_{20}-2.4\left(\mathrm{c} 0.5, \mathrm{CHCl}_{3}, 95 \%\right.$ ee); IR (KBr) 3394, 2947, 2909, 2859, 2819, 1446, 1298, 1081, 1041, 808, 740, 455 $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.59(\mathrm{app} \mathrm{d}, J=6.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.49(\mathrm{br} \mathrm{s}, 1 \mathrm{H})$, 7.33-7.24 (comp, 2H), 7.24-7.19 (comp, 3H), 7.19-7.13 (comp, 2H), 5.76 (s, 1H), 4.32 (ddd, $J=11.4,5.5,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.99$ (ddd, $J=11.3,9.6,4.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.16-3.06$ $(\mathrm{m}, 1 \mathrm{H}), 2.89-2.81(\mathrm{~m}, 1 \mathrm{H}), 2.40(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 138.86,136.61,136.11,133.90$, $129.53,128.55,127.13,121.96,119.69,118.40,111.10,108.82,75.98,64.78,22.42,21.35 ; \mathrm{m} / \mathrm{z}$ (ESI-MS) $264.1[\mathrm{M}+\mathrm{H}]^{+}$; HPLC: Daicel Chiralpak AD-H, n-hexane $/ i-\mathrm{PrOH}=90 / 10$, Flow rate $=1 \mathrm{~mL} / \mathrm{min}$, UV $=280.16 \mathrm{~nm}, \mathrm{t}_{\mathrm{R}}=11.9 \mathrm{~min}($ minor $)$ and $\mathrm{t}_{\mathrm{R}}=18.3 \mathrm{~min}($ major $)$.

The absolute configuration was assigned by analogy.
(\boldsymbol{R})-1-(4-methoxyphenyl)-1,3,4,9-tetrahydropyrano[3,4-b]indole (3f): Following general procedure \mathbf{C},
 the reaction was run for 3 days and $\mathbf{3 f}$ was obtained as a white solid in 84% yield; $\mathrm{mp}=115-117{ }^{\circ} \mathrm{C} ; \mathrm{R}_{\mathrm{f}}=0.26$ (Hexanes/EtOAc $\left.80: 20 \mathrm{v} / \mathrm{v}\right) ;[\alpha]^{\mathrm{D}}{ }_{20}+0.6\left(\mathrm{c} 0.5, \mathrm{CHCl}_{3}\right.$, 84% ee); IR (KBr) 3392, 2949, 2907, 2837, 1611, 1448, 1301, 1243, 1173, 1078, 1033, 968, 830, 735, 465, 508, $473 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.59-7.54$ $(\mathrm{m}, 1 \mathrm{H}), 7.46(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.32-7.27(\mathrm{comp}, 2 \mathrm{H}), 7.25-7.22(\mathrm{~m}, 1 \mathrm{H}), 7.19-7.11$ (comp, 2 H), 6.92-6.88 (comp, 2H), 5.76 (app t, $J=1.9 \mathrm{~Hz}, 1 \mathrm{H}$), 4.31 (ddd, $J=11.2,5.3,3.1$ $\mathrm{Hz}, 1 \mathrm{H}), 3.98$ (ddd, $J=11.2,9.4,4.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H}), 3.09$ (dddd, $J=15.0,9.5,5.4,2.1 \mathrm{~Hz}, 1 \mathrm{H}$), 2.842 (dddd, $J=15.4,4.0,3.1,1.8 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 160.17,136.11,133.98$, $131.75,129.99,127.14,121.99,119.71,118.41,114.22,111.10,108.94,75.73,64.79,55.45,22.44 ; \mathrm{m} / \mathrm{z}$ (ESI-MS) $280.1[\mathrm{M}+\mathrm{H}]^{+}$; HPLC: Daicel Chiralpak AD-H, n-hexane $/ i-\operatorname{PrOH}=90 / 10$, Flow rate $=1$ $\mathrm{mL} / \mathrm{min}, \mathrm{UV}=280.16 \mathrm{~nm}, \mathrm{t}_{\mathrm{R}}=20.8 \mathrm{~min}($ minor $)$ and $\mathrm{t}_{\mathrm{R}}=31.3 \mathrm{~min}($ major $)$.

The absolute configuration was assigned by analogy.
(\boldsymbol{R})-1-(3-chlorophenyl)-1,3,4,9-tetrahydropyrano[3,4-b]indole (3g): Following general procedure \mathbf{C},
 the reaction was run for 2 days and $\mathbf{3 g}$ was obtained as a white solid in 73% yield; mp $=157-160{ }^{\circ} \mathrm{C} ; \mathrm{R}_{\mathrm{f}}=0.18$ (Hexanes/EtOAc 90:10 v/v); $[\alpha]^{\mathrm{D}}{ }_{20}-3.6$ (c 0.5, $\mathrm{CHCl}_{3}, 82 \%$ ee); IR (KBr) 3394, 3052, 2957, 2922, 2837, 1718, 1621, 1596, 1571, 1461, 1433, 1296, 1253, 1078, 1041, 855, 790, 740, 705, $690 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 7.57 (ddd, $J=7.4,1.5,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.45(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.39-7.34$ (comp, 2H), 7.34-7.30 (m, 1H), 7.29-7.23 (comp, 2H), 7.21-7.11 (comp, 2H), 5.77 (app t, $J=2.0 \mathrm{~Hz}, 1 \mathrm{H})$, 4.32 (ddd, $J=11.3,5.4,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.99$ (ddd, $J=11.3,9.5,4.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.10$ (dddd, $J=15.1,9.5,5.4$, $2.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.89-2.78(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 141.75,136.29,134.95,132.94,130.22$, $129.23,128.59,127.10,126.62,122.36,119.96,118.58,111.21,109.19,75.61,65.00,22.38 ; \mathrm{m} / \mathrm{z}$ (ESIMS) $284.1[\mathrm{M}+\mathrm{H}]^{+}$; HPLC: Daicel Chiralpak AS-H, n-hexane $/ i-\mathrm{PrOH}=90 / 10$, Flow rate $=1 \mathrm{~mL} / \mathrm{min}$, $\mathrm{UV}=280.16 \mathrm{~nm}, \mathrm{t}_{\mathrm{R}}=8.3 \mathrm{~min}($ minor $)$ and $\mathrm{t}_{\mathrm{R}}=10.6 \mathrm{~min}$ (major).

The absolute configuration was assigned by analogy.
(\boldsymbol{R})-1-(3-iodophenyl)-1,3,4,9-tetrahydropyrano[3,4-b]indole (3h): Following general procedure \mathbf{C}, the
 reaction was run for 3 days and $\mathbf{3 h}$ was obtained as a white solid in 78% yield; $\mathrm{mp}=$ $158-160{ }^{\circ} \mathrm{C} ; \mathrm{R}_{\mathrm{f}}=0.17$ (Hexanes/EtOAc $90: 10 \mathrm{v} / \mathrm{v}$); $[\alpha]^{\mathrm{D}}{ }_{20}+3.1$ (c $0.5, \mathrm{CHCl}_{3}, 85 \%$ ee); IR (KBr) 3399, 2957, 2914, 2864, 2822, 1568, 1468, 1296, 1076, 1056, 800, 745, 675, $465 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.78-7.67(\mathrm{comp}, 2 \mathrm{H}), 7.58$ (app d, $J=7.2$ $\mathrm{Hz}, 1 \mathrm{H}), 7.48(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.34(\operatorname{app~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.25(\operatorname{app~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H})$, $7.22-7.14($ comp, 2 H$), 7.12(\operatorname{app} \mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.71(\operatorname{appt} \mathrm{t}, J=1.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.31$ (ddd, $J=11.3,5.3,2.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.98$ (ddd, $J=11.3,9.6,4.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.11$ (dddd, $J=15.2,9.7,5.4,2.1$ $\mathrm{Hz}, 1 \mathrm{H}), 2.89-2.79(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 141.94,138.11,137.32,136.22,132.87$, $130.62,127.77,127.01,122.30,119.90,118.54,111.21,109.10,94.86,75.46,64.99,22.33 ; \mathrm{m} / \mathrm{z}$ (ESI-MS) $376.0[\mathrm{M}+\mathrm{H}]^{+}$; HPLC: Daicel Chiralpak AD-H, n-hexane $/ i$ - $\mathrm{PrOH}=90 / 10$, Flow rate $=1 \mathrm{~mL} / \mathrm{min}$, UV $=280.16 \mathrm{~nm}, \mathrm{t}_{\mathrm{R}}=14.2 \mathrm{~min}$ (minor) and $\mathrm{t}_{\mathrm{R}}=17.1 \mathrm{~min}$ (major).

The absolute configuration was assigned by analogy.
(\boldsymbol{R})-1-(m-tolyl)-1,3,4,9-tetrahydropyrano[3,4-b]indole (3i): Following general procedure \mathbf{C}, the
 reaction was run for 2 days and $\mathbf{3 i}$ was obtained as a white solid in 86% yield; $\mathrm{mp}=$ 126-128 ${ }^{\circ} \mathrm{C} ; \mathrm{R}_{\mathrm{f}}=0.17$ (Hexanes/EtOAc $90: 10 \mathrm{v} / \mathrm{v}$); $[\alpha]^{\mathrm{D}}{ }_{20}-4.9$ (c $0.5, \mathrm{CHCl}_{3}, 86 \% \mathrm{ee}$); IR (KBr) 3399, 3024, 2962, 2917, 2832, 1611, 1466, 1443, 1368, 1291, 1276, 1138, $1076,1043,748,690 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.61-7.55(\mathrm{~m}, 1 \mathrm{H}), 7.47(\mathrm{br}$ $\mathrm{s}, 1 \mathrm{H}), 7.32-7.27(\mathrm{~m}, 1 \mathrm{H}), 7.27-7.22(\mathrm{~m}, 1 \mathrm{H}), 7.22-7.12(\mathrm{comp}, 5 \mathrm{H}), 5.76(\mathrm{app} \mathrm{t}, J=$ $2.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.35(\mathrm{ddd}, J=11.5,5.5,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.05-3.93(\mathrm{~m}, 1 \mathrm{H}), 3.19-3.05(\mathrm{~m}$, $1 \mathrm{H}), 2.84(\mathrm{dddd}, J=15.5,3.9,2.7,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.35(\mathrm{~s}, 3 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 139.48$, $138.76,136.14,133.91,129.84,129.10,128.78,127.17,125.67,122.02,119.75,118.45,111.14,108.79$, 76.37, 65.10, 22.44, 21.51; m/z (ESI-MS) $264.2\left[\mathrm{M}+\mathrm{H}^{+}\right.$; HPLC: Daicel Chiralpak AD-H, n-hexane $/ i-$ $\mathrm{PrOH}=90 / 10$, Flow rate $=1 \mathrm{~mL} / \mathrm{min}, \mathrm{UV}=254.16 \mathrm{~nm}, \mathrm{t}_{\mathrm{R}}=11.4 \mathrm{~min}(\operatorname{minor})$ and $\mathrm{t}_{\mathrm{R}}=19.7 \mathrm{~min}($ major $)$.

The absolute configuration was assigned by analogy.
(\boldsymbol{R})-1-(3-methoxyphenyl)-1,3,4,9-tetrahydropyrano[3,4-b]indole (3j): Following general procedure \mathbf{C},
 the reaction was run for 2 days and $\mathbf{3 j}$ was obtained as a white solid in 82% yield; $\mathrm{mp}=$ $107-109{ }^{\circ} \mathrm{C} ; \mathrm{R}_{\mathrm{f}}=0.14$ (Hexanes/EtOAc $90: 10 \mathrm{v} / \mathrm{v}$); $[\alpha]^{\mathrm{D}}{ }_{20}-2.6$ (c $0.5, \mathrm{CHCl}_{3}, 86 \%$ ee); IR (KBr) 3284, 3049, 2939, 2894, 2844, 1606, 1581, 1491, 1448, 1276, 1228, 1151, $1041,875,805,763,690 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.56(\mathrm{app} \mathrm{dd}, J=7.5$, $1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.47(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.34-7.27(\mathrm{~m}, 1 \mathrm{H}), 7.24(\operatorname{app} \mathrm{dd}, J=6.9,1.4 \mathrm{~Hz}, 1 \mathrm{H})$, 7.19-7.11 (comp, 2H), 6.98 (app dt, $J=7.5,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.95-6.89$ (comp, 2H), 5.77 (app t, $J=1.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.36(\mathrm{ddd}, J=11.3,5.5,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.00(\mathrm{ddd}, J=11.3,9.8,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.78$ (s, 3H), 3.12 (dddd, $J=15.3,9.8,5.5,2.1 \mathrm{~Hz}, 1 \mathrm{H}$), 2.83 (dddd, $J=15.4,4.3,2.7,1.8 \mathrm{~Hz}, 1 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 160.19,141.19,136.20,133.72,129.95,127.22,122.09,120.70,119.78,118.46$, 114.78, 113.67, 111.16, 108.76, 76.27, 65.12, 55.44, 22.43; m/z (ESI-MS) $280.3\left[\mathrm{M}+\mathrm{H}{ }^{+}\right.$; HPLC: Daicel Chiralpak AD-H, n-hexane $/ i-\mathrm{PrOH}=90 / 10$, Flow rate $=1 \mathrm{~mL} / \mathrm{min}, \mathrm{UV}=280.16 \mathrm{~nm}, \mathrm{t}_{\mathrm{R}}=15.8$ $\min ($ minor $)$ and $\mathrm{t}_{\mathrm{R}}=30.7 \mathrm{~min}$ (major).

The absolute configuration was assigned by analogy.
(R)-1-(3-(benzyloxy)phenyl)-1,3,4,9-tetrahydropyrano[3,4-b]indole (3k): Following general
 procedure \mathbf{C}, the reaction was run for 3 days and $\mathbf{3 k}$ was obtained as a white solid in 87% yield; $m p=154-156^{\circ} \mathrm{C} ; \mathrm{R}_{\mathrm{f}}=0.15$ (Hexanes/EtOAc $90: 10 \mathrm{v} / \mathrm{v}$); $[\alpha]^{\mathrm{D}}{ }_{20}-9.0$ (c 0.5 , $\mathrm{CHCl}_{3}, 90 \% \mathrm{ee}$); IR (KBr) 3439, 3059, 3032, 2959, 2917, 2857, 1586, 1491, 1446, $1256,1153,1071,1038,735,693 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.57-7.54(\mathrm{~m}$, 1H), 7.44-7.37 (comp, 3H), 7.37-7.33 (comp, 2H), 7.33-7.28 (comp, 2H), 7.25-7.22 $(\mathrm{m}, 1 \mathrm{H}), 7.19-7.11(\mathrm{comp}, 2 \mathrm{H}), 7.03-6.94(\mathrm{comp}, 3 \mathrm{H}), 5.77(\operatorname{app} \mathrm{t}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H})$, $5.05(\mathrm{~d}, J=11.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.02(\mathrm{~d}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.34(\mathrm{ddd}, J=11.4,5.4,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.02-3.95(\mathrm{~m}$, $1 \mathrm{H}), 3.15-3.04(\mathrm{~m}, 1 \mathrm{H}), 2.87-2.76(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 159.31, 141.19, 136.90, $136.17,133.65,130.04,128.70,128.14,127.70,127.19,122.10,120.95,119.80,118.48,115.61,114.61$, 111.19, 108.78, 76.21, 70.15, 65.13, 22.43; m/z (ESI-MS) $356.3\left[\mathrm{M}+\mathrm{H}{ }^{+}\right.$; HPLC: Daicel Chiralpak AS-H, n-hexane $/ i$-PrOH $=90 / 10$, Flow rate $=1 \mathrm{~mL} / \mathrm{min}, \mathrm{UV}=254.16 \mathrm{~nm}, \mathrm{t}_{\mathrm{R}}=12.0 \mathrm{~min}($ minor $)$ and $\mathrm{t}_{\mathrm{R}}=$ 15.8 min (major).

The absolute configuration was assigned by analogy.
(\boldsymbol{R})-1-(naphthalen-2-yl)-1,3,4,9-tetrahydropyrano[3,4-b]indole (31): Following general procedure \mathbf{C},
 the reaction was run for 2 days and 31 was obtained as a white solid in 86% yield; $\mathrm{mp}=$ $185-187^{\circ} \mathrm{C} ; \mathrm{R}_{\mathrm{f}}=0.21$ (Hexanes/EtOAc 90:10 v/v); $[\alpha]^{\mathrm{D}}{ }_{20}-104.6$ (c $0.5, \mathrm{CHCl}_{3}, 88 \%$ ee); IR (KBr) 3378, 3042, 2961, 2889, 2839, 1506, 1466, 1449, 1370, 1293, 1253, $1141,1073,1048,863,824,739,484 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.90-7.81$ (comp, 4H), 7.64-7.58 (m, 1H), 7.56-7.50 (comp, 2H), 7.49-7.44 (comp, 2H), 7.237.14 (comp, 3H), 5.94 (app t, $J=1.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.37$ (ddd, $J=11.3,5.4,3.0 \mathrm{~Hz}, 1 \mathrm{H}$), 4.04 (ddd, $J=11.2,9.5,4.1 \mathrm{~Hz}, 1 \mathrm{H}$), 3.16 (dddd, $J=15.2,9.5,5.4,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.95-$ $2.79(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 137.02,136.21,133.73,133.28,128.94,128.22,127.89$, 127.72, 127.18, 126.61, 126.50, 125.99, 122.11, 119.80, 118.50, 111.18, 108.94, 76.36, 64.95, 22.47; m/z (ESI-MS) $300.1[\mathrm{M}+\mathrm{H}]^{+}$; HPLC: Daicel Chiralpak AD-H, n-hexane $/ i-\operatorname{PrOH}=90 / 10$, Flow rate $=1$ $\mathrm{mL} / \mathrm{min}, \mathrm{UV}=280.16 \mathrm{~nm}, \mathrm{t}_{\mathrm{R}}=20.0 \mathrm{~min}($ minor $)$ and $\mathrm{t}_{\mathrm{R}}=25.0 \mathrm{~min}$ (major).

The absolute configuration was assigned by analogy.
(\boldsymbol{R})-1-(o-tolyl)-1,3,4,9-tetrahydropyrano[3,4-b]indole (3m): Following general procedure \mathbf{C}, the
 reaction was run for 2 days and $\mathbf{3 m}$ was obtained as a white solid in 91% yield; $\mathrm{mp}=$ $98-100{ }^{\circ} \mathrm{C} ; \mathrm{R}_{\mathrm{f}}=0.26($ Hexanes $/$ EtOAc $90: 10 \mathrm{v} / \mathrm{v}) ;[\alpha]^{\mathrm{D}}{ }_{20}-4.5\left(\mathrm{c} 0.5, \mathrm{CHCl}_{3}, 48 \%\right.$ ee); IR (KBr) 3397, 3289, 3052, 2954, 2909, 2847, 1453, 1303, 1256, 1076, 1041, $740 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.60-7.54(\mathrm{~m}, 1 \mathrm{H}), 7.47(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.30-$ 7.22 (comp, 3H), 7.20-7.10 (comp, 4H), 6.02 (app t, $J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.29$ (ddd, $J=$ $11.3,5.2,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.99$ (ddd, $J=11.4,9.0,4.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.08$ (dddd, $J=16.1,9.0,5.3,1.9 \mathrm{~Hz}, 1 \mathrm{H}$), 2.87 (app dtd, $J=15.4,4.0,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.42(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 137.83,137.15$, $136.09,133.58,131.26,129.49,128.95,127.15,126.17$, 121.99, 119.77, 118.39, 111.11, 109.21, 73.98, 64.70, 22.47, 19.14; m/z (ESI-MS) $264.2[\mathrm{M}+\mathrm{H}]^{+}$; HPLC: Daicel Chiralpak AD-H, n-hexane $/ i$-PrOH $=90 / 10$, Flow rate $=1 \mathrm{~mL} / \mathrm{min}, \mathrm{UV}=280.16 \mathrm{~nm}, \mathrm{t}_{\mathrm{R}}=10.5 \mathrm{~min}($ minor $)$ and $\mathrm{t}_{\mathrm{R}}=16.6 \mathrm{~min}$ (major).

The absolute configuration was assigned by analogy.
(\boldsymbol{R})-7-chloro-1-phenyl-1,3,4,9-tetrahydropyrano[3,4-b]indole (3n): Following general procedure \mathbf{C},
 the reaction was run for 4 days and $\mathbf{3 n}$ was obtained as a white solid in 89% yield; $\mathrm{mp}=106-108^{\circ} \mathrm{C} ; \mathrm{R}_{\mathrm{f}}=0.18$ (Hexanes/EtOAc 90:10 v/v); $[\alpha]^{\mathrm{D}}{ }_{20}+25.2\left(\mathrm{c} 0.5, \mathrm{CHCl}_{3}\right.$, 94% ee); IR (KBr) 3414, 3279, 2964, 2917, 2837, 1451, 1301, 1241, 1146, 1051, 903, 850, 803, 755, $690 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (500 MHz) $\delta 7.45(\mathrm{~s}, 1 \mathrm{H}), 7.44(\mathrm{br} \mathrm{s}, 1 \mathrm{H})$, $7.41-7.33$ (comp, 5H), 7.22-7.19 (m, 1H), 7.11-7.08 (m, 1H), 5.76 (app t, $J=1.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.32$ (ddd, $J=$ $11.4,5.5,2.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.98(\mathrm{ddd}, J=11.3,9.8,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.15-3.00(\mathrm{~m}, 1 \mathrm{H}), 2.85-2.72(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) 139.27, 136.48, 134.47, 129.20, 129.03, 128.51, 127.82, 125.79, 120.46, 119.28, 111.14, 109.02, 76.14, 64.89, 22.30; m/z (ESI-MS) $284.2[\mathrm{M}+\mathrm{H}]^{+}$; HPLC: Daicel Chiralpak AD-H, $n-$ hexane $/ i-\mathrm{PrOH}=90 / 10$, Flow rate $=1 \mathrm{~mL} / \mathrm{min}, \mathrm{UV}=254.16 \mathrm{~nm}, \mathrm{t}_{\mathrm{R}}=9.9 \mathrm{~min}(\operatorname{minor})$ and $\mathrm{t}_{\mathrm{R}}=14.1 \mathrm{~min}$ (major).

The absolute configuration was assigned by analogy.
(\boldsymbol{R})-6-bromo-1-phenyl-1,3,4,9-tetrahydropyrano[3,4-b]indole (3o): Following general procedure \mathbf{C},

Br
 the reaction was run for 4 days and $\mathbf{3 o}$ was obtained as a white solid in 91% yield; mp $=100-102{ }^{\circ} \mathrm{C} ; \mathrm{R}_{\mathrm{f}}=0.21$ (Hexanes/EtOAc 90:10 v/v); $[\alpha]^{\mathrm{D}}{ }_{20}-62.5$ (c $0.5, \mathrm{CHCl}_{3}, 92 \%$ ee); IR (KBr) 3414, 3282, 2954, 2917, 2842, 1451, 1296, 1078, 1043, 986, 793 ,698 $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $(500 \mathrm{MHz}) \delta 7.67(\mathrm{~s}, 1 \mathrm{H}), 7.46(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.43-7.33$ (comp, 5 H), $7.25-7.21(\mathrm{~m}, 1 \mathrm{H}), 7.12-7.08(\mathrm{~m}, 1 \mathrm{H}), 5.78(\mathrm{app} \mathrm{t}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.33(\mathrm{ddd}, J=11.5,5.5,2.8 \mathrm{~Hz}, 1 \mathrm{H})$, $4.02-3.94(\mathrm{~m}, 1 \mathrm{H}), 3.06$ (dddd, $J=15.5,9.6,5.6,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.81-2.74(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 MHz , CDCl_{3}) $\delta 139.25,135.24,134.78,129.21,129.06,128.98,128.47,124.88,121.22,113.04,112.52,108.66$,
76.20, 65.00, 22.29; m/z (ESI-MS) $328.1\left({ }^{79} \mathrm{Br}\right)[\mathrm{M}+\mathrm{H}]^{+}, 330.1\left({ }^{81} \mathrm{Br}\right)[\mathrm{M}+\mathrm{H}]^{+}$; HPLC: Daicel Chiralpak AD-H, n-hexane $/ i$ - $\mathrm{PrOH}=90 / 10$, Flow rate $=1 \mathrm{~mL} / \mathrm{min}, \mathrm{UV}=280.16 \mathrm{~nm}, \mathrm{t}_{\mathrm{R}}=13.9 \mathrm{~min}$ (minor) and $\mathrm{t}_{\mathrm{R}}=21.1 \mathrm{~min}$ (major).

The absolute configuration was assigned by analogy.
(\boldsymbol{R})-5-methyl-1-phenyl-1,3,4,9-tetrahydropyrano[3,4-b]indole (3p): Following general procedure \mathbf{C},
 the reaction was run for 4 days and $\mathbf{3 p}$ was obtained as a white solid in 75% yield; $\mathrm{mp}=$ 155-158 ${ }^{\circ} \mathrm{C} ; \mathrm{R}_{\mathrm{f}}=0.20$ (Hexanes/EtOAc 90:10 v/v); $[\alpha]^{\mathrm{D}}{ }_{20}-45.9$ (c $0.5, \mathrm{CHCl}_{3}, 81 \%$ ee); IR (KBr) 3294, 2979, 2937, 2849, 1443, 1373, 1333, 1141, 1073, 1041, 976, 750, 698 $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (500 MHz) $\delta 7.47-7.32$ (comp, 6H), 7.08-6.98 (comp, 2H), 6.87-6.82 (m, 1 H), 5.80 (app t, $J=1.9 \mathrm{~Hz}, 1 \mathrm{H}$), 4.31 (ddd, $J=11.4,5.5,2.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.98$ (ddd, $J=$ 11.3, 9.7, $4.0 \mathrm{~Hz}, 1 \mathrm{H}$), 3.35 (dddd, $J=15.3,9.8,5.5,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.14-3.06(\mathrm{~m}, 1 \mathrm{H}), 2.69(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 139.69$, 136.10, 133.29, 130.74, 129.06, 128.96, 128.58, 126.21, 122.09, 120.93, 109.15, 108.86, 76.44, 65.24, 24.95, 19.71; m/z (ESI-MS) $264.1[\mathrm{M}+\mathrm{H}]^{+}$; HPLC: Daicel Chiralpak AD-H, n-hexane $/ i-\operatorname{PrOH}=90 / 10$, Flow rate $=1 \mathrm{~mL} / \mathrm{min}$, UV $=280.16 \mathrm{~nm}, \mathrm{t}_{\mathrm{R}}=19.1 \mathrm{~min}$ (major) and $\mathrm{t}_{\mathrm{R}}=26.7 \mathrm{~min}$ (minor).

The absolute configuration was assigned by analogy.
9-methyl-1-phenyl-1,3,4,9-tetrahydropyrano[3,4-b]indole (3q): Following general procedure \mathbf{C}, the
 reaction was run at room temperature for 24 hours and $\mathbf{3 q}$ was obtained as a white solid in 62% yield; $\mathrm{mp}=103-105^{\circ} \mathrm{C} ; \mathrm{R}_{\mathrm{f}}=0.36$ (Hexanes/EtOAc 90:10 v/v); IR (KBr) 3029, 2977, 2917, 2854, 1466, 1378, 1258, 1183, 1056, 898, 735, 698, 615, $503 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (500 MHz) $\delta 7.63-7.60(\mathrm{~m}, 1 \mathrm{H}), 7.41-7.35$ (comp, 3H), 7.34-7.29 (comp, 2H), 7.29$7.28(\mathrm{~m}, 1 \mathrm{H}), 7.28-7.23(\mathrm{~m}, 1 \mathrm{H}), 7.20-7.15(\mathrm{~m}, 1 \mathrm{H}), 5.92(\mathrm{appt}, J=1.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.04(\operatorname{app~dt}, J=11.4$, $5.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.94(\operatorname{app~dt}, J=11.3,5.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.28(\mathrm{~s}, 3 \mathrm{H}), 2.99-2.95(\mathrm{comp}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 139.65,137.30,134.09,129.09,128.85,128.78,126.60,121.61,119.26,118.43,109.00$, 108.59, 74.66, 62.13, 30.29, 22.50; m/z (ESI-MS) $264.2[\mathrm{M}+\mathrm{H}]^{+}$; HPLC: Daicel Chiralpak AD-H, $n-$ hexane $/ i-\mathrm{PrOH}=90 / 10$, Flow rate $=1 \mathrm{~mL} / \mathrm{min}, \mathrm{UV}=280.16 \mathrm{~nm}, \mathrm{t}_{\mathrm{R}}=9.8 \mathrm{~min}$ and 13.3 min .

3-(2-(methoxy(phenyl)methoxy)ethyl)-1H-indole (4): To a solution of tryptophol ($0.5 \mathrm{~g}, 3.1 \mathrm{mmol}, 1$
 equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(62 \mathrm{~mL}, 0.05 \mathrm{M})$ was added benzaldehyde dimethyl acetal (0.70 $\mathrm{mL}, 4.65 \mathrm{mmol}, 1.5$ equiv) and pyridinium p-toluenesulfonate ($39 \mathrm{mg}, 0.16 \mathrm{mmol}$, $5 \mathrm{~mol} \%)$. The reaction mixture was stirred at room temperature for 1 hour before being quenched with trimethylamine $(0.1 \mathrm{~mL})$. The resulting mixture was then concentrated under reduced pressure and purified by flash chromatography on silica gel to afford $\mathbf{4}$ as a colorless oil in 16% yield. $\mathrm{R}_{\mathrm{f}}=0.31$ (Hexanes/EtOAc $85: 15 \mathrm{v} / \mathrm{v}$); IR (film) 3409, 3054, 2927, 2872, $2361,1453,1418,1353,1203,1098,1043,740,703 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (500 MHz) $\delta 7.97$ (br s, 1H), 7.63$7.60(\mathrm{~m}, 1 \mathrm{H}), 7.51-7.46$ (comp, 2H), 7.41-7.30 (comp, 4H), 7.20 (ddd, $J=8.1,7.0,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.13$ (ddd, $J=8.0,7.0,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.05-7.03(\mathrm{~m}, 1 \mathrm{H}), 5.52(\mathrm{~s}, 1 \mathrm{H}), 3.90(\mathrm{app} \mathrm{dt}, J=9.4,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.81$ (app dt, $J=9.5,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.32(\mathrm{~s}, 3 \mathrm{H}), 3.15-3.10(\mathrm{comp}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 138.55$, $136.24,128.51,128.30,127.65,126.82,122.14,122.00,119.33,118.92,113.01,111.17,102.69,66.08$, 52.80, 25.93; m/z (ESI-MS) 250.1 [M - OMe] ${ }^{+}$.

VI. HPLC profiles of products

HPLC profile of 3a

Racemic

HPLC Profile of 3b

Racemic

HPLC Profile of $\mathbf{3 c}$

Racemic

HPLC Profile of 3d

Racemic

HPLC Profile of $\mathbf{3} \mathbf{e}$

Racemic

HPLC Profile of $\mathbf{3 f}$

Racemic

HPLC Profile of $\mathbf{3 g}$

Racemic

HPLC Profile of 3h

Racemic

HPLC Profile of 3i

Racemic

HPLC Profile of $\mathbf{3 j}$

Racemic

HPLC Profile of $\mathbf{3 k}$

Racemic

HPLC Profile of 31

Racemic

HPLC Profile of $\mathbf{3 m}$

Racemic

HPLC Profile of 3n

Racemic

HPLC Profile of $\mathbf{3 o}$

Racemic

HPLC Profile of $\mathbf{3 p}$

Racemic

${ }^{13} \mathrm{C}$ NMR of $\mathbf{1 d} \cdot \mathrm{HCl}\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}$

Cl^{\ominus}

${ }^{1} \mathrm{H}$ NMR of $1 \mathrm{~d} \cdot \mathrm{HBr}$ in $\mathrm{CD}_{3} \mathrm{OD}$

宮	
\|	\1111

${ }^{13} \mathrm{C}$ NMR of $\mathbf{1 d} \cdot \mathbf{H B r}$ in $\mathrm{CD}_{3} \mathrm{OD}$

${ }^{13} \mathrm{C}$ NMR of $\mathbf{1 d} \cdot \mathbf{H I}$ in $\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}$

~1
守 (
${ }^{13} \mathrm{C}$ NMR of $\mathbf{2 f}$ in CDCl_{3}

|
${ }^{13} \mathrm{C}$ NMR of $\mathbf{2 g}$ in CDCl_{3}

(
${ }^{13} \mathrm{C}$ NMR of $\mathbf{2 h}$ in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR of 2 i in CDCl_{3}

|

${ }^{13} \mathrm{C}$ NMR of $\mathbf{2 i}$ in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR of 2 j in CDCl_{3}

${ }^{13} \mathrm{C}$ NMR of $\mathbf{2 j}$ in CDCl_{3}

開
$\underbrace{\text { Líd }}$
${ }^{13} \mathrm{C}$ NMR of $\mathbf{2 k}$ in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR of $\mathbf{3 a}$ in CDCl_{3}

${ }^{13} \mathrm{C}$ NMR of $\mathbf{3 a}$ in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR of $\mathbf{3 b}$ in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR of $\mathbf{3 c}$ in CDCl_{3}

 	永	¢
4illthlit 11		

${ }^{13} \mathrm{C}$ NMR of $\mathbf{3 c}$ in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR of $\mathbf{3 d}$ in CDCl_{3}

${ }^{13} \mathrm{C}$ NMR of $3 \mathbf{d}$ in CDCl_{3}

${ }^{13} \mathrm{C}$ NMR of $\mathbf{3 e}$ in CDCl_{3}

$\stackrel{\infty}{\stackrel{\infty}{i}} \stackrel{\stackrel{\infty}{\dot{b}}}{\substack{\infty \\ \mid}}$
~~

Me

${ }^{1} \mathrm{H}$ NMR of 3 f in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR of $\mathbf{3 g}$ in CDCl_{3}

${ }^{13} \mathrm{C}$ NMR of $\mathbf{3 g}$ in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR of $\mathbf{3} \mathbf{h}$ in CDCl_{3}

${ }^{13} \mathrm{C}$ NMR of $\mathbf{3 h}$ in CDCl_{3}

	®	\%	$\stackrel{\circ}{9}$	ल
戸ं	¢i.	¢	\%	ึ
〈41111/1/				

[^0]

H NMR of 3 i in CDCl_{3}

 	¢	앙	先

${ }^{13} \mathrm{C}$ NMR of $\mathbf{3 i}$ in CDCl_{3}

 ${ }^{1} \mathrm{H}$ NMR of 3 j in CDCl_{3}

${ }^{13} \mathrm{C}$ NMR of 3 j in CDCl_{3}

葡
$\stackrel{\text { N }}{\underset{\sim}{\mid}}$

${ }^{1} \mathrm{H}$ NMR of $\mathbf{3 k}$ in CDCl_{3}

${ }^{13} \mathrm{C}$ NMR of $\mathbf{3 k}$ in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR of $31 \mathrm{in} \mathrm{CDCl}_{3}$

${ }^{13} \mathrm{C}$ NMR of 31 in CDCl_{3}

 -
${ }^{1} \mathrm{H}$ NMR of $\mathbf{3 m}$ in CDCl_{3}

									$\begin{aligned} & \text { T' } \\ & \stackrel{\circ}{-1} \end{aligned}$			$\begin{array}{ll} \text { T } & \top \\ \text { or } & 0 \\ \hline \end{array}$											
J. 5	10.0	9.5	9.0	8.5	8.0	7.5	7.0	6.5	6.0	5.5	$\begin{gathered} 5.0 \\ \text { f1 } 1 \text { (ppm) } \end{gathered}$	4.5		4.0	3.5	3.0	2.5	2.0	1.5	1.0	0.5	0.0	-0.

${ }^{13} \mathrm{C}$ NMR of 3 m in CDCl_{3}

${ }^{13} \mathrm{C}$ NMR of $\mathbf{3 n}$ in CDCl_{3}

${ }^{1} \mathrm{H}$ NMR of 3 o in CDCl_{3}

${ }^{13} \mathrm{C}$ NMR of 30 in CDCl_{3}

는
ัㅜN

人

${ }^{13} \mathrm{C}$ NMR of $\mathbf{3 p}$ in CDCl_{3}

${ }^{13} \mathrm{C}$ NMR of $\mathbf{3 q}$ in CDCl_{3}

$\stackrel{\overbrace{}}{\stackrel{\circ}{j}}$
$\stackrel{\stackrel{\circ}{\mathrm{N}}}{\mathrm{j}}$

${ }^{1} \mathrm{H}$ NMR of 4 in CDCl_{3}

${ }^{13} \mathrm{C}$ NMR of $\mathbf{4}$ in CDCl_{3}

|
$\stackrel{\oplus}{0}$

VIII. References

(1) Marigo, M.; Wabnitz, T. C.; Fielenbach, D.; Jørgensen, K. A. Angew. Chem. Int. Ed. 2005, 44, 794.
(2) Alatorre-Santamaría, S.; Rodriguez-Mata, M.; Gotor-Fernández, V.; de Mattos, M. C.; Sayago, F. J.; Jiménez, A. I.; Cativiela, C.; Gotor, V. Tetrahedron: Asymmetry 2008, 19, 1714.
(3) Torisu, K.; Kobayashi, K.; Iwahashi, M.; Nakai, Y.; Onoda, T.; Nagase, T.; Sugimoto, I.; Okada, Y.; Matsumoto, R.; Nanbu, F.; Ohuchida, S.; Nakai, H.; Toda, M. Bioorg. Med. Chem. 2004, 12, 5361.
(4) Sohtome, Y.; Tanatani, A.; Hashimoto, Y.; Nagasawa, K. Tetrahedron Lett. 2004, 45, 5589.
(5) Karagiannidis, L. E.; Hiscock, J. R.; Gale, P. A. Supramol. Chem. 2013, 25, 626.
(6) Kotke, M.; Schreiner, P. R. Tetrahedron 2006, 62, 434.
(7) Tommasino, M. L.; Thomazeau, C.; Touchard, F.; Lemaire, M. Tetrahedron: Asymmetry 1999, 10, 1813.
(8) Gawronski, J.; Kwit, M.; Skowronek, P. Org. Biomol. Chem. 2009, 7, 1562.
(9) Brown, H. C.; McDaniel, D. H. J. Am. Chem. Soc. 1955, 77, 3752.
(10) Chrystiuk, E.; Williams, A. J. Am. Chem. Soc. 1987, 109, 3040.
(11) Collot, A.-G.; Courtney, M.; Coyne, D.; Eustace, S. E.; More O’Ferrall, R. A. J. Org. Chem. 2009, 74, 3356.
(12) Gardner, J. N.; Katritzky, A. R. J. Chem. Soc. 1957, 4375.
(13) Brown, A. R.; Kuo, W.-H.; Jacobsen, E. N. J. Am. Chem. Soc. 2010, 132, 9286.
(14) Tan, K. L.; Jacobsen, E. N. Angew. Chem. Int. Ed. 2007, 46, 1315.
(15) Odabachian, Y.; Wang, Q.; Zhu, J. Chem.-Eur. J. 2013, 19, 12229.
(16)

Zhao, C.; Seidel, D. J. Am. Chem. Soc. 2015, 137, 4650.

[^0]:

