1	Supporting Information
2	Growing Algae Alter Spectroscopic Characteristics and Chlorine Reactivity of Dissolved
3	Organic Matter from Thermally-Altered Forest Litters
4	
5	Kuo-Pei Tsai ^{*,†} and Alex T. Chow ^{†,‡}
6	† Department of Forestry and Environmental Conservation, Clemson University, Clemson,
7	South Carolina 29634, USA
8	‡ Department of Environmental Engineering and Earth Sciences, Clemson University, Anderson,
9	South Carolina 29625, USA
10	
11	*Corresponding author: kuopei@post.harvard.edu
12	Phone: +1 843 546 1013
13	Fax: +1 843 546 6296
14	
15	
16	
17	
18	
19	
20	Number of pages: 12
21	Number of figures: 1
22	Number of tables: 4
23	

24 MATERIALS AND METHODS

25 Analyses of Water Chemistry and DOM spectroscopic characteristics

Characteristics of water extracts and algal solution, including pH, specific conductivity, 26 dissolved organic carbon (DOC), total dissolved nitrogen (TDN), ammonium (NH₄⁺), and 27 nitrate/nitrite (NO_x⁻), were analyzed using standard methods adopted by Wang et al.¹ The pH and 28 specific conductivity were measured using an Accumet XL60 dual channel pH/Ion/Conductivity 29 meter. The DOC and TDN were determined by a Shimadzu TOC/TN analyzer (SM 5310B). The 30 NH4⁺ and NO_x⁻ were measured using a Systea® EasychemTM discrete analyzer (EPA 350.1-01 31 and 353.2-01). Dissolved organic nitrogen (DON) was calculated by subtracting dissolved 32 inorganic N (NH₄⁺-N + NO_x⁻-N) from TDN. 33

DOM was characterized by UV-VIS spectrometry (Shimadzu UV-1800). Specific UV 34 absorbance at 254 nm (SUVA₂₅₄ in L mg-C⁻¹ m⁻¹), an indicator for aromaticity, was calculated 35 by normalizing UV absorbance at 254 nm to DOC level. The E2/E3 ratio, an optical index which 36 is inversely correlated with molecular size of aquatic humic substance, was calculated as 37 absorbance at 254 nm divided by absorbance at 365 nm.² Additionally, DOM was also 38 characterized by 3D spectrofluorometry (Shimadzu Spectrofluorometer RF5301). The 39 fluorescence scans [excitation wavelength (Ex): 220-450 nm; emission wavelength (Em): 280-40 550 nm] for DOM were conducted with 5-nm slits for both excitation and emission. 41 Fluorescence excitation-emission matrices (EEMs) from 3-D spectrofluorometry were analyzed 42 by fluorescence regional integration (FRI).³ The raw EEM was corrected for instrument-43 dependent effects, inner-filter effects, and Raman effects, and standardized to Raman's units 44 (normalized to Raman peak at Ex 350 nm).⁴ FRI can be used to quantify the fluorescent DOM by 45 dividing EEM into five operationally-defined regions [I: tyrosine-like (Ex: 200-250 nm; Em: 46

47 280-330 nm); II: tryptophan-like (Ex: 200-250 nm; Em: 330-380 nm); III: fulvic acid-like (Ex: 200-250 nm; Em: 380-550 nm); IV: soluble microbial byproduct-like (250 nm < Ex < 400 nm; 48 Em: 280-380 nm); and V: humic acid-like (250 nm < Ex < 400 nm; Em: 380-550 nm)].³ The 49 percent fluorescent response in each region ($P_{i,n}$ for the proportion of area-normalized volume in 50 region i to the entire region) was calculated. Three fluorescence spectroscopic indices were used 51 to describe DOM characteristics.⁵ The humification index (HIX), an index of humic substance 52 content, was determined as the area under the emission spectra 435–480 nm divided by the sum 53 of peak areas 300–345 nm, at Ex 254 nm.⁶ The fluorescence index (FI), an index of degradation 54 degree of DOM, was calculated as the ratio of Em at 470 and 520 nm, at Ex 370 nm.⁷ The 55 56 freshness index (β/α), an index for the contribution of recently produced autochthonous DOM, was calculated as the ratio of Em at 380 nm divided by the Em maximum between 420 and 57 435 nm, at Ex 310 nm.⁸ β and α peaks present the abundance of marine humic-like and 58 59 terrestrial humic-like components, respectively.

60

61 Analyses of Disinfection Byproducts

62 The samples were diluted with Milli-Q water to a DOC concentration of 3 mg/L, buffered by H₃BO₃/NaOH solution to pH 8.0, and chlorinated with freshly prepared NaOCl/H₃BO₃ solution 63 (pH 8.0) in 64-mL incubation tubes at 25 °C in dark for 24 hours without headspace.⁹ The 64 chlorine concentration added to the sample was calculated according to the equation $[Cl_2] = [3 \times$ 65 $(DOC) + 7.6 \times (TDN)$].¹ After reaction, the residual chlorine concentration was measured using a 66 Pocket ColorimeterTM II Filter Photometer (Hach Company). The residual chlorine was 67 quenched by a 10% Na₂SO₃ solution and DBPs were extracted and quantified by GC-ECD 68 (Agilent 7890) following EPA method 551.1.¹ Chlorine reactivity of DOM was expressed as 69

70 specific chlorine demand. Specific chlorine demand (SCD) was calculated by dividing chlorine demand by DOC concentration (mg-Cl₂/mg-DOC), where chlorine demand was the difference in 71 chlorine concentration added and residual chlorine concentration. We quantified four 72 trihalomethanes (THMs; including trichloro-, dichlorobromo-, dibromochloro-, and tribromo-73 methanes), four haloacetonitriles (HANs; including trichloro-, dichloro-, bromochloro-, and 74 dibromo- acetonitriles), chloral hydrate (CHD), and three haloketones (HKs; including 1,1-75 dichloro-2-, 1,1,1-trichloro-2-, 1,2,3-trichloro- propanones). The MRLs for all the above DBP 76 species were approximately 0.1-0.3 µg/L. The DOM reactivity in DBP formation potential was 77 expressed as specific DBP-FP (µg-DBP/mg-DOC), which was calculated by dividing the DBP 78 79 concentration with the initial DOC concentration. The proportion of total halogen positions with bromine-substituted atoms (bromine incorporation factor, BIF) was calculated for 80 trihalomethanes using the equation of study by Huang et al.¹⁰ 81

82

83 **RESULTS AND DISCUSSION**

84 Water Quality and Algal Growth

Composition of cultural medium substantially affects algal growth as well as chemistry of 85 algal solution.^{11,12} Noticeably, BG11 medium has been extensively used for culturing algae to 86 study DBP formation from algae-produced organic matters.^{13–15} However, original BG11 87 medium consists of 6 mg/L of citric acid and 6 mg/L ferric ammonium citrate.¹⁶ Citric acid has 88 been identified as a precursor for formations of trihalomethanes and haloacetic acids during 89 water chlorination.^{17,18} In order to prevent uncertainty in the analyses of algae-produced organic 90 matters and related DBP formation potential, in this study we minimized DOC concentration in 91 92 the medium.

93	For the control, measured DOC and TDN concentrations in the medium were 0.7 \pm 0.0 mg-
94	DOC/L and 11.8 \pm 0.2 mg-DTN/L (Table 1), mainly contributed from Na ₂ EDTA and NaNO ₃ in
95	the composition (Table S1). OD_{680} values in the control consistently increased from 0.06 to 1.00
96	for P. subcapitata and from 0.05 to 0.37 for M. aeruginosa, indicating the increases of algal
97	biomass over time (Figure 1A). Concomitantly, DOC concentrations increased from 0.7 ± 0.0 to
98	2.4 ± 0.1 and 11.6 ± 0.2 mg/L for <i>P. subcapitata</i> and <i>M. aeruginosa</i> , respectively (Figure 1B),
99	indicating the presence of algae-produced organic matter. Also, TDN concentrations decreased
100	from 11.8 \pm 0.2 to 0.5 \pm 0.0 and 1.3 \pm 0.0 mg/L for <i>P. subcapitata</i> and <i>M. aeruginosa</i> ,
101	respectively (Figure 1C), indicating the uptake of nitrate by algae. These results demonstrated
102	that both algal species were able to exponentially grow in this medium during the experiment.
103	
104	
105	
106	
107	
108	
109	
110	
111 112	
112	
114	
115	
116	

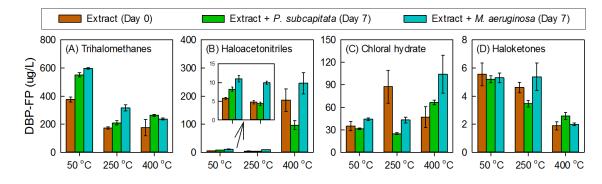


Figure S1. Disinfection byproduct formation potential (DBP-FP) of thermally-altered extracts
before (Day 0) and after (Day 7) inoculations with *P. subcapitata* and *M. aeruginosa*.
Error bars represent the standard deviation.

- . . .

- --/

Macronutrients 7.5 75 NaNO ₃ 7.5 75 K ₂ HPO ₄ 2 20 MgSO ₄ ·7H ₂ O 7.5 75 CaCl ₂ ·2H ₂ O 3.6 36 Na ₂ CO ₃ 2 20 Micronutrients Na ₂ EDTA·2H ₂ O 2 MaBO ₃ 2.866 2.86 FeCl ₃ ·6H ₂ O 1 1 MnCl ₂ ·4H ₂ O 1.81 1.81 ZnSO ₄ ·7H ₂ O 0.22 0.22 Na ₂ MnO ₄ ·2H ₂ O 0.39 0.39 CuSO4·5H2O 0.079 0.079 Co(NO ₃) ₂ ·6H ₂ O 0.0494 0.0494	MacronutrientsNaNO37.575 K_2 HPO4220MgSO4·7H2O7.575CaCl2·2H2O3.636Na2CO3220MicronutrientsNa2EDTA·2H2O22H3BO32.862.86FeCl3·6H2O11MnCl2·4H2O1.811.81ZnSO4·7H2O0.220.22Na2MnO4·2H2O0.390.39CuSO4·5H2O0.0790.079		Stock solution (g/L)	Final concentration (mg/L
$\begin{array}{ccccc} K_2 HPO_4 & 2 & 20 \\ MgSO_4 \cdot 7H_2O & 7.5 & 75 \\ CaCl_2 \cdot 2H_2O & 3.6 & 36 \\ Na_2CO_3 & 2 & 20 \\ \hline \mbox{Micronutrients} & & & \\ Na_2 EDTA \cdot 2H_2O & 2 & 2 \\ H_3BO_3 & 2.86 & 2.86 \\ FeCl_3 \cdot 6H_2O & 1 & 1 \\ MnCl_2 \cdot 4H_2O & 1.81 & 1.81 \\ ZnSO_4 \cdot 7H_2O & 0.22 & 0.22 \\ Na_2 MnO_4 \cdot 2H_2O & 0.39 & 0.39 \\ CuSO4 \cdot 5H2O & 0.079 & 0.079 \\ \end{array}$	$\begin{array}{ccccc} K_2 HPO_4 & 2 & 20 \\ MgSO_4 \cdot 7H_2O & 7.5 & 75 \\ CaCl_2 \cdot 2H_2O & 3.6 & 36 \\ Na_2CO_3 & 2 & 20 \\ \hline \mbox{Micronutrients} & & & \\ Na_2 EDTA \cdot 2H_2O & 2 & 2 \\ H_3BO_3 & 2.86 & 2.86 \\ FeCl_3 \cdot 6H_2O & 1 & 1 \\ MnCl_2 \cdot 4H_2O & 1.81 & 1.81 \\ ZnSO_4 \cdot 7H_2O & 0.22 & 0.22 \\ Na_2 MnO_4 \cdot 2H_2O & 0.39 & 0.39 \\ CuSO4 \cdot 5H2O & 0.079 & 0.079 \\ \end{array}$	Macronutrients		
$\begin{array}{ccccccc} MgSO_4 \cdot 7H_2O & 7.5 & 75 \\ CaCl_2 \cdot 2H_2O & 3.6 & 36 \\ Na_2CO_3 & 2 & 20 \\ \hline \mbox{Micronutrients} & & & \\ Na_2EDTA \cdot 2H_2O & 2 & 2 \\ H_3BO_3 & 2.86 & 2.86 \\ FeCl_3 \cdot 6H_2O & 1 & 1 \\ MnCl_2 \cdot 4H_2O & 1.81 & 1.81 \\ ZnSO_4 \cdot 7H_2O & 0.22 & 0.22 \\ Na_2MnO_4 \cdot 2H_2O & 0.39 & 0.39 \\ CuSO4 \cdot 5H2O & 0.079 & 0.079 \\ \end{array}$	$\begin{array}{ccccccc} MgSO_4 \cdot 7H_2O & 7.5 & 75 \\ CaCl_2 \cdot 2H_2O & 3.6 & 36 \\ Na_2CO_3 & 2 & 20 \\ \hline \mbox{Micronutrients} & & & \\ Na_2EDTA \cdot 2H_2O & 2 & 2 \\ H_3BO_3 & 2.86 & 2.86 \\ FeCl_3 \cdot 6H_2O & 1 & 1 \\ MnCl_2 \cdot 4H_2O & 1.81 & 1.81 \\ ZnSO_4 \cdot 7H_2O & 0.22 & 0.22 \\ Na_2MnO_4 \cdot 2H_2O & 0.39 & 0.39 \\ CuSO4 \cdot 5H2O & 0.079 & 0.079 \\ \end{array}$			
$\begin{array}{cccccccc} CaCl_2\cdot 2H_2O & 3.6 & 36 \\ Na_2CO_3 & 2 & 20 \\ \hline \mbox{Micronutrients} & & & \\ Na_2EDTA\cdot 2H_2O & 2 & 2 \\ H_3BO_3 & 2.86 & 2.86 \\ FeCl_3\cdot 6H_2O & 1 & 1 \\ MnCl_2\cdot 4H_2O & 1.81 & 1.81 \\ ZnSO_4\cdot 7H_2O & 0.22 & 0.22 \\ Na_2MnO_4\cdot 2H_2O & 0.39 & 0.39 \\ CuSO4\cdot 5H2O & 0.079 & 0.079 \end{array}$	$\begin{array}{cccccccc} CaCl_2\cdot 2H_2O & 3.6 & 36 \\ Na_2CO_3 & 2 & 20 \\ \hline \mbox{Micronutrients} & & & \\ Na_2EDTA\cdot 2H_2O & 2 & 2 \\ H_3BO_3 & 2.86 & 2.86 \\ FeCl_3\cdot 6H_2O & 1 & 1 \\ MnCl_2\cdot 4H_2O & 1.81 & 1.81 \\ ZnSO_4\cdot 7H_2O & 0.22 & 0.22 \\ Na_2MnO_4\cdot 2H_2O & 0.39 & 0.39 \\ CuSO4\cdot 5H2O & 0.079 & 0.079 \end{array}$	K_2HPO_4	2	20
$\begin{array}{c cccc} Na_2CO_3 & 2 & 20 \\ \hline \mbox{Micronutrients} & & & \\ Na_2EDTA\cdot 2H_2O & 2 & 2 \\ H_3BO_3 & 2.86 & 2.86 \\ FeCl_3\cdot 6H_2O & 1 & 1 \\ MnCl_2\cdot 4H_2O & 1.81 & 1.81 \\ ZnSO_4\cdot 7H_2O & 0.22 & 0.22 \\ Na_2MnO_4\cdot 2H_2O & 0.39 & 0.39 \\ CuSO4\cdot 5H2O & 0.079 & 0.079 \end{array}$	$\begin{array}{c cccc} Na_2CO_3 & 2 & 20 \\ \hline \mbox{Micronutrients} & & & \\ Na_2EDTA\cdot 2H_2O & 2 & 2 \\ H_3BO_3 & 2.86 & 2.86 \\ FeCl_3\cdot 6H_2O & 1 & 1 \\ MnCl_2\cdot 4H_2O & 1.81 & 1.81 \\ ZnSO_4\cdot 7H_2O & 0.22 & 0.22 \\ Na_2MnO_4\cdot 2H_2O & 0.39 & 0.39 \\ CuSO4\cdot 5H2O & 0.079 & 0.079 \end{array}$	MgSO ₄ ·7H ₂ O	7.5	75
$\begin{array}{l lllllllllllllllllllllllllllllllllll$	$\begin{array}{c c c c c c c } \mbox{Micronutrients} & & & & & & & & & \\ Na_2EDTA\cdot2H_2O & 2 & & 2 & & \\ H_3BO_3 & & 2.86 & & 2.86 & & \\ FeCl_3\cdot6H_2O & 1 & & 1 & & \\ MnCl_2\cdot4H_2O & & 1.81 & & 1.81 & & \\ NnCl_2\cdot4H_2O & & 0.22 & & 0.22 & & \\ Na_2MnO_4\cdot2H_2O & & 0.39 & & & 0.39 & & \\ CuSO4\cdot5H2O & & 0.079 & & 0.079 & & \\ \end{array}$	$CaCl_2 \cdot 2H_2O$	3.6	36
$\begin{array}{ccccc} Na_2EDTA\cdot 2H_2O & 2 & 2 \\ H_3BO_3 & 2.86 & 2.86 \\ FeCl_3\cdot 6H_2O & 1 & 1 \\ MnCl_2\cdot 4H_2O & 1.81 & 1.81 \\ ZnSO_4\cdot 7H_2O & 0.22 & 0.22 \\ Na_2MnO_4\cdot 2H_2O & 0.39 & 0.39 \\ CuSO4\cdot 5H2O & 0.079 & 0.079 \end{array}$	$\begin{array}{ccccc} Na_2EDTA\cdot 2H_2O & 2 & 2 \\ H_3BO_3 & 2.86 & 2.86 \\ FeCl_3\cdot 6H_2O & 1 & 1 \\ MnCl_2\cdot 4H_2O & 1.81 & 1.81 \\ ZnSO_4\cdot 7H_2O & 0.22 & 0.22 \\ Na_2MnO_4\cdot 2H_2O & 0.39 & 0.39 \\ CuSO4\cdot 5H2O & 0.079 & 0.079 \end{array}$	Na ₂ CO ₃	2	20
$\begin{array}{ccccccc} H_3BO_3 & 2.86 & 2.86 \\ FeCl_3\cdot 6H_2O & 1 & 1 \\ MnCl_2\cdot 4H_2O & 1.81 & 1.81 \\ ZnSO_4\cdot 7H_2O & 0.22 & 0.22 \\ Na_2MnO_4\cdot 2H_2O & 0.39 & 0.39 \\ CuSO4\cdot 5H2O & 0.079 & 0.079 \end{array}$	$\begin{array}{ccccccc} H_3BO_3 & 2.86 & 2.86 \\ FeCl_3\cdot 6H_2O & 1 & 1 \\ MnCl_2\cdot 4H_2O & 1.81 & 1.81 \\ ZnSO_4\cdot 7H_2O & 0.22 & 0.22 \\ Na_2MnO_4\cdot 2H_2O & 0.39 & 0.39 \\ CuSO4\cdot 5H2O & 0.079 & 0.079 \end{array}$	Micronutrients		
$\begin{array}{cccc} FeCl_3 \cdot 6H_2O & 1 & 1 \\ MnCl_2 \cdot 4H_2O & 1.81 & 1.81 \\ ZnSO_4 \cdot 7H_2O & 0.22 & 0.22 \\ Na_2MnO_4 \cdot 2H_2O & 0.39 & 0.39 \\ CuSO4 \cdot 5H2O & 0.079 & 0.079 \end{array}$	$\begin{array}{cccc} FeCl_3 \cdot 6H_2O & 1 & 1 \\ MnCl_2 \cdot 4H_2O & 1.81 & 1.81 \\ ZnSO_4 \cdot 7H_2O & 0.22 & 0.22 \\ Na_2MnO_4 \cdot 2H_2O & 0.39 & 0.39 \\ CuSO4 \cdot 5H2O & 0.079 & 0.079 \end{array}$	Na ₂ EDTA·2H ₂ O	2	2
$\begin{array}{llllllllllllllllllllllllllllllllllll$	$\begin{array}{llllllllllllllllllllllllllllllllllll$	H_3BO_3	2.86	2.86
$\begin{array}{cccc} ZnSO_4{\cdot}7H_2O & 0.22 & 0.22 \\ Na_2MnO_4{\cdot}2H_2O & 0.39 & 0.39 \\ CuSO4{\cdot}5H2O & 0.079 & 0.079 \end{array}$	$\begin{array}{cccc} ZnSO_4{\cdot}7H_2O & 0.22 & 0.22 \\ Na_2MnO_4{\cdot}2H_2O & 0.39 & 0.39 \\ CuSO4{\cdot}5H2O & 0.079 & 0.079 \end{array}$	FeCl ₃ ·6H ₂ O	1	1
Na2MnO4·2H2O0.390.39CuSO4·5H2O0.0790.079	Na2MnO4·2H2O0.390.39CuSO4·5H2O0.0790.079	MnCl ₂ ·4H ₂ O	1.81	1.81
CuSO4·5H2O 0.079 0.079	CuSO4·5H2O 0.079 0.079	ZnSO ₄ ·7H ₂ O	0.22	0.22
		Na ₂ MnO ₄ ·2H ₂ O	0.39	0.39
<u>Co(NO₃)₂·6H₂O 0.0494 0.0494</u>	<u>Co(NO₃)₂·6H₂O 0.0494 0.0494</u>	CuSO4·5H2O	0.079	0.079
		$Co(NO_3)_2 \cdot 6H_2O$	0.0494	0.0494

139Table S1. The composition of algal culture medium.

Table S2. Total dissolved nitrogen (TDN), dissolved inorganic nitrogen (NH₄⁺-N and NO_x⁻-N),
 and dissolved organic nitrogen (DON) of litter extracts before (Day 0) and after (Day
 Total dissolved organic nitrogen (DON) of litter extracts before (Day 0) and after (Day
 Total dissolved organic nitrogen (DON) of litter extracts before (Day 0) and after (Day
 Total dissolved organic nitrogen (DON) of litter extracts before (Day 0) and after (Day
 Total dissolved organic nitrogen (DON) of litter extracts before (Day 0) and after (Day

$\begin{array}{c} {\rm NH_4^+-N~(mg/L)} & 0 \\ {\rm NO_x^N~(mg/L)} & 1 \\ {\rm DON~(mg/L)} & 1 \\ {\rm DON~(mg/L)} & 0 \\ {\rm NH_4^+-N~(mg/L)} & 0 \\ {\rm NO_x^N~(mg/L)} & 0 \\ {\rm DON~(mg/L)} & 0 \\ {\rm DON~(mg/L)} & 0 \\ {\rm DON~(mg/L)} & 1 \\ {\rm NH_4^+-N~(mg/L)} & 1 \\ {\rm NH_4^+-N~(mg/L)} & 1 \\ {\rm NO_x^N~(mg/L)} & 1 \\ {\rm DON~(mg/L)} & 1 \\ {\rm DON~(mg/L)} & 1 \\ {\rm DON~(mg/L)} & 0 \\ {\rm Day~7} \\ \end{array}$	$(50 \ ^{\circ}\text{C})$ $(50 \ ^{\circ}$	(250 °C) 10.5 ± 0.1 0.6 ± 0.3 14.5 ± 1.3 ND 0.5 ± 0.0 0.9 ± 0.1 0.1 ± 0.0 ND 9.3 ± 0.0 0.5 ± 0.1	$(400 \ ^{\circ}\text{C})$ 11.6 ± 0.2 0.4 ± 0.0 11.6 ± 1.0 0.2 ± 0.3 1.9 ± 0.3 0.6 ± 0.1 0.4 ± 0.5 0.9 ± 0.7 13.6 ± 0.2
$\begin{array}{c c} \underline{Day \ 0} \\ TDN (mg/L) & 1 \\ NH_4^{+}-N (mg/L) & 0 \\ NO_x^{-}-N (mg/L) & 1 \\ DON (mg/L) & 1 \\ DON (mg/L) & 0 \\ \hline \underline{Day \ 7} \\ TDN (mg/L) & 0 \\ NH_4^{+}-N (mg/L) & 0 \\ NO_x^{-}-N (mg/L) & 0 \\ \hline \underline{DON (mg/L)} & 0 \\ \hline \underline{M. \ aeruginosa} \\ \hline \underline{Day \ 0} \\ TDN (mg/L) & 1 \\ NH_4^{+}-N (mg/L) & 0 \\ NO_x^{-}-N (mg/L) & 1 \\ NH_4^{+}-N (mg/L) & 1 \\ DON (mg/L) & 1 \\ DON (mg/L) & 0 \\ \hline \underline{Day \ 7} \\ \end{array}$	$\begin{array}{l} 0.3 \pm 0.2 \\ 1.0 \pm 0.0 \\ 1.8 \pm 0.5 \\ 0.7 \pm 0.0 \\ 0.1 \pm 0.1 \\ 0.0 \pm 0.0 \\ 0.5 \pm 0.1 \\ \end{array}$	$\begin{array}{c} 0.6 \pm 0.3 \\ 14.5 \pm 1.3 \\ \text{ND} \\ 0.5 \pm 0.0 \\ 0.9 \pm 0.1 \\ 0.1 \pm 0.0 \\ \text{ND} \\ \end{array}$	$\begin{array}{c} 0.4 \pm 0.0 \\ 11.6 \pm 1.0 \\ 0.2 \pm 0.3 \\ \end{array}$ $\begin{array}{c} 1.9 \pm 0.3 \\ 0.6 \pm 0.1 \\ 0.4 \pm 0.5 \\ 0.9 \pm 0.7 \end{array}$
TDN (mg/L) 1 NH_4^+-N (mg/L) 0 NO_x^N (mg/L) 1 DON (mg/L) 1 Day 7 7 TDN (mg/L) 0 NH_4^+-N (mg/L) 0 NO_x^N (mg/L) 0 DON (mg/L) 0 $M.$ aeruginosa 0 DAY 0 1 NH_4^+-N (mg/L) 1 NH_4^+-N (mg/L) 1 DON (mg/L) 1 DAY_a^N (mg/L) 1 NO_x^N (mg/L) 1 DON (mg/L) 1 DON (mg/L) 1 DON (mg/L) 1 DON (mg/L) 1 $DAY 7$ 1	$\begin{array}{l} 0.3 \pm 0.2 \\ 1.0 \pm 0.0 \\ 1.8 \pm 0.5 \\ 0.7 \pm 0.0 \\ 0.1 \pm 0.1 \\ 0.0 \pm 0.0 \\ 0.5 \pm 0.1 \\ \end{array}$	$\begin{array}{c} 0.6 \pm 0.3 \\ 14.5 \pm 1.3 \\ \text{ND} \\ 0.5 \pm 0.0 \\ 0.9 \pm 0.1 \\ 0.1 \pm 0.0 \\ \text{ND} \\ \end{array}$	$\begin{array}{c} 0.4 \pm 0.0 \\ 11.6 \pm 1.0 \\ 0.2 \pm 0.3 \\ \end{array}$ $\begin{array}{c} 1.9 \pm 0.3 \\ 0.6 \pm 0.1 \\ 0.4 \pm 0.5 \\ 0.9 \pm 0.7 \end{array}$
$\begin{array}{c} \mathrm{NH_4}^+\mathrm{-N} \ (\mathrm{mg/L}) & 0 \\ \mathrm{NO_x}^-\mathrm{-N} \ (\mathrm{mg/L}) & 1 \\ \mathrm{DON} \ (\mathrm{mg/L}) & 1 \\ \mathrm{DON} \ (\mathrm{mg/L}) & 0 \\ \mathrm{NH_4}^+\mathrm{-N} \ (\mathrm{mg/L}) & 0 \\ \mathrm{NO_x}^-\mathrm{-N} \ (\mathrm{mg/L}) & 0 \\ \mathrm{DON} \ (\mathrm{mg/L}) & 0 \\ \end{array}$	$\begin{array}{l} 0.3 \pm 0.2 \\ 1.0 \pm 0.0 \\ 1.8 \pm 0.5 \\ 0.7 \pm 0.0 \\ 0.1 \pm 0.1 \\ 0.0 \pm 0.0 \\ 0.5 \pm 0.1 \\ \end{array}$	$\begin{array}{c} 0.6 \pm 0.3 \\ 14.5 \pm 1.3 \\ \text{ND} \\ 0.5 \pm 0.0 \\ 0.9 \pm 0.1 \\ 0.1 \pm 0.0 \\ \text{ND} \\ \end{array}$	$\begin{array}{c} 0.4 \pm 0.0 \\ 11.6 \pm 1.0 \\ 0.2 \pm 0.3 \\ \end{array}$ $\begin{array}{c} 1.9 \pm 0.3 \\ 0.6 \pm 0.1 \\ 0.4 \pm 0.5 \\ 0.9 \pm 0.7 \end{array}$
NO_x^N (mg/L) 1 DON (mg/L) 1 DON (mg/L) 0 $Day 7$ 1 TDN (mg/L) 0 NH_4^+-N (mg/L) 0 NO_x^N (mg/L) 0 DON (mg/L) 0 $M.$ aeruginosa 0 $Day 0$ 1 TDN (mg/L) 1 NH_4^+-N (mg/L) 0 NO_x^N (mg/L) 1 DON (mg/L) 0 DON (mg/L) 0 $Day 7$ 0	1.0 ± 0.0 1.8 ± 0.5 0.7 ± 0.0 0.1 ± 0.1 0.0 ± 0.0 0.5 ± 0.1 2.4 ± 0.3 0.4 ± 0.1 1.3 ± 0.1	$14.5 \pm 1.3 \\ ND \\ 0.5 \pm 0.0 \\ 0.9 \pm 0.1 \\ 0.1 \pm 0.0 \\ ND \\ 9.3 \pm 0.0$	$\begin{array}{c} 11.6 \pm 1.0 \\ 0.2 \pm 0.3 \\ \\ 1.9 \pm 0.3 \\ 0.6 \pm 0.1 \\ 0.4 \pm 0.5 \\ 0.9 \pm 0.7 \end{array}$
$\begin{array}{c} DON (mg/L) \\ \underline{Day 7} \\ TDN (mg/L) \\ NH_4^{+}-N (mg/L) \\ NO_x^{-}-N (mg/L) \\ DON (mg/L) \\ \hline \textbf{M. aeruginosa} \\ \underline{Day 0} \\ TDN (mg/L) \\ NH_4^{+}-N (mg/L) \\ NO_x^{-}-N (mg/L) \\ DON (mg/L) \\ \hline DON (mg/L) \\ \hline DON (mg/L) \\ \hline DON (mg/L) \\ \hline Day 7 \\ \hline \end{array}$	1.8 ± 0.5 0.7 ± 0.0 0.1 ± 0.1 0.0 ± 0.0 0.5 ± 0.1 2.4 ± 0.3 0.4 ± 0.1 1.3 ± 0.1	ND 0.5 ± 0.0 0.9 ± 0.1 0.1 ± 0.0 ND 9.3 ± 0.0	$\begin{array}{c} 0.2 \pm 0.3 \\ 1.9 \pm 0.3 \\ 0.6 \pm 0.1 \\ 0.4 \pm 0.5 \\ 0.9 \pm 0.7 \end{array}$
$\begin{array}{c} \underline{\text{Day 7}} \\ \overline{\text{TDN (mg/L)}} & 0 \\ \overline{\text{NH}_4^+} \cdot N (mg/L) & 0 \\ \overline{\text{NO}_x^-} \cdot N (mg/L) & 0 \\ \hline \underline{\text{DON (mg/L)}} & 0 \\ \hline \underline{\text{M. aeruginosa}} \\ \underline{\text{Day 0}} \\ \overline{\text{TDN (mg/L)}} & 1 \\ \overline{\text{NH}_4^+} \cdot N (mg/L) & 1 \\ \overline{\text{NO}_x^-} \cdot N (mg/L) & 1 \\ \hline \underline{\text{DON (mg/L)}} & 1 \\ \hline \underline{\text{DON (mg/L)}} & 0 \\ \hline \underline{\text{Day 7}} \\ \end{array}$	$\begin{array}{c} 0.7 \pm 0.0 \\ 0.1 \pm 0.1 \\ 0.0 \pm 0.0 \\ 0.5 \pm 0.1 \end{array}$ $\begin{array}{c} 2.4 \pm 0.3 \\ 0.4 \pm 0.1 \\ 1.3 \pm 0.1 \end{array}$	$0.5 \pm 0.0 \\ 0.9 \pm 0.1 \\ 0.1 \pm 0.0 \\ \text{ND} \\ 9.3 \pm 0.0 \\ \end{array}$	$\begin{array}{c} 1.9 \pm 0.3 \\ 0.6 \pm 0.1 \\ 0.4 \pm 0.5 \\ 0.9 \pm 0.7 \end{array}$
$\overline{\text{TDN}}$ (mg/L) 0 NH_4^+ -N (mg/L) 0 NO_x^- -N (mg/L) 0 DON (mg/L) 0 $\overline{M.}$ aeruginosa 0 \underline{Day} 0 1 NH_4^+ -N (mg/L) 0 NO_x^- -N (mg/L) 1 NO_x^- -N (mg/L) 1 DON (mg/L) 1 DON (mg/L) 0 Day 7 0	$0.1 \pm 0.1 \\ 0.0 \pm 0.0 \\ 0.5 \pm 0.1 \\ 2.4 \pm 0.3 \\ 0.4 \pm 0.1 \\ 1.3 \pm 0.1 \\ 1.3 \pm 0.1 \\ 0.1 $	0.9 ± 0.1 0.1 ± 0.0 ND 9.3 ± 0.0	$\begin{array}{c} 0.6 \pm 0.1 \\ 0.4 \pm 0.5 \\ 0.9 \pm 0.7 \end{array}$
$\begin{array}{ccc} {\rm NH_4}^+ {\rm -N} \ ({\rm mg/L}) & 0 \\ {\rm NO_x}^- {\rm -N} \ ({\rm mg/L}) & 0 \\ \hline {\rm DON} \ ({\rm mg/L}) & 0 \\ \hline {\it M. \ aeruginosa} \\ \hline {\rm DDN} \ ({\rm mg/L}) & 1 \\ {\rm NH_4}^+ {\rm -N} \ ({\rm mg/L}) & 1 \\ {\rm NO_x}^- {\rm -N} \ ({\rm mg/L}) & 1 \\ \hline {\rm DON} \ ({\rm mg/L}) & 0 \\ \hline {\rm DON} \ ({\rm mg/L}) & 0 \\ \hline {\rm Day \ 7} \end{array}$	$0.1 \pm 0.1 \\ 0.0 \pm 0.0 \\ 0.5 \pm 0.1 \\ 2.4 \pm 0.3 \\ 0.4 \pm 0.1 \\ 1.3 \pm 0.1 \\ 1.3 \pm 0.1 \\ 0.1 $	0.9 ± 0.1 0.1 ± 0.0 ND 9.3 ± 0.0	$\begin{array}{c} 0.6 \pm 0.1 \\ 0.4 \pm 0.5 \\ 0.9 \pm 0.7 \end{array}$
NOx ⁻ -N (mg/L) 0 DON (mg/L) 0 <i>M. aeruginosa</i> 0 Day 0 1 TDN (mg/L) 1 NH4 ⁺ -N (mg/L) 0 NOx ⁻ -N (mg/L) 1 DON (mg/L) 1 DON (mg/L) 1 DON (mg/L) 0 Day 7 0	$\begin{array}{c} 0.0 \pm 0.0 \\ 0.5 \pm 0.1 \end{array}$ $\begin{array}{c} 2.4 \pm 0.3 \\ 0.4 \pm 0.1 \\ 1.3 \pm 0.1 \end{array}$	$\begin{array}{c} 0.1 \pm 0.0\\ \text{ND} \end{array}$	$\begin{array}{c} 0.4\pm0.5\\ 0.9\pm0.7\end{array}$
DON (mg/L) O DON (mg/L) O $M.$ aeruginosa $Day 0$ $TDN (mg/L)$ 1 NH_4^+ -N (mg/L) O NO_x^- -N (mg/L) 1 $DON (mg/L)$ O $Day 7$	$\begin{array}{c} 0.5 \pm 0.1 \\ 2.4 \pm 0.3 \\ 0.4 \pm 0.1 \\ 1.3 \pm 0.1 \end{array}$	ND 9.3 ± 0.0	0.9 ± 0.7
M. aeruginosa $\underline{Day 0}$ $TDN (mg/L)$ $NH_4^+-N (mg/L)$ $NO_x^N (mg/L)$ $DON (mg/L)$ $\underline{Day 7}$	2.4 ± 0.3 0.4 ± 0.1 1.3 ± 0.1	9.3 ± 0.0	
$\begin{array}{c} \underline{\text{Day 0}} \\ \overline{\text{TDN (mg/L)}} & 1 \\ \overline{\text{NH}_4}^+ - N (mg/L) & 0 \\ \overline{\text{NO}_x}^ N (mg/L) & 1 \\ \overline{\text{DON (mg/L)}} & 0 \\ \underline{\text{Day 7}} \end{array}$	0.4 ± 0.1 1.3 ± 0.1		13.6 ± 0.2
$TDN (mg/L)$ 1 $NH_4^+-N (mg/L)$ 0 $NO_x^N (mg/L)$ 1 $DON (mg/L)$ 0 $Day 7$ 0	0.4 ± 0.1 1.3 ± 0.1		13.6 ± 0.2
$\begin{array}{ccc} \mathrm{NH_4^+-N} & (\mathrm{mg/L}) & 0 \\ \mathrm{NO_x^N} & (\mathrm{mg/L}) & 1 \\ \mathrm{DON} & (\mathrm{mg/L}) & 0 \\ \underline{\mathrm{Day}} & 7 \end{array}$	0.4 ± 0.1 1.3 ± 0.1		13.6 ± 0.2
$NO_{x}^{-}-N (mg/L) \qquad 1$ $DON (mg/L) \qquad 0$ $Day 7$	1.3 ± 0.1	0.5 ± 0.1	13.0 ± 0.2
DON (mg/L) Day 7			0.5 ± 0.1
DON (mg/L) Day 7		12.5 ± 0.2	14.4 ± 1.0
<u>Day 7</u>	0.8 ± 0.2	ND	ND
_			
	1.1 ± 0.1	1.1 ± 0.1	1.9 ± 0.1
	0.1 ± 0.0	0.6 ± 0.4	0.5 ± 0.0
+ (0)	0.0 ± 0.0	0.1 ± 0.1	0.0 ± 0.0
1 (0 X 1 ((1.0 ± 0.1	0.5 ± 0.4	1.4 ± 0.1
ND: Not detectable		0.0 ± 0.11	1 0.11
ND. Not detectable			

S8

168 Table S3. Correlation coefficients (R^2) for specific DBP formation potential and DOM spectroscopic index (n =9).

		STHM-FP			SHAN-FP			SCHD-FP			SHK-FP	
	Before	After	After	Before	After	After	Before	After	After	Before	After	After
	inoculation	inoculation	inoculation	inoculation	inoculation	inoculation	inoculation	inoculation	inoculation	inoculation	inoculation	inoculation
		with Ps [*]	with Ma [#]		with Ps^*	with Ma [#]		with Ps [*]	with Ma [#]		with Ps^*	with Ma [#]
SUVA	-0.31	-0.01	-0.07	0.99	0.91	0.89	-0.11	0.90	0.78	-0.76	-0.65	-0.34
HIX	-0.39	-0.15	-0.14	0.99	0.97	0.99	-0.08	0.99	0.96	-0.96	-0.84	-0.46
E2/E3	-0.68	-0.14	-0.09	0.90	0.96	0.87	0.00	0.98	0.95	-0.49	-0.86	-0.33
FI	-0.72	-0.18	-0.17	0.86	0.93	0.96	0.00	0.97	0.89	-0.72	-0.85	-0.50
β/α	0.08	-0.04	0.13	-0.83	-0.70	-0.92	0.38	-0.65	-0.87	0.93	0.39	0.46
$^{.}\%P_{I,n}$	0.74	0.37	0.13	-0.85	-0.88	-0.93	-0.01	-0.92	-0.89	0.42	0.90	0.46
$\% P_{\rm II,n}$	0.39	0.29	-0.11	-0.98	-0.91	-0.38	0.06	-0.96	-0.42	0.73	0.86	0.00
$\% P_{\rm III,n}$	-0.44	-0.26	-0.09	0.99	0.93	0.96	-0.04	0.97	0.91	-0.67	-0.87	-0.40
$\% P_{\rm IV,n}$	0.34	0.26	0.29	-0.99	-0.93	-0.94	0.09	-0.96	-0.85	0.75	0.85	0.62
$%P_{V,n}$	-0.72	-0.36	-0.01	0.86	0.87	0.78	0.00	0.92	0.79	-0.45	-0.85	-0.23

 Ps^* and $Ma^{\#}$ represent *P. subcapitata* and *M. aeruginosa*, respectively.

170 Highlight values with different colors indicate significant correlation (P < 0.05) for a specific DBP species.

171 Negativity symbols indicate negative correlations.

181 Table S4. Correlation coefficients (\mathbb{R}^2) for DBP formation potential and DOM spectroscopic index (n = 9).

		THM-FP			HAN-FP			CHD-FP			HK-FP	
	Before	After	After	Before	After	After	Before	After	After	Before	After	After
	inoculation	inoculation	inoculation	inoculation	inoculation	inoculation	inoculation	inoculation	inoculation	inoculation	inoculation	inoculation
		with Ps [*]	with Ma [#]		with Ps^*	with Ma [#]		with Ps [*]	with Ma [#]		with Ps [*]	with Ma [#]
SUVA	-0.29	-0.01	-0.32	0.99	0.92	0.89	-0.25	0.97	0.72	-0.80	-0.29	-0.46
HIX	-0.35	-0.16	-0.43	0.99	0.97	0.99	-0.21	0.96	0.93	-0.90	-0.58	-0.58
E2/E3	-0.66	-0.15	-0.31	0.89	0.96	0.88	-0.02	0.96	0.97	-0.81	-0.56	-0.43
FI	-0.70	-0.19	-0.48	0.86	0.93	0.96	-0.01	0.92	0.84	-0.98	-0.63	-0.64
β/α	0.06	-0.03	0.44	-0.84	-0.72	-0.91	0.56	-0.81	-0.80	0.57	0.06	0.62
$^{.}\%P_{I,n}$	0.72	0.38	0.46	-0.84	-0.87	-0.93	0.00	-0.81	-0.81	0.78	0.80	0.63
$%P_{\text{II,n}}$	0.37	0.30	0.00	-0.98	-0.90	-0.37	0.17	-0.86	-0.32	0.85	0.73	0.04
$%P_{\rm III,n}$	-0.42	-0.27	-0.39	0.99	0.93	0.95	-0.14	0.89	0.84	-0.83	-0.70	-0.56
$\% P_{\rm IV,n}$	0.31	0.27	0.56	-0.99	-0.92	-0.94	0.22	-0.88	-0.84	0.81	0.69	0.70
$%P_{\rm V,n}$	-0.70	-0.37	-0.25	0.86	0.86	0.78	-0.00	0.80	0.68	-0.81	-0.79	-0.41

 Ps^* and $Ma^{\#}$ represent *P. subcapitata* and *M. aeruginosa*, respectively.

Highlight values with different colors indicate significant correlation (P < 0.05) for a specific DBP species.

184 Negativity symbols indicate negative correlation.

193 REFERENCES

- Wang, J. J.; Dahlgren, R. A.; Erşan, M. S.; Karanfil, T.; Chow, A. T. Wildfire altering
 terrestrial precursors of disinfection byproducts in forest detritus. *Environ. Sci. Technol.* 2015, 49 (10), 5921–5929.
- Peuravuori, J.; Pihlaja, K. Molecular size distribution and spectroscopic properties of aquatic humic substances. *Anal. Chim. Acta* 1997, *337* (2), 133–149.
- (3) Chen, W.; Westerhoff, P.; Leenheer, J. a; Booksh, K. Fluorescence excitation Emission matrix regional integration to quantify spectra for dissolved organic matter. *Environ. Sci. Technol.* 2003, *37* (24), 5701–5710.
- (4) Murphy, K. R.; Butler, K. D.; Spencer, R. G. M.; Stedmon, C. a; Boehme, J. R.; Aiken, G.
 R. Measurement of Dissolved Organic Matter Fluorescence in Aquatic Environments: An
 Interlaboratory Comparison RID B-8217-2009 RID B-5841-2008. *Environ. Sci. Technol.*205 2010, 44 (24), 9405–9412.
- (5) Fellman, J. B.; Hood, E.; Spencer, R. G. M. Fluorescence spectroscopy opens new
 windows into dissolved organic matter dynamics in freshwater ecosystems: A review.
 Limnol. Oceanogr. 2010, 55 (6), 2452–2462.
- 209 (6) Ohno T. Fluorescence Inner Filtering Cerrection for Determining the Humification Index
 210 of Dissolved Organic Matter. *Environ. Sci. Technol.* 2002, *36* (4), 742–746.
- (7) Cory, R. M.; Mcknight, D. M. Fluorescence Spectroscopy Reveals Ubiquitous Presence of
 Oxidized and Reduced Quinones in Dissolved Organic Matter Fluorescence Spectroscopy
 Reveals Ubiquitous Presence of Oxidized and Reduced Quinones in Dissolved Organic
 Matter. *Environ. Sci. Technol.* 2005, *39* (21), 8142–8149.
- (8) Wilson, H. F.; Xenopoulos, M. a. Effects of agricultural land use on the composition of fluvial dissolved organic matter. *Nat. Geosci.* 2008, 2 (December 2008), 37–41.
- (9) Summers, R. S.; Hooper, S. M.; Shukairy, H. M.; Solarik, G.; Summers, R. S.; Hooper, S.
 M.; Owen, D. Assessing DBP yield : uniform formation conditions. *J. Am. Water Work.*Assoc. 1996, 88 (6), 80–93.
- (10) Huang, J.; Graham, N.; Templeton, M. R.; Zhang, Y.; Collins, C.; Nieuwenhuijsen, M. A
 comparison of the role of two blue-green algae in THM and HAA formation. *Water Res.* 2009, 43 (12), 3009–3018.
- (11) Kilham, S. S.; Kreeger, D. A.; Lynn, S. G.; Goulden, C. E.; Herrera, L. COMBO: A
 defined freshwater culture medium for algae and zooplankton. *Hydrobiologia* 1998, *377*,
 147–159.
- (12) Huang, W.; Chu, H.; Dong, B. Characteristics of algogenic organic matter generated under different nutrient conditions and subsequent impact on microfiltration membrane fouling.
 Desalination 2012, 293, 104–111.
- (13) Fang, J.; Ma, J.; Yang, X.; Shang, C. Formation of carbonaceous and nitrogenous
 disinfection by-products from the chlorination of *Microcystis aeruginosa*. *Water Res.*

- **2010**, *44* (6), 1934–1940.
- (14) Liao, X.; Liu, J.; Yang, M.; Ma, H.; Yuan, B.; Huang, C.-H. Evaluation of disinfection by product formation potential (DBPFP) during chlorination of two algae species Blue green *Microcystis aeruginosa* and diatom *Cyclotella meneghiniana*. *Sci. Total Environ*.
 2015, 532, 540–547.
- (15) Zhou, S.; Shao, Y.; Gao, N.; Deng, Y.; Li, L.; Deng, J.; Tan, C. Characterization of algal
 organic matters of *Microcystis aeruginosa*: Biodegradability, DBP formation and
 membrane fouling potential. *Water Res.* 2014, 52, 199–207.
- (16) Stanier, R. Y.; Kunisawa, R.; Mandel, M.; Cohen-Bazire, G. Purification and properties of unicellular blue-green algae (order Chroococcales). *Bacteriol. Rev.* 1971, *35* (2), 171–205.
- (17) Chowdhury, S.; Al-hooshani, K.; Karanfil, T. Disinfection byproducts in swimming pool:
 Occurrences, implications and future needs. *Water Res.* 2014, *53*, 68–109.
- (18) Kanan, A.; Karanfil, T. Formation of disinfection by-products in indoor swimming pool
 water: The contribution from filling water natural organic matter and swimmer body
 fluids. *Water Res.* 2011, 45 (2), 926–932.
- 246