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1. Characterization 

X-ray diffraction (XRD, GBC eMMA, Cu Kα radiation, λ = 1.5406 Å), X-ray photoelectron 

spectroscopy (XPS, VG Scientific ESCALAB 2201XL, Al Kα X-ray radiation), Fourier 

transform infrared spectroscopy (FTIR, Shimadzu Prestige-21), nitrogen-sorption isothermal 

analysis (NOVA 2200e, Quantachrome), and Raman spectroscopy (Jobin Yvon HR800 

Raman spectrometer with a 10 mW helium/neon laser at 632.8 nm excitation) were used to 

determine the structure and composition of samples. Scanning electron microscopy (SEM, 

JEOL JSM7500FA), transmission electron microscopy (TEM), and high-resolution TEM 

(HR-TEM, JEOL JEM-2010FEF) were used for morphological investigations. 

2. Electrochemical measurements 

The electrochemical performances were evaluated by using standard 2032 type coin cells. 

The working electrodes were fabricated with 80 wt% active materials, 10 wt% acetylene 

black (Super P), and 10 wt% sodium carboxymethyl cellulose (CMC) in deionized water to 

form a slurry, which was then cast onto copper foil and dried in dynamic vacuum at 60 °C 

overnight. Higher temperatures could cause further dehydration in BF-rGO and consequently, 

an unwanted smaller interlayer spacing. A sodium disc was used as the counter electrode. The 

electrodes were separated by glass fiber. Electrolytes consisting of1 M NaClO4 in three 

different solvents were used to optimize the electrochemical performance: (1) 1,2-

dimethoxyethane (DME); (2) ethylene carbonate (EC) and diethyl carbonate (DEC) (EC:DEC, 

1:1, v:v ); (3) EC:DEC with the addition of 5 % fluorinated ethylene carbonate (FEC) 

(EC:DEC:FEC). The cells were assembled in an argon filled glove box with the oxygen and 

water content below 1 ppm. Galvanostatic charge-discharge tests were carried out on a 
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battery testing system (Shenzhen NEWARE Battery, China) in the voltage range between 

0.001 and 2.00 V. Electrochemical impedance spectroscopy (EIS) measurements were 

performed on a Biologic VMP-3 electrochemical workstation. The capacity was calculated 

based on the active materials. 
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Figure S1 FTIR spectra of boric acid and freeze-dried mixture of boric acid and GO. The 

rectangle part shows the red shift of B−O−H out-of-plane bending, and O−B−O ring bending. 
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Figure S2 FTIR spectra of the GO, rGO, and BF-rGO samples. Inset is an enlargement of the 

dashed rectangle. After the reduction, most of the oxygen-containing groups in GO 

disappeared. The appearance of two peaks in the BF-rGO sample at 1215 and 968 cm-1 

indicates the formation of C−O−B and C−B bonds, respectively.  
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Figure S3 Nitrogen adsorption and desorption isotherms of (a) the pure rGO and (b) the as-

obtained BF-rGO. The decreased surface area of the BF-rGO indicates the successful 

functionlization of rGO. 
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Figure S4  First cycle discharge-charge profiles for the BF-rGO/Na half cells in different 

electrolytes. 
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Table S1 Specific capacity for selected cycles of the Na/BF-rGO half cells.  

Electrolyte 
Capacity (mAh·g−1)  

1st 2nd 5th 10th  115th  

DME 601 212 189 173 142 

EC:DEC 640 191 168 159 128 

EC:DEC:FEC 685 239 183 182 180 
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Figure S5 Cycling stability of the pure rGO electrode in different electrolytes. 
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Figure S6 Discharge-charge curves of the Na/BF-rGO half cells at different current density. 
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Figure S7 Rate capability of Na/rGO and Na/BF-rGO half cells. 
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 Table S2 Parameters used to fit the Nyquist plots. 

Sample RS CPE-T CPE-P Rct Wo-R Wo-T Wo-P 

rGO 30 1.8×10-6 0.9 1509 22246 104.5 0.46 

BF-rGO 10.5 4.5×10-6 0.8 586 10487 25 0.31 
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Figure S8 Discharge/charge voltage profile for the BF-rGO electrode after 5000 cycles.



S- 

 

 

13

 

Figure S9 SEM images of (a) rGO and (b) BF-rGO. 

 


