## Supplementary Information for:

# Transport and attenuation of particles of different density and surface charge: a karst aquifer field study

Ferry Schiperski,\* Johannes Zirlewagen, and Traugott Scheytt

Technische Universität Berlin, Dept. of Applied Geosciences, Hydrogeology Research Group, 10587 Berlin, Germany

> E-mail: schiperski@tu-berlin.de Phone: +49(0)3031472652

#### Contents of this file

Number of pages: 5Number of Figures: 2 Number of Tables: 1

### List of Tables

| S1 | Tap water and spring water chemistry at the test site during stable discharge |    |
|----|-------------------------------------------------------------------------------|----|
|    | conditions of 0.8 m <sup>3</sup> s <sup>-1</sup> in April 2015                | S3 |

# List of Figures

| S1 | Probability density functions of particle distributions on filters for three exam-                                   |    |
|----|----------------------------------------------------------------------------------------------------------------------|----|
|    | ples with mean particle concentrations per image ( $\overline{x}$ ) of (A) 4.2, (B) 2.3, and                         |    |
|    | (C) 0.6. Calculated values for a Kolmogorov-Smirnov test are well above the                                          |    |
|    | critical values at a significance level of $\alpha = 5\%$ and $n = 400$ ( $\lambda =$ standard                       |    |
|    | deviation; $a_{obs}$ = Kolmogorov-Smirnov values; $a_{crit}$ = critical Kolmogorov-                                  |    |
|    | Smirnov values).                                                                                                     | S4 |
| S2 | Observed (obs) versus nominal standard deviations (stdev) of particle enu-                                           |    |
|    | meration for each of the analyzed filters. Filled symbols show analysis that                                         |    |
|    | were considered for further processing, unfilled symbols show analysis that                                          |    |
|    | were excluded (Si <sup>0</sup> : unmodified silicate particles; Si <sup><math>COOH</math></sup> : carboxylated sili- |    |
|    | cate particles; $PS^0$ : unmodified polystyrene particles; $PS^{COOH}$ : carboxylated                                |    |
|    | polystyrene particles)                                                                                               | S5 |

| Method                 |                           | Tap water                          | Spring water   | Limit of detection             |
|------------------------|---------------------------|------------------------------------|----------------|--------------------------------|
| Cation concentration   | $[mg \ L^{-1}]$           |                                    |                |                                |
| $ICP^{a}$              | $\mathrm{Na}^+$           | 6.2                                | 6.7            | 0.03                           |
| $\mathrm{AAS}^b$       | $\mathrm{K}^+$            | 0.7                                | 0.7            | 0.2                            |
| $ICP^{a}$              | $Ca^{2+}$                 | 122.1                              | 106.8          | 0.13                           |
| $ICP^{a}$              | $\mathrm{Mg}^{2+}$        | 8.6                                | 8.8            | 0.0004                         |
| Anion concentration    | $/mg \; L^{-1}$           |                                    |                |                                |
| $IC^{c}$               | CI-                       | 10.7                               | 11.1           | 1.5                            |
| Titration              | $\rm HCO_3^{-}$           | 341                                | 339            | 1                              |
| $\mathrm{IC}^{c}$      | $\mathrm{SO}_4{}^{2-}$    | 10.5                               | 10.7           | 2.5                            |
| $IC^{c}$               | $NO_3^{-}$                | 14.8                               | 15.0           | 0.75                           |
| Total dissolved solids | $[mg \ L^{-1}]$           |                                    |                |                                |
| Calculated from io     | n content                 | 514.5                              | 499.3          |                                |
| pH /-/                 |                           |                                    |                |                                |
| Hach Portable Met      | $\mathrm{ter}^d$          | 7.6                                | 7.3            | I                              |
| Electrical conductivit | $y \ / \mu S \ cm^{-1} /$ |                                    |                |                                |
| Hach Portable Met      | $\mathrm{ter}^d$          | 556                                | 569            |                                |
|                        | <sup>a</sup> TS 1CAP 63(  | <u>00 DUO; <sup>b</sup>Jei</u>     | na NovAA 4000  | 3; <sup>c</sup> Dionex DX 120; |
|                        |                           | <sup><math>d</math></sup> Hach Por | table Meter HC | )40d equipped with             |
| Conductivity Probe     | IntelliCAL <sup>TM</sup>  | CDC401 and                         | pH Probe Inte  | IliCAL <sup>TM</sup> PHC101    |

Table S1: Tap water and spring water chemistry at the test site during stable discharge conditions of  $0.8 \text{ m}^3 \text{ s}^{-1}$  in April 2015.



Figure S1: Probability density functions of particle distributions on filters for three examples with mean particle concentrations per image ( $\overline{x}$ ) of (A) 4.2, (B) 2.3, and (C) 0.6. Calculated values for a Kolmogorov-Smirnov test are well above the critical values at a significance level of  $\alpha = 5\%$  and n = 400 ( $\lambda =$  standard deviation;  $a_{obs} =$  Kolmogorov-Smirnov values;  $a_{crit}$ = critical Kolmogorov-Smirnov values).



Silicate particles

Figure S2: Observed (obs) versus nominal standard deviations (stdev) of particle enumeration for each of the analyzed filters. Filled symbols show analysis that were considered for further processing, unfilled symbols show analysis that were excluded (Si<sup>0</sup>: unmodified silicate particles; Si<sup>COOH</sup>: carboxylated silicate particles; PS<sup>0</sup>: unmodified polystyrene particles; PS<sup>COOH</sup>: carboxylated polystyrene particles)