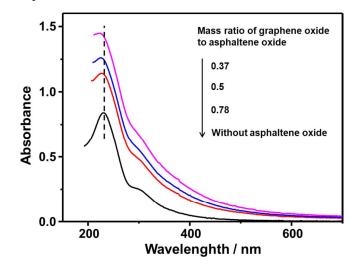

Supporting Information


Using Asphaltene Supermolecules Derived from Coal for the Preparation of

Efficient Carbon Electrodes for Supercapacitors

Wen-Hui Qu, Yu-Bo Guo, Wen-Zhong Shen* and Wen-Cui Li*

Structural Characteristics of Samples and their Raw Materials:

graphene oxide dispersed in water.

Figure S2. UV-vis absorption spectra of graphene oxide and graphene oxide/asphaltene oxide dispersions with different mass ratios of graphene oxide to asphaltene oxide. The concentration of graphene oxide in all dispersions is 0.00144 mg mL⁻¹.

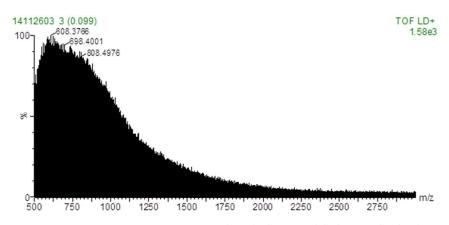


Figure S3. MALDI mass spectrum of asphaltene oxide in tetrahydrofuran.

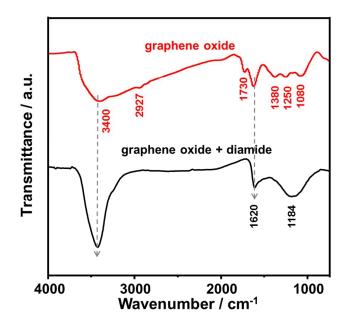


Figure S4. FT-IR spectra of graphene oxide and the sample without asphaltene(graphene oxide+diamide).

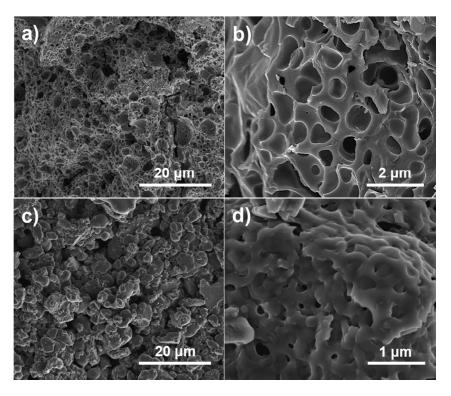
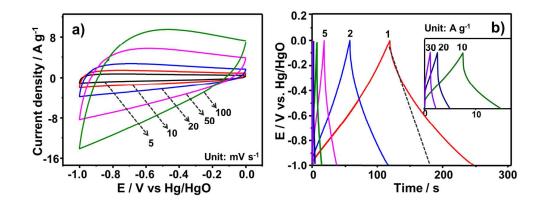
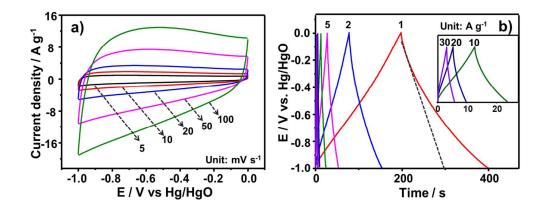
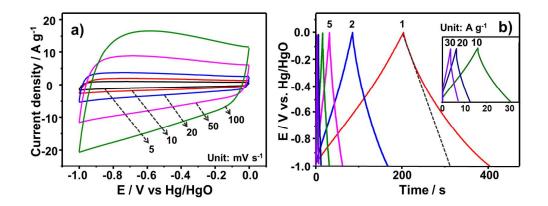




Figure S5. SEM images of (a, b) ACN-0.005 and (c, d) ACN-0.



Electrochemical Performance of the Asphaltene-derived Carbon:

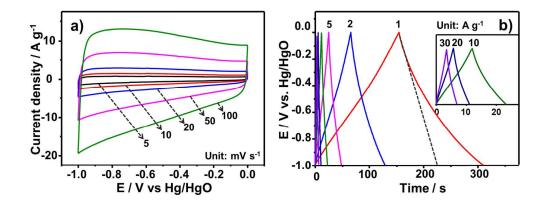

Figure S6. (a) CV curves of ACN-0 at scan rates of 5, 10, 20 50 and 100 mV s⁻¹; (b) GC curves of ACN-0 at current densities of 1, 2, 5, 10, 20 and 30 A g⁻¹. Inset is the enlarged GC curves at current densities of 10, 20 and 30 A g⁻¹.

Figure S7. (a) CV curves of ACN-0.005 at scan rates of 5, 10, 20 50 and 100 mV s⁻¹; (b) GC curves of ACN-0.005 at current densities of 1, 2, 5, 10, 20 and 30 A g⁻¹. Inset is the enlarged GC curves at current densities of 10, 20 and 30 A g⁻¹.

Figure S8. (a) CV curves of ACN-0.01 at scan rates of 5, 10, 20 50 and 100 mV s⁻¹; (b) GC curves of ACN-0.01 at current densities of 1, 2, 5, 10, 20 and 30 A g⁻¹. Inset is the enlarged GC curves at current densities of 10, 20 and 30 A g⁻¹.

Figure S9. (a) CV curves of ACN-0.1 at scan rates of 5, 10, 20 50 and 100 mV s⁻¹; (b) GC curves of ACN-0.1 at current densities of 1, 2, 5, 10, 20 and 30 A g⁻¹. Inset is the enlarged GC curves at current densities of 10, 20 and 30 A g⁻¹.

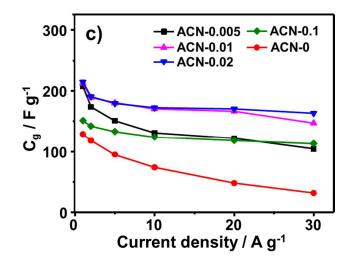


Figure S10. Specific gravimetric capacitance of ACNs at various current densities from 1 to 30 A g^{-1} .

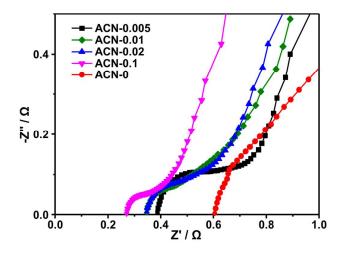


Figure S11. Nyquist plots of ACNs in three-electrode system.

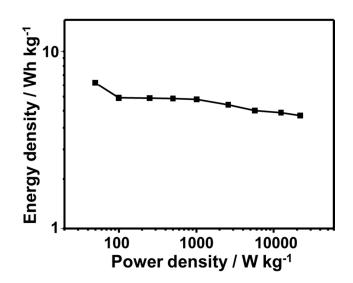


Figure S12. Ragone plot of ACN based supercapacitor in term of electrode active material weight.

Table S1

The capacitance of reported carbon nanosheet and commercial active carbon

Material	Electrolyte	Capacitance/F g ⁻¹	Ref.
Asphaltene derived carbon nanosheet	6 M KOH	214 (1 Ag ⁻¹), 163 (30 Ag ⁻¹)	This work
Mesoporous carbon thin films	6 M KOH	136 (0.5 Ag ⁻¹), 85 (5 Ag ⁻¹)	[1]
Ionic liquid based Microporous carbon sheet	6 M KOH	213 (0.5 Ag ⁻¹), 160 (10 Ag ⁻¹)	[2]
Mesoporous carbon/graphite nanosheet	6 M KOH	203 (1 Ag ⁻¹), 132 (10 Ag ⁻¹)	[3]
Graphene-based macro- and mesoporous frameworks	$1 \mathrm{M} \mathrm{H}_2 \mathrm{SO}_4$	226 (1 mVs ⁻¹), 83 (100 mVs ⁻¹)	[4]
Graphene oxide assisted carbon sheet	5 M KOH	140 (1 Ag ⁻¹)	[5]
Coal tar pitch based mesoporous carbon sheet	1 M Na ₂ SO ₄	276.5 (1 Ag ⁻¹), 82 (20 Ag ⁻¹)	[6]
Commercial active carbon (YP50)	6 M KOH	76 (1 mVs ⁻¹)	[7]

electrodes in three-electrode system.

References

- [1] Feng, D.; Lv, Y. Y.; Wu, Z. X.; Dou, Y. Q.; Han, L.; Sun, Z. K.; Xia, Y.; Zheng, G.; Zhao, D. Free-standing Mesoporous Carbon Thin Films with Highly Ordered Pore Architectures for Nanodevices. J. Am. Chem. Soc. 2011, 133, 15148-15156.
- [2] Jin, Z. Y.; Lu, A. H.; Xu, Y. Y.; Zhang, J. T.; Li, W. C.; Ionic Liquid-assisted Synthesis of Microporous Carbon Nanosheets for Use in High Rate and Long Cycle Life Supercapacitors. *Adv. Mater.* **2014**, *26*, 3700-3705.
- [3] Wang, L.; Mu, G.; Tian, C. G.; Sun, L.; Zhou, W.; Tan, T. X.; Fu, H. In-situ Intercalating Expandable Graphite for Mesoporous Carbon/graphite Nanosheet Composites as High-performance Supercapacitor Electrodes. *ChemSusChem* 2012 5, 2442-2450.
- [4] Wu, Z. S.; Sun, Y.; Tan, Y. Z.; Yang, S.; Feng, X.; Mullen, K. Three-dimensional Graphene-based Macro- and Mesoporous Frameworks for High-performance Electrochemical Capacitive Energy Storage. J. Am. Chem. Soc. 2012, 134, 19532-19535.
- [5] Krishnan, D.; Raidongia, K.; Shao, J. J.; Huang, J. X.; Graphene Oxide Assisted Hydrothermal Carbonization of Carbon Hydrates. ACS Nano, 2014 8, 449-457.
- [6] Wang, Q.; Yan, J.; Wei, T.; Feng, J.; Ren, Y. M.; Fan, Z. J.; Zhang, M.; Jiang, X. Two-dimensional Mesoporous Carbon Sheet-like Framework Material for High-rate Supercapacitors. *Carbon* 2013, 60,481-487.
- [7] Zheng, C.; Zhou, X.; Cao, H.; Wang, G.; Liu, Z.; Synthesis of Porous Graphene/activated Carbon Composite with High Packing Density and Large Specific Surface Area for Supercapacitor Electrode Material. *J. Power Sources* 2014, 258, 290-296.