## Supporting Information

# Synthesis and Properties of [7]Helicene-like Compounds Fused with a Fluorene Unit 

Hiromi Oyama, ${ }^{\dagger}$ Midori Akiyama, ${ }^{\dagger}$ Koji Nakano, ${ }^{\ddagger}$ Masanobu Naito, ${ }^{\S}$ Kazuyuki Nobusawa, 'and Kyoko Nozaki*, ${ }^{\text {' }}$<br>${ }^{\dagger}$ Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan<br>${ }^{7}$ Department of Organic and Polymer Materials Chemistry, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan<br>${ }^{8}$ Research center for structural materials, National Institute for Materials Science, 1-2-1<br>Sengen, Tsukuba, Ibaraki 305-0047, Japan<br>'Graduate School of Engineering, Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan<br>e-mail: nozaki@chembio.t.u-tokyo.ac.jp<br>\section*{Table of Contents}<br>General Procedures<br>..... S2<br>Synthetic procedures and Characterization Data<br>..... S3-S6<br>${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ spectra of compounds $\mathbf{3 a}, \mathbf{3 b}, \mathbf{3 c}, 5$, and $\mathbf{6}$<br>..... S7-S11<br>X-ray Analysis<br>..... S12-S17<br>DFT and TD-DFT calculation results<br>..... S18-S21<br>References<br>..... S22

General Procedures. All manipulations involving air- and/or moisture-sensitive compounds were carried out with the standard Schlenk technique under argon. Most of reagents were used without further purification unless otherwise specified. Analytical thin-layer chromatography was performed on a glass plates coated with $0.25-\mathrm{mm} 230-400$ mesh silica gel containing a fluorescent indicator. Column chromatography was performed by using silica gel (spherical neutral, particle size 63-210 $\mu \mathrm{m}$ ). NMR spectra were recorded in $\mathrm{CDCl}_{3}$ on a 500 MHz spectrometer $\left({ }^{1} \mathrm{H} 500 \mathrm{MHz} ;{ }^{13} \mathrm{C} 126 \mathrm{MHz}\right)$ or a 400 MHz spectrometer ( ${ }^{1} \mathrm{H} 400 \mathrm{MHz} ;{ }^{13} \mathrm{C} 101 \mathrm{MHz}$ ). Chemical shifts are reported in ppm relative to the internal standard signal ( 0 ppm for $\mathrm{Me}_{4} \mathrm{Si}$ in $\mathrm{CDCl}_{3}$ ) or the residual solvent signal ( 7.26 ppm for $\mathrm{CHCl}_{3}$ in $\mathrm{CDCl}_{3}$ ) for ${ }^{1} \mathrm{H}$ and the deuterated solvent signal (77.16 ppm for $\mathrm{CDCl}_{3}$ ) for ${ }^{13} \mathrm{C}$. Data are presented as follows: chemical shift, multiplicity $(\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{m}=$ multiplet and/or multiple resonances), coupling constant in hertz $(\mathrm{Hz})$, and signal area integration in natural numbers. Melting points were determined on a melting point apparatus. High resolution mass spectra are taken by electrospray ionization-time-of-flight (ESI-TOF) method. UV-Vis absorption spectra were recorded on a UV-VIS scanning spectrophotometer. Photoluminescence spectra were recorded on a spectrofluorometer. Absolute quantum yields were determined by absolute quantum yield measurement system with an integrating sphere. Circular dichroism (CD) spectra were recorded on a CD spectrometer system. CPL spectra were measured by using a CPL spectrophotometer. Optical rotations were measured on a polarimeter using a 1-dm cell. HPLC analyses were carried out using a DAICEL CHIRAPAK ${ }^{\circledR}$ IF-3 column ( $4.6 \mathrm{~mm} \times 250 \mathrm{~mm}$ ).

Computational Studies. The DFT and TD-DFT calculations were performed by using the Gaussian 09 program $^{1}$ at the B3LYP/6-31G(d) level.

## Synthetic Procedures and Characterization Data

4,5-Dibromo-9-fluorenone (6): A dry flask was charged with 2,2',6,6'-tetrabromobiphenyl (2.0 g, $4.3 \mathrm{mmol})$ and anhydrous THF $(260 \mathrm{~mL})$. To the mixture was added ${ }^{n} \mathrm{BuLi}(2.68 \mathrm{M}$ in hexane, 3.2 $\mathrm{mL}, 8.5 \mathrm{mmol}$ ) at $-78{ }^{\circ} \mathrm{C}$. After stirring for 2 h , chloromethyl formate ( $0.96 \mathrm{~mL}, 12.8 \mathrm{mmol}$ ) was added. The reaction mixture was stirred for 30 min , and the reaction was quenched by the addition of saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(3 \mathrm{~mL})$. After stirring for 30 min , water $(20 \mathrm{~mL})$ was added. The resulting mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}$, and the combined organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated under reduced pressure. The crude residue was purified by silica-gel column chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$ /hexane $=1 / 2$ as an eluent $)$ to afford the title compound as a yellow solid ( $0.75 \mathrm{~g}, 78 \%$ yield): ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta=7.76-7.70(\mathrm{~m}, 4 \mathrm{H}), 7.26-7.21(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta=190.5,144.1,142.0,138.1,130.7,123.5,117.1 ; \operatorname{HRMS}^{2} \mathrm{ESI}^{+}(m / z)$ calcd for $\mathrm{C}_{14} \mathrm{H}_{10} \mathrm{Br}_{2} \mathrm{O}_{2} \mathrm{Na}^{+}\left([\mathrm{M}+\mathrm{Na}+\mathrm{MeOH}]^{+}\right) 390.8940$, found 390.8943 .

1,9-Bis\{2-[(trimethlsilyl)ethynyl]phenyl\}fluorenone: 1-Bromo-2-[(trimethylsilyl)ethynyl]-benzene $(6.32 \mathrm{~g}, 25.0 \mathrm{mmol})$ in THF ( 100 mL ) was cooled to $-78^{\circ} \mathrm{C}$, and $t-\operatorname{BuLi}(1.60 \mathrm{M}$ in pentane, 30.7 mL , 52.1 mmol ) was added dropwise. After stirring for 40 minutes, the resulting solution was transferred to a mixture of $\mathrm{ZnCl}_{2}(3.64 \mathrm{~g}, 26.4 \mathrm{mmol})$ and $\mathrm{THF}(100 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. The resulting mixture was stirred for 30 minutes, and $6(3.34 \mathrm{~g}, 9.88 \mathrm{mmol})$ in THF $(70 \mathrm{~mL})$ and $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(2.28 \mathrm{~g}, 1.90 \mathrm{mmol})$ was added to the solution. The resulting mixture was warmed to room temperature, and then refluxed for 22 h . The reaction was then quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(10 \mathrm{~mL})$, and the resulting mixture was concentrated under reduced pressure. The resulting residue was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, washed with brine, dried over $\mathrm{MgSO}_{4}$, filtered, and concentrated under reduced pressure. The crude residue was purified by silica-gel column chromatography with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ /hexane (1/4) as an eluent to give a mixture of cis- and trans-isomers of the title compound as a yellow solid ( 4.5 g ). The obtained
mixture of isomers was further used without separation. $\mathrm{HRMS}-\mathrm{ESI}^{+}(\mathrm{m} / \mathrm{z})$ calcd for $\mathrm{C}_{35} \mathrm{H}_{32} \mathrm{OSi}_{2} \mathrm{Na}^{+}$ $\left([\mathrm{M}+\mathrm{Na}]^{+}\right) 547.1884$, found 547.1865.

1,9-Bis(2-ethynylphenyl)fluorenone (7): A mixture of 1,9-bis\{2-[(trimethlsilyl)ethynyl]phenyl\}fluorenone ( $4.5 \mathrm{~g}, 8.6 \mathrm{mmol}$ ), $\mathrm{K}_{2} \mathrm{CO}_{3}(2.6 \mathrm{~g}, 19 \mathrm{mmol}), \mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL}), \mathrm{MeOH}(200 \mathrm{~mL})$ was vigorously stirred until completion of the reaction, which was monitored by TLC. After water (10 mL ) was added, the resulting mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The organic layer was washed with brine, dried over $\mathrm{MgSO}_{4}$, filtered, and concentrated under reduced pressure. The crude residue was purified by recrystallization from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ /hexane to give a mixture of cis- and trans-isomers of 7 (2.96 g) as a yellow solid. The obtained mixture of isomers was further used without separation. HRMS-ESI ${ }^{+}(m / z)$ calcd for $\mathrm{C}_{29} \mathrm{H}_{16} \mathrm{ONa}^{+}\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$403.1093, found 403.1081.
rac-9H-Cyclopenta[1,2-c:4,3-c']diphenanthren-9-one (5): A mixture of $7(2.72 \mathrm{~g}, 7.15 \mathrm{mmol})$ and $\mathrm{PtCl}_{2}(190 \mathrm{mg}, 0.715 \mathrm{mmol})$ in toluene $(200 \mathrm{~mL})$ was refluxed for 18 h . The reaction mixture was concentrated under reduced pressure, and the crude residue was purified by silica-gel column chromatography with chloroform. The obtained solid was recrystallized from hexane/ $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ to give $\operatorname{rac}-5(2.64 \mathrm{~g}, 32 \%$ from compound $\mathbf{6})$ as a red solid. rac-5 can be separated into enatiomerically-pure $(P)-5$ and $(M)-5$ by HPLC equipped with a DICEL CHIEAPAK ${ }^{\circledR}$ IF- 3 column $(4.6 \mathrm{~mm} \times 250 \mathrm{~mm})\left[t_{\mathrm{R}}=\right.$ 3.5 min and 4.2 min (flow rate: 1.0 mL ; eluent: $\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ hexane $=50 / 50$ )]: $\mathrm{mp} 187-188{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.91(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.77(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.65(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.61$ $(\mathrm{d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.56(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.54(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.11(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.30(\mathrm{t}, J$ $=7.7 \mathrm{~Hz}, 2 \mathrm{H}),{ }^{13} \mathrm{C} \mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=193.4,147.2,138.2,135.2,132.1,130.7,129.7$ (2C),
 403.1093, found 403.1092.
rac-9H-Cyclopenta[1,2-c:4,3-c']diphenanthrene (3a): A mixture of $5(50 \mathrm{mg}, 0.13 \mathrm{mmol})$ and hydrazine monohydrate ( $0.10 \mathrm{~mL} \mathrm{mg}, 3.2 \mathrm{mmol}$ ), and $\mathrm{KOH}(22 \mathrm{mg}, 0.40 \mathrm{mmol})$ in diethylene glycol ( 6 mL ) was heated at $170^{\circ} \mathrm{C}$ for 24 h . After cooling to room temperature, the reaction mixture was poured into a solution of concentrated HCl at $0{ }^{\circ} \mathrm{C}$. The resulting colorless precipitate was collected by filtration and washed with water to give a rac-3a ( $37 \mathrm{mg}, 78 \%$ ) as a colorless solid. rac-3a can be separated into enatiomerically-pure $(P)$-3a and $(M)$-3a by HPLC equipped with a DICEL CHIEAPAK ${ }^{\circledR}$ IF-3 column $(4.6 \mathrm{~mm} \times 250 \mathrm{~mm})\left[t_{\mathrm{R}}=9.2 \mathrm{~min}\right.$ and $10.8 \mathrm{~min}\left(f l o w ~ r a t e: ~ 1.0 \mathrm{~mL}\right.$; eluent: $\mathrm{CHCl}_{3} /$ hexane $=50 / 50)]: \mathrm{mp} 178-179{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.92(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.88(\mathrm{~d}, J=7.6$ $\mathrm{Hz}, 2 \mathrm{H}), 7.82(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.71(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.62(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.53(\mathrm{~d}, J=8.3 \mathrm{~Hz}$, $2 \mathrm{H}), 7.09(\mathrm{dt}, J=7.3,1.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.26(\mathrm{dt}, J=7.7,1.1 \mathrm{~Hz}, 2 \mathrm{H}), 4.35(\mathrm{~s}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ( 101 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta=144.1,138.4,131.9,131.5,130.7,127.74,127.71,127.4,126.9,126.43,126.40,126.36$, 123.2, 122.9, 38.5; $\mathrm{HRMS}_{2} \mathrm{ESI}^{+}(\mathrm{m} / \mathrm{z})$ calcd for $\mathrm{C}_{29} \mathrm{H}_{18}{ }^{+}\left(\mathrm{M}^{+}\right) 366.1403$, found 366.1404.
rac-9-Phenyl-9H-cyclopenta[1,2-c:4,3-c']diphenanthrene (3b): To a solution of $\mathbf{5}$ (100 mg, 0.26 mmol ) in THF ( 5 mL ), phenyllithium in cyclohexane and diethylether ( $1.09 \mathrm{M}, 0.30 \mathrm{~mL}, 0.33 \mathrm{mmol}$ ) was added dropwise at $-78^{\circ} \mathrm{C}$. After stirring $-78^{\circ} \mathrm{C}$ for 30 min , methanol and water were added to the mixture. The resulting mixture was concentrated under reduced pressure, extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (twice). The combined organic layers were dried over $\mathrm{MgSO}_{4}$ and concentrated. The resulting residue was dissolved into $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ under Ar atmosphere, and triethylsilane ( 0.10 mL ) and trifluoroacetic acid $(0.05 \mathrm{~mL})$ were added to the solution at $0^{\circ} \mathrm{C}$. The resulting mixture was stirred at room temperature for 20 min , and concentrated. The crude residue was purified by silica-gel column chromatography using hexane $/ \mathrm{CH}_{2} \mathrm{Cl}_{2}(3 / 1)$ as an eluent to afford $\mathbf{3 b}(99 \mathrm{mg}, 85 \%$ yield for two steps) as a colorless solid. rac-3b can be separated into enatiomerically-pure $(P)$ - $\mathbf{3 b}$ and $(M) \mathbf{- 3 b}$ by HPLC equipped with a DICEL CHIEAPAK ${ }^{\circledR}$ IF-3 column $(4.6 \mathrm{~mm} \times 250 \mathrm{~mm})\left[t_{\mathrm{R}}=10.2 \mathrm{~min}\right.$ and 12.2 min (flow rate: 0.75 mL ; eluent: $\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ hexane $=10 / 90$ )] A crystal suitable for an X-ray diffraction
analysis was obtained by recrystallization by slow evaporation from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ /hexane solution.: ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 7.87(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.86(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.80-7.78(\mathrm{~m}, 2 \mathrm{H}), 7.73-7.59$ $(\mathrm{m}, 8 \mathrm{H}), 7.33-7.21(\mathrm{~m}, 5 \mathrm{H}), 7.14-7.09(\mathrm{~m}, 2 \mathrm{H}), 6.33-6.27(\mathrm{~m}, 2 \mathrm{H}), 5.39(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (126 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 149.6,148.2,141.1,138.1,137.7,132.34,132.27,131.7,131.5,130.9,130.8,129.0,128.8$, $128.5,128.2,127.9,127.6,127.5,127.3,127.0,126.9,126.72,126.70,126.5,126.4,123.4,123.32$, 123.29, 122.8, 55.4; HRMS-ESI ${ }^{+}(m / z)$ calcd for $\mathrm{C}_{35} \mathrm{H}_{22}{ }^{+}\left(\mathrm{M}^{+}\right)$442.1716, found 442.1714.
rac-9,9-Diphenyl-9H-cyclopenta[1,2-c:4,3-c']diphenanthrene (3c): To a solution of $\mathrm{PhMgBr}(1.0$ M solution in THF, $0.12 \mathrm{~mL}, 0.12 \mathrm{mmol})$ was added a mixture of $5(30 \mathrm{mg}, 79 \mu \mathrm{~mol})$ in THF ( 1.0 mL ). The resulting mixture was stirred for 30 min , and saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(0.1 \mathrm{~mL})$ was added. The resulting mixture was then filtered through a pad of silica gel and concentrated to give a colorless solid $(35 \mathrm{mg})$. The obtained solid was dissolved in a mixture of trifluoroacetic acid ( $12 \mu \mathrm{~L}, 0.13 \mathrm{mmol}$ ), and the resulting mixture was heated at $80^{\circ} \mathrm{C}$ for 21 h . After the addition of saturated aqueous $\mathrm{NaHCO}_{3}(0.1 \mathrm{~mL})$, the resulting mixture was concentrated under reduced pressure. The crude residue was purified by silica-gel column chromatography using AcOEt/hexane (1/5) as an eluent to afford rac-3c ( $32 \mathrm{mg}, 78 \%$ yield) as a colorless solid. rac-3c can be separated into enatiomerically-pure $(P)-\mathbf{3 c}$ and $(M)-\mathbf{3 c}$ by HPLC equipped with a DICEL CHIEAPAK ${ }^{\circledR}$ IF-3 column ( $4.6 \mathrm{~mm} \times 250 \mathrm{~mm}$ ) $\left[t_{\mathrm{R}}=12.2 \mathrm{~min}\right.$ and 16.1 min (flow rate: 1.0 mL ; eluent: $\mathrm{CHCl}_{3} /$ hexane $=25 / 75$ ) $]: \mathrm{mp} 185-186{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ( $\left.500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.85(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.76-7.67(\mathrm{~m}, 8 \mathrm{H}), 7.60(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H})$, $7.43-7.41(\mathrm{~m}, 4 \mathrm{H}), 7.26-7.24(\mathrm{~m}, 8 \mathrm{H}), 7.09(\mathrm{t}, J=7.4,2 \mathrm{H}), 6.31(\mathrm{dt}, J=7.7,2 \mathrm{H}), 4.35(\mathrm{~s}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta=152.1,145.2,137.2,132.3,131.7,130.9,128.8,128.6,128.5,128.0$, $127.4,127.1,126.9,126.8,126.6,126.5,123.7,123.4,66.0 ; \mathrm{HRMS}^{2}-\mathrm{ESI}^{+}(\mathrm{m} / \mathrm{z})$ calcd for $\mathrm{C}_{41} \mathrm{H}_{26}\left(\mathrm{M}^{+}\right)$ 518.2029, found 518.2013.


Figure S1. ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{6}\left(\mathrm{CDCl}_{3}\right)$.


Figure S2. ${ }^{13} \mathrm{C}$ NMR spectrum of $6\left(\mathrm{CDCl}_{3}\right)$.

为



Figure S3. ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{5}\left(\mathrm{CDCl}_{3}\right)$.


Figure $\mathbf{S 4} .{ }^{13} \mathrm{C}$ NMR spectrum of $5\left(\mathrm{CDCl}_{3}\right)$.


Figure S5. ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{3 a}\left(\mathrm{CDCl}_{3}\right)$.

| $\mathrm{Y} / \mathrm{m}$ |


Figure S6. ${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{3 a}\left(\mathrm{CDCl}_{3}\right)$.


Figure S7. ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{3 b}\left(\mathrm{CDCl}_{3}\right)$.


Figure S8. ${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{3 b}\left(\mathrm{CDCl}_{3}\right)$.


Figure S9. ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{3 c}\left(\mathrm{CDCl}_{3}\right)$.


Figure S10. ${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{3 c}\left(\mathrm{CDCl}_{3}\right)$.

X-ray Crystallography. For X-ray crystallographical analyses, suitable single crystals were selected under ambient conditions, mounted with perfluoroalkyl ether to the glass fiber, and transferred to the goniometer of a VariMax diffractometer with a graphite-monochromated $\mathrm{Mo}-\mathrm{K} \alpha$ radiation $(\lambda=$ $0.71075 \AA$ ) or $\mathrm{Cu}-\mathrm{K} \alpha$ irradiation $(\lambda=1.54187 \AA$ A). The structures were solved by a direct method (SIR $2002^{2}$ ) and refined by full-matrix least-squares techniques against $F 2$ (SHELXL-97 ${ }^{3}$ ). The intensities were corrected for Lorentz and polarization effects. All non-hydrogen atoms were refined anisotropically. Hydrogen atoms were placed using AFIX instructions.


Figure S11. ORTEP drawing of 5 ( $50 \%$ thermal ellipsoids. All hydrogen atoms are omitted for clarity.)

Table S1. Crystallographic data and structure refinement details for $\mathbf{5}$

| Formula | $\mathrm{C}_{29} \mathrm{H}_{16} \mathrm{O}$ |
| :---: | :---: |
| Formula weight | 380.42 |
| Temperature | 293(2) K |
| Wavelength | 0.71075 A |
| Crystal system | 'orthorhombic' |
| Space group | 'Pbca' |
| Unit cell dimensions | $a=13.816(2) \AA \quad \alpha=90^{\circ}$ |
|  | $b=13.862(3) \AA$ ̊ $\quad \beta=90^{\circ}$ |
|  | $c=19.248(4) \AA \quad \gamma=90^{\circ}$ |
| Volume | $3686.3(12) \AA^{3}$ |
| Z | 8 |
| Density (calculated) | $1.371 \mathrm{~g} / \mathrm{cm}^{3}$ |
| Absorption coefficient | $0.082 \mathrm{~mm}^{-1}$ |
| F(000) | 1584 |
| Crystal size | $0.25 \times 0.20 \times 0.10 \mathrm{~mm}^{3}$ |
| Theta range for data collection | 3.30 to $25.00^{\circ}$ |
| Index ranges | $-16<=\mathrm{h}<=16,-16<=\mathrm{k}<=15,-17<=\mathrm{l}<=22$ |
| Reflections collected | 23178 |
| Independent reflections | 3219 [ $\left.R_{\text {int }}=0.0420\right]$ |
| Completeness to theta $=25.00^{\circ}$ | 99.0\% |
| Max. and min. transmission | 0.9919 and 0.9799 |
| Refinement method | Full-matrix least-squares on $F^{2}$ |
| Data / restraints / parameters | 3219 / 0 / 271 |
| Goodness-of-fit on $F^{2}$ | 1.071 |
| Final R indices [I>2sigma(I)] | $R_{1}=0.0394, \mathrm{w} R_{2}=0.1259$ |
| R indices (all data) | $R_{1}=0.0439, \mathrm{w} R_{2}=0.1324$ |
| Largest diff. peak and hole | 0.193 and $-0.180 \mathrm{e} / \mathrm{A}^{3}$ |



Figure S12. ORTEP drawing of 3a ( $50 \%$ thermal ellipsoids. All hydrogen atoms are omitted for clarity.)

Table S2. Crystallographic data and structure refinement details for 3a

| Formula | $\mathrm{C}_{29} \mathrm{H}_{18}$ |
| :---: | :---: |
| Formula weight | 366.43 |
| Temperature | 93(2) K |
| Wavelength | 1.54187 A |
| Crystal system | 'orthorhombic' |
| Space group | ${ }^{\prime} P 22_{1} 2_{1}{ }^{\prime}$ |
| Unit cell dimensions | $a=8.051(3) \AA \quad \alpha=90^{\circ}$ |
|  | $b=14.010(6) \AA \quad \beta=90^{\circ}$ |
|  | $c=16.659(6) \AA \quad \gamma=90^{\circ}$ |
| Volume | 1879.0(13) $\AA^{3}$ |
| Z | 4 |
| Density (calculated) | $1.295 \mathrm{~g} / \mathrm{cm}^{3}$ |
| Absorption coefficient | $0.557 \mathrm{~mm}^{-1}$ |
| F(000) | 768 |
| Crystal size | $0.20 \times 0.20 \times 0.20 \mathrm{~mm}^{3}$ |
| Theta range for data collection | 4.123 to $73.770^{\circ}$ |
| Index ranges | $-10<=\mathrm{h}<=9,-17<=\mathrm{k}<=17,-20<=1<=20$ |
| Reflections collected | 28093 |
| Independent reflections | $3735\left[R_{\text {int }}=0.0515\right]$ |
| Completeness to theta $=25.00^{\circ}$ | 99.1\% |
| Refinement method | Full-matrix least-squares on $F^{2}$ |
| Data / restraints / parameters | 3735/ 0 / 262 |
| Goodness-of-fit on $F^{2}$ | 1.071 |
| Final R indices [ $\mathrm{I}>2 \operatorname{sigma}(\mathrm{I})$ ] | $R_{1}=0.0438, \mathrm{w} R_{2}=0.1070$ |
| R indices (all data) | $R_{1}=0.0456, \mathrm{w} R_{2}=0.1087$ |
| Largest diff. peak and hole | 0.124 and $-0.217 \mathrm{e}^{\circ} \mathrm{A}^{3}$ |



Figure S13. ORTEP drawing of $\mathbf{3 b}$ ( $50 \%$ thermal ellipsoids. All hydrogen atoms are omitted for clarity.)

Table S3. Crystallographic data and structure refinement details for 3b

| Formula | $\mathrm{C}_{35} \mathrm{H}_{22}$ |
| :---: | :---: |
| Formula weight | 442.52 |
| Temperature | 93(2) K |
| Wavelength | 0.71075 A |
| Crystal system | 'monoclinic' |
| Space group | ' $P 21_{1} / \mathrm{c}^{\prime}$ |
| Unit cell dimensions | $a=12.558(4) \AA \quad \alpha=90^{\circ}$ |
|  | $b=14.180(4) \AA \quad \beta=102.720(5)$ |
|  | $c=26.385(8) \AA \quad \AA=90^{\circ}$ |
| Volume | 4583(2) $\AA^{3}$ |
| Z | 8 |
| Density (calculated) | $1.283 \mathrm{Mg} / \mathrm{cm}^{3}$ |
| Absorption coefficient | $0.073 \mathrm{~mm}^{-1}$ |
| F(000) | 1856 |
| Crystal size | $0.500 \times 0.500 \times 0.05 \mathrm{~mm}^{3}$ |
| Theta range for data collection | 2.456 to $27.499^{\circ}$ |
| Index ranges | $-16<=\mathrm{h}<=16,-18<=\mathrm{k}<=18,-34<=1<=34$ |
| Reflections collected | 72605 |
| Independent reflections | 10523 |
| $R_{\text {int }}$ | 0.0874 |
| Data / restraints / parameters | 10523 / 0 / 631 |
| Goodness-of-fit on $F^{2}$ | 1.257 |
| Final R indices [ $\mathrm{I}>2$ sigma(I)] | $R_{1}=0.0817, \mathrm{w} R_{2}=0.1464$ |
| R indices (all data) | $R_{1}=0.0985, \mathrm{w} R_{2}=0.1540$ |
| Largest diff. peak and hole | 0.227 and $-0.236 \mathrm{e} / \mathrm{A}^{3}$ |



Figure S14. ORTEP drawing of $\mathbf{3 c}$ ( $50 \%$ thermal ellipsoids. All hydrogen atoms are omitted for clarity.)

Table S4. Crystallographic data and structure refinement details for $\mathbf{3 c}$

| Formula | $\mathrm{C}_{41} \mathrm{H}_{26}$ |  |
| :---: | :---: | :---: |
| Formula weight | 5182.62 |  |
| Temperature | 296(2) K |  |
| Wavelength | 1.54187 A |  |
| Crystal system | 'orthorhombic' |  |
| Space group | ${ }^{\prime} P 2_{1} 2_{1} 2_{1}{ }^{\prime}$ |  |
| Unit cell dimensions | $a=9.8499(2) \AA$ | $\alpha=90^{\circ}$ |
|  | $b=11.1882(4) \AA$ | $\beta=90^{\circ}$ |
|  | $c=24.6237(4) \AA$ | $\gamma=90^{\circ}$ |
| Volume | 2713.60(9) $\AA^{3}$ |  |
| Z | 4 |  |
| Density (calculated) | $1.269 \mathrm{~g} / \mathrm{cm}^{3}$ |  |
| Absorption coefficient | $0.546 \mathrm{~mm}^{-1}$ |  |
| F(000) | 1088 |  |
| Crystal size | $0.10 \times 0.10 \times 0.10 \mathrm{~mm}^{3}$ |  |
| Theta range for data collection | 3.59 to $66.97^{\circ}$ |  |
| Index ranges | $-11<=\mathrm{h}<=11,-13<=\mathrm{k}<=13,-29<=1<=29$ |  |
| Reflections collected | 31160 |  |
| Independent reflections | 4830 [ $\left.R_{\text {int }}=0.0336\right]$ |  |
| Completeness to theta $=25.00^{\circ}$ | 100\% |  |
| Max. and min. transmission | 0.9474 and 0.9474 |  |
| Refinement method | Full-matrix least-squares on $F^{2}$ |  |
| Data / restraints / parameters | 4830 / 0 / 371 |  |
| Goodness-of-fit on $F^{2}$ | 1.777 |  |
| Final R indices [ $\mathrm{I}>2 \operatorname{sigma}(\mathrm{I})$ ] | $R_{1}=0.0758, \mathrm{w} R_{2}=0.2675$ |  |
| R indices (all data) | $R_{1}=0.1146, \mathrm{w} R_{2}=0.1882$ |  |
| Absolute structure parameter | -1(4) |  |
| Largest diff. peak and hole | 0.359 and $-0.312 \mathrm{e} / \mathrm{A}^{3}$ |  |



Figure S15. (a) Dimer and (b) packing structures of rac-3b.

Table S5. Coordinates $(\AA)$ and Absolute Energy of the Optimized Structure for $\mathbf{3 a}{ }^{a}$

| atom | x | y | z | atom | x | y | z |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| C | -0.548767 | -1.028563 | -1.553853 | C | -4.080074 | -0.077137 | 0.576651 |
| H | 0.208705 | -0.281737 | -1.751328 | H | -5.028248 | 0.204976 | 1.028165 |
| C | -1.766554 | 0.584573 | -0.040717 | C | -3.372894 | 2.264980 | 0.818254 |
| C | -2.666373 | -1.685144 | -0.558245 | H | -4.373439 | 2.489418 | 1.179288 |
| C | 1.626227 | -0.713185 | 0.692207 | C | -2.532666 | -2.947918 | -1.180472 |
| C | 1.142748 | 2.923581 | -0.270364 | H | -3.327558 | -3.678210 | -1.046903 |
| C | -0.745667 | 1.587627 | 0.067805 | C | 3.872646 | -1.345366 | -0.138616 |
| C | -1.440012 | -3.241162 | -1.972754 | H | 4.643940 | -2.104428 | -0.244646 |
| H | -1.355307 | -4.211614 | -2.454357 | C | 2.666793 | -1.684565 | 0.558323 |
| C | -1.626019 | -0.713578 | -0.692156 | C | 3.372206 | 2.265591 | -0.818856 |
| C | 0.549032 | -1.028387 | 1.553963 | H | 4.372540 | 2.490077 | -1.180449 |
| H | -0.208576 | -0.281723 | 1.751414 | C | 3.064786 | 0.933291 | -0.459261 |
| C | -1.143348 | 2.923406 | 0.270724 | C | 2.533357 | -2.947362 | 1.180615 |
| C | 0.745302 | 1.587828 | -0.067615 | H | 3.328341 | -3.677537 | 1.046930 |
| C | 1.766473 | 0.584840 | 0.040645 | C | -0.000329 | 3.863167 | 0.000372 |
| C | -3.065154 | 0.932804 | 0.458794 | H | 0.228906 | 4.522656 | 0.850086 |
| C | -3.872397 | -1.346155 | 0.138586 | H | -0.229556 | 4.523245 | -0.848870 |
| H | -4.643407 | -2.105483 | 0.244814 | C | 1.440810 | -3.240783 | 1.972933 |
| C | -0.454737 | -2.258789 | -2.179639 | H | 1.356312 | -4.211203 | 2.454632 |
| H | 0.385422 | -2.461744 | -2.838045 | C | 2.442261 | 3.272261 | -0.648398 |
| C | -2.442973 | 3.271845 | 0.648271 | H | 2.701941 | 4.311607 | -0.833273 |
| H | -2.702922 | 4.311107 | 0.833300 | C | 4.079933 | -0.076387 | -0.577058 |
| C | 0.455332 | -2.258572 | 2.179812 | H | 5.028015 | 0.205845 | -1.028714 |
| H | -0.384755 | -2.461697 | 2.838260 |  |  |  |  |
| absolute energy $E$ (B3LYP): -1115.94597398 au |  |  |  |  |  |  |  |
| ${ }^{\text {a }}$ Calculated by DFT method [B3LYP/6-31G(d)] |  |  |  |  |  |  |  |

Table S6. Coordinates $(\AA)$ and Absolute Energy of the Optimized Structure for $\mathbf{3} \mathbf{b}^{a}$

| atom | x | y | z | atom | x | y | z |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| C | -2.668076 | -0.428945 | -0.971459 | H | 0.557958 | 4.983093 | -1.323112 |
| H | -2.955447 | -0.745170 | -1.986321 | C | 2.780289 | 0.734340 | 2.457397 |
| C | 0.322464 | 1.705567 | -0.262360 | H | 2.932318 | -0.074703 | 3.166510 |
| C | 0.721236 | -1.806596 | -0.236961 | C | -3.951079 | -0.250445 | -0.169869 |
| C | 1.462275 | 1.715930 | 0.648739 | C | 3.789424 | -0.201285 | -1.781530 |
| C | -1.962548 | -2.771661 | -0.095095 | H | 4.033624 | 0.651678 | -2.408698 |
| H | -2.985428 | -3.137575 | -0.113790 | C | -3.905318 | 0.103032 | 1.187208 |
| C | -1.305689 | 3.105755 | -1.500083 | H | -2.941638 | 0.247536 | 1.668710 |
| H | -1.558643 | 4.073568 | -1.925693 | C | 2.004786 | 4.014970 | -0.097010 |
| C | -0.385362 | -0.903429 | -0.370928 | H | 2.680474 | 4.866300 | -0.065429 |
| C | 0.417591 | -3.130961 | 0.223078 | C | 3.669534 | 1.823945 | 2.431490 |
| C | -1.681822 | -1.446948 | -0.438588 | H | 4.520559 | 1.852198 | 3.106603 |
| C | 2.104099 | -1.527160 | -0.610075 | C | 3.431081 | 2.872284 | 1.564480 |
| C | -0.919596 | -3.580737 | 0.312113 | H | 4.081420 | 3.744101 | 1.563186 |
| H | -1.106799 | -4.594533 | 0.657069 | C | 2.786817 | -3.680765 | 0.405288 |
| C | 3.132426 | -2.451194 | -0.245987 | H | 3.585414 | -4.361151 | 0.690981 |
| C | -0.052957 | 2.953106 | -0.861737 | C | -5.079999 | 0.269966 | 1.917385 |
| C | 1.706370 | 0.684948 | 1.586687 | H | -5.026845 | 0.544360 | 2.967739 |
| H | 1.024678 | -0.153230 | 1.642968 | C | 4.807206 | -1.069445 | -1.346881 |
| C | -0.517912 | 0.577300 | -0.548093 | H | 5.841723 | -0.880575 | -1.620613 |
| C | -1.812301 | 0.818844 | -1.042156 | C | 4.475072 | -2.182129 | -0.598747 |
| C | -2.216825 | 2.068762 | -1.518670 | H | 5.242963 | -2.889153 | -0.293046 |
| H | -3.219709 | 2.207227 | -1.913537 | C | -6.323350 | 0.086607 | 1.303627 |
| C | 2.473301 | -0.427593 | -1.420311 | H | -7.238875 | 0.217302 | 1.874311 |
| H | 1.706250 | 0.240474 | -1.788639 | C | -6.380327 | -0.265531 | -0.044135 |
| C | 1.484183 | -4.024603 | 0.580393 | H | -7.340905 | -0.412019 | -0.531223 |
| H | 1.217997 | -4.993803 | 0.995383 | C | -5.199766 | -0.432884 | -0.774159 |
| C | 2.320206 | 2.858863 | 0.689555 | H | -5.250465 | -0.709694 | -1.825165 |
| C | 0.841130 | 4.075389 | -0.795638 |  |  |  |  |

absolute energy $E$ (B3LYP): -1346.99097542 au
${ }^{a}$ Calculated by DFT method [B3LYP/6-31G(d)]

Table S7. Coordinates $(\AA)$ and Absolute Energy of the Optimized Structure for $\mathbf{3 c}{ }^{a}$

| atom | x | y | z | atom | x | y | z |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| C | 2.344287 | -1.740650 | 0.250438 | H | -0.830048 | 3.879523 | 2.332233 |
| C | -1.289189 | -1.028618 | -0.568249 | C | 1.732432 | -3.761700 | -1.643922 |
| C | 0.042511 | 0.699264 | 0.262614 | H | 1.459833 | -4.551894 | -2.339301 |
| C | 3.322055 | -2.703625 | -0.150993 | C | 4.578789 | 2.740465 | -0.496382 |
| C | 1.051681 | 1.706384 | 0.426512 | H | 5.314047 | 3.467890 | -0.159882 |
| C | 0.716073 | 2.820911 | 1.263430 | C | 4.859963 | -1.901764 | 1.557022 |
| C | 3.871233 | -1.011342 | 2.013241 | H | 5.825730 | -1.948326 | 2.052918 |
| H | 4.064640 | -0.379918 | 2.875990 | C | 4.578745 | -2.740386 | 0.496292 |
| C | 1.051703 | -1.706214 | -0.426751 | H | 5.314014 | -3.467793 | 0.159776 |
| C | 2.344312 | 1.740746 | -0.250599 | C | 4.860064 | 1.901763 | -1.557033 |
| C | 2.996056 | 3.676521 | 1.152185 | H | 5.825850 | 1.948312 | -2.052892 |
| H | 3.761019 | 4.386963 | 1.456067 | C | -3.122769 | -0.578030 | 1.151827 |
| C | 3.322078 | 2.703725 | 0.150861 | C | -2.701961 | 1.696173 | -1.885546 |
| C | 0.042543 | -0.699089 | -0.262935 | H | -1.792368 | 2.215267 | -1.603311 |
| C | 1.732396 | 3.761833 | 1.643701 | C | -4.299656 | 0.071688 | 1.558770 |
| H | 1.459783 | 4.552045 | 2.339055 | H | -4.656143 | 0.934889 | 1.005465 |
| C | 0.716106 | -2.820777 | -1.263649 | C | -1.624581 | 2.174125 | 1.296145 |
| C | -2.267864 | 0.000025 | -0.000091 | H | -2.657415 | 2.373360 | 1.563326 |
| C | -1.624540 | -2.173962 | -1.296453 | C | -3.123193 | 0.577903 | -1.151627 |
| H | -2.657376 | -2.373212 | -1.563631 | C | -5.033635 | 0.384461 | -2.654052 |
| C | 3.871366 | 1.011309 | -2.013247 | H | -5.943059 | -0.135907 | -2.943597 |
| H | 4.064831 | 0.379813 | -2.875932 | C | -4.605027 | -1.503257 | 3.371688 |
| C | 2.646618 | -0.935625 | 1.374059 | H | -5.177403 | -1.862831 | 4.222563 |
| H | 1.894922 | -0.260805 | 1.761356 | C | -3.436014 | 2.154544 | -2.981325 |
| C | -1.289218 | 1.028749 | 0.567960 | H | -3.087890 | 3.026281 | -3.529376 |
| C | -2.701145 | -1.696257 | 1.885556 | C | -5.032739 | -0.384828 | 2.654821 |
| H | -1.791589 | -2.215238 | 1.603028 | H | -5.942138 | 0.135414 | 2.944676 |
| C | -0.611624 | -3.018433 | -1.705773 | C | -3.434807 | -2.154727 | 2.981572 |
| H | -0.829994 | -3.879402 | -2.332476 | H | -3.086405 | -3.026437 | 3.529490 |
| C | 2.646713 | 0.935632 | -1.374136 | C | -4.300140 | -0.071929 | -1.558216 |
| H | 1.895043 | 0.260772 | -1.761414 | H | -4.656387 | -0.935170 | -1.004812 |
| C | 2.996083 | -3.676381 | -1.152374 | C | -4.606291 | 1.502927 | -3.371060 |
| H | 3.761069 | -4.386801 | -1.456251 | H | -5.178972 | 1.862429 | -4.221761 |
| C | -0.611675 | 3.018576 | 1.705498 |  |  |  |  |
| absolute energy $E$ (B3LYP): -1578.02594106 au |  |  |  |  |  |  |  |

Table S8. The selected absorption peaks of $\mathbf{3}$ calculated by TD-DFT method [B3LYP/6-31G(d)]

|  | electron <br> transition | transition <br> energy $(\mathrm{eV})$ | wavelength <br> $(\mathrm{nm})$ | main transition configuration <br> (CI expansion coefficient) | oscillator strength <br> $f$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 3a | $\mathrm{S}_{0} \rightarrow \mathrm{~S}_{1}$ | 3.26 | 381 | HOMO $\rightarrow$ LUMO (0.670) <br> HOMO $\rightarrow$ LUMO $+1(-0.168)$ | 0.2401 |
| $\mathbf{3 b}$ | $\mathrm{~S}_{0} \rightarrow \mathrm{~S}_{1}$ | 3.22 | 385 | HOMO $\rightarrow$ LUMO (0.674) <br> HOMO $-1 \rightarrow$ LUMO $(-0.153)$ | 0.1675 |
| 3c | $\mathrm{S}_{0} \rightarrow \mathrm{~S}_{1}$ | 3.16 | 392 | HOMO $\rightarrow \mathbf{L U M O}(\mathbf{0 . 6 7 7})$ <br> HOMO $-1 \rightarrow$ LUMO $(-0.137)$ | 0.1361 |



Figure S16. The HOMOs and LUMOs of (a) 3a, (b) 3b, and (c) 3c
calculated by DFT method [B3LYP /6-31G(d)].

## References

1. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J. A., Jr.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, Ö.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Gaussian 09, Revision D.01; Gaussian, Inc.: Wallingford CT, 2009.
2. Altomare, A.; Burla, M. C.; Camalli, M.; Cascarano, G. L.; Giacovazzo, C.; Guagliardi, A.; Moliterni, A. G. G.; Polidori, G.; Spagna, R. J. Appl. Crystallogr. 1999, 32, 115.
3. Sheldrick, G. M. SHELXL-97, Program for the Refinement of Crystal Structures, University of Göttingen: Göttingen, Germany, 1997.
