Supporting Information

Synthesis and Properties of [7]Helicene-like Compounds Fused with a Fluorene Unit

Hiromi Oyama,[†] Midori Akiyama,[†] Koji Nakano,[‡] Masanobu Naito,[§]

Kazuyuki Nobusawa,¹ and Kyoko Nozaki^{*,†}

 [†]Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
 [‡]Department of Organic and Polymer Materials Chemistry, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan
 [§]Research center for structural materials, National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047, Japan
 [§]Graduate School of Engineering, Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan

e-mail: nozaki@chembio.t.u-tokyo.ac.jp

Table of Contents

General Procedures	S2
Synthetic procedures and Characterization Data	\$3 - \$6
¹ H and ¹³ C spectra of compounds 3a , 3b , 3c , 5 , and 6	S7–S11
X-ray Analysis	S12-S17
DFT and TD-DFT calculation results	S18-S21
References	S22

General Procedures. All manipulations involving air- and/or moisture-sensitive compounds were carried out with the standard Schlenk technique under argon. Most of reagents were used without further purification unless otherwise specified. Analytical thin-layer chromatography was performed on a glass plates coated with 0.25-mm 230-400 mesh silica gel containing a fluorescent indicator. Column chromatography was performed by using silica gel (spherical neutral, particle size 63-210 μ m). NMR spectra were recorded in CDCl₃ on a 500 MHz spectrometer (¹H 500 MHz; ¹³C 126 MHz) or a 400 MHz spectrometer (¹H 400 MHz; ¹³C 101 MHz). Chemical shifts are reported in ppm relative to the internal standard signal (0 ppm for Me₄Si in CDCl₃) or the residual solvent signal (7.26 ppm for CHCl₃ in CDCl₃) for ¹H and the deuterated solvent signal (77.16 ppm for CDCl₃) for ¹³C. Data are presented as follows: chemical shift, multiplicity (s = singlet, d = doublet, t = triplet, m = multipletand/or multiple resonances), coupling constant in hertz (Hz), and signal area integration in natural numbers. Melting points were determined on a melting point apparatus. High resolution mass spectra are taken by electrospray ionization-time-of-flight (ESI-TOF) method. UV-Vis absorption spectra were recorded on a UV-VIS scanning spectrophotometer. Photoluminescence spectra were recorded on a spectrofluorometer. Absolute quantum yields were determined by absolute quantum yield measurement system with an integrating sphere. Circular dichroism (CD) spectra were recorded on a CD spectrometer system. CPL spectra were measured by using a CPL spectrophotometer. Optical rotations were measured on a polarimeter using a 1-dm cell. HPLC analyses were carried out using a DAICEL CHIRAPAK[®] IF-3 column (4.6 mm \times 250 mm).

Computational Studies. The DFT and TD–DFT calculations were performed by using the Gaussian 09 program¹ at the B3LYP/6–31G(d) level.

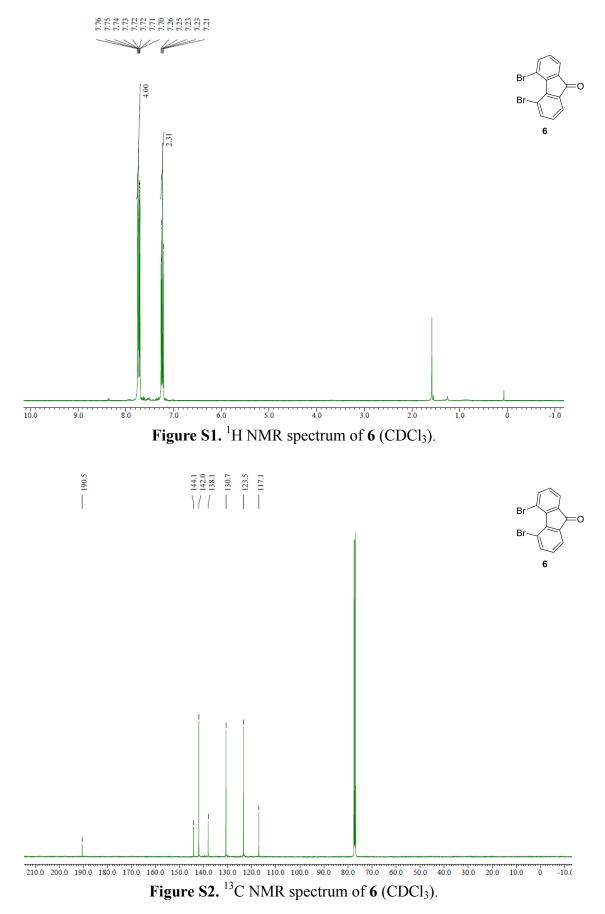
Synthetic Procedures and Characterization Data

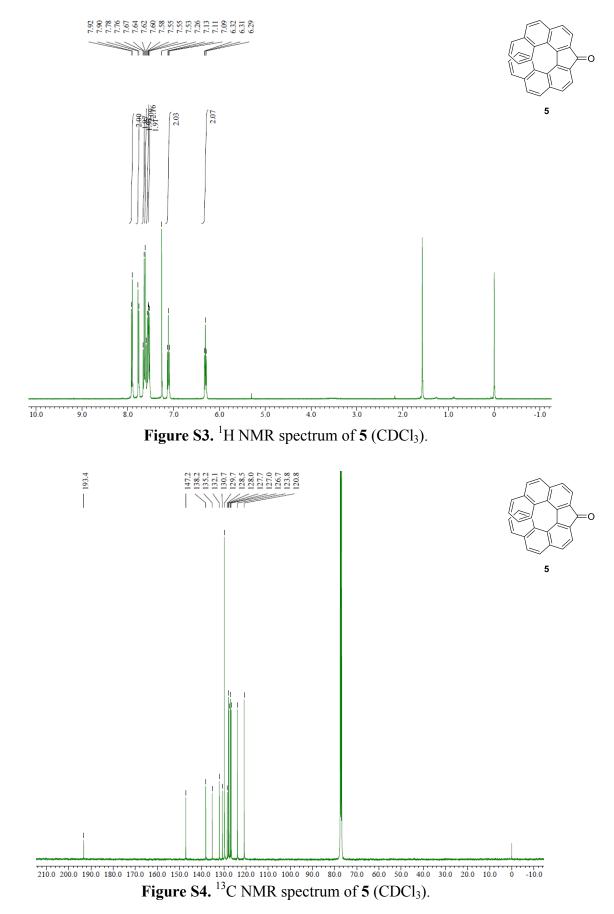
4,5-Dibromo-9-fluorenone (6): A dry flask was charged with 2,2',6,6'-tetrabromobiphenyl (2.0 g, 4.3 mmol) and anhydrous THF (260 mL). To the mixture was added ^{*n*}BuLi (2.68 M in hexane, 3.2 mL, 8.5 mmol) at -78 °C. After stirring for 2 h, chloromethyl formate (0.96 mL, 12.8 mmol) was added. The reaction mixture was stirred for 30 min, and the reaction was quenched by the addition of saturated aqueous NH₄Cl (3 mL). After stirring for 30 min, water (20 mL) was added. The resulting mixture was extracted with Et₂O, and the combined organic layer was dried over Na₂SO₄, filtered, and concentrated under reduced pressure. The crude residue was purified by silica-gel column chromatography (CH₂Cl₂/hexane = 1/2 as an eluent) to afford the title compound as a yellow solid (0.75 g, 78% yield): ¹H NMR (400 MHz, CDCl₃) δ = 7.76–7.70 (m, 4H), 7.26–7.21 (m, 2H); ¹³C NMR (101 MHz, CDCl₃) δ = 190.5, 144.1, 142.0, 138.1, 130.7, 123.5, 117.1; HRMS-ESI⁺ (*m/z*) calcd for C₁₄H₁₀Br₂O₂Na⁺ ([M + Na + MeOH]⁺) 390.8940, found 390.8943.

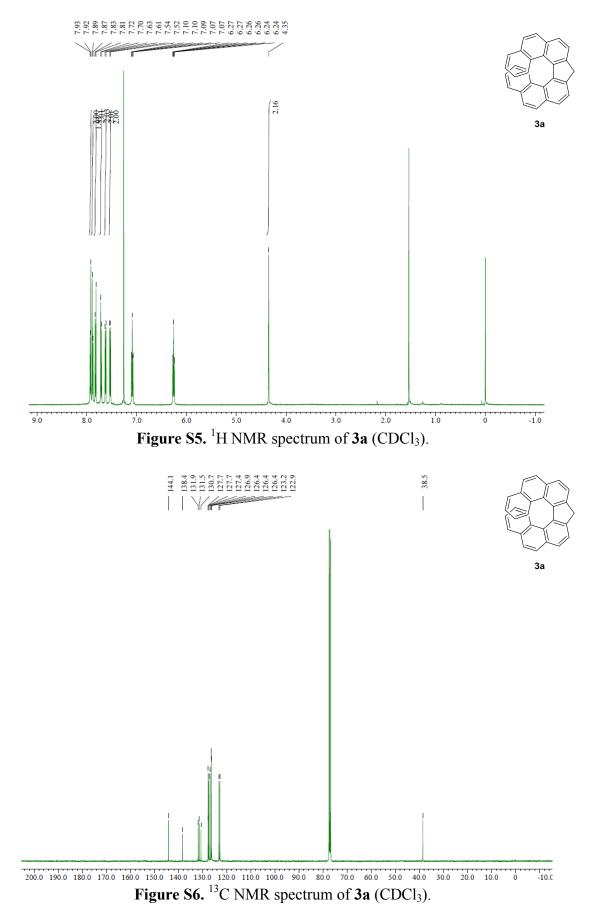
1,9-Bis{2-[(trimethlsilyl)ethynyl]phenyl}fluorenone: 1-Bromo-2-[(trimethylsilyl)ethynyl]-benzene (6.32 g, 25.0 mmol) in THF (100 mL) was cooled to -78 °C, and *t*-BuLi (1.60 *M* in pentane, 30.7 mL, 52.1 mmol) was added dropwise. After stirring for 40 minutes, the resulting solution was transferred to a mixture of ZnCl₂ (3.64 g, 26.4 mmol) and THF (100 mL) at 0 °C. The resulting mixture was stirred for 30 minutes, and **6** (3.34 g, 9.88 mmol) in THF (70 mL) and Pd(PPh₃)₄ (2.28 g, 1.90 mmol) was added to the solution. The resulting mixture was warmed to room temperature, and then refluxed for 22 h. The reaction was then quenched with saturated aqueous NH₄Cl (10 mL), and the resulting mixture was concentrated under reduced pressure. The resulting residue was extracted with CH₂Cl₂, washed with brine, dried over MgSO₄, filtered, and concentrated under reduced pressure. The crude residue was purified by silica-gel column chromatography with CH₂Cl₂/hexane (1/4) as an eluent to give a mixture of *cis*- and *trans*-isomers of the title compound as a yellow solid (4.5 g). The obtained

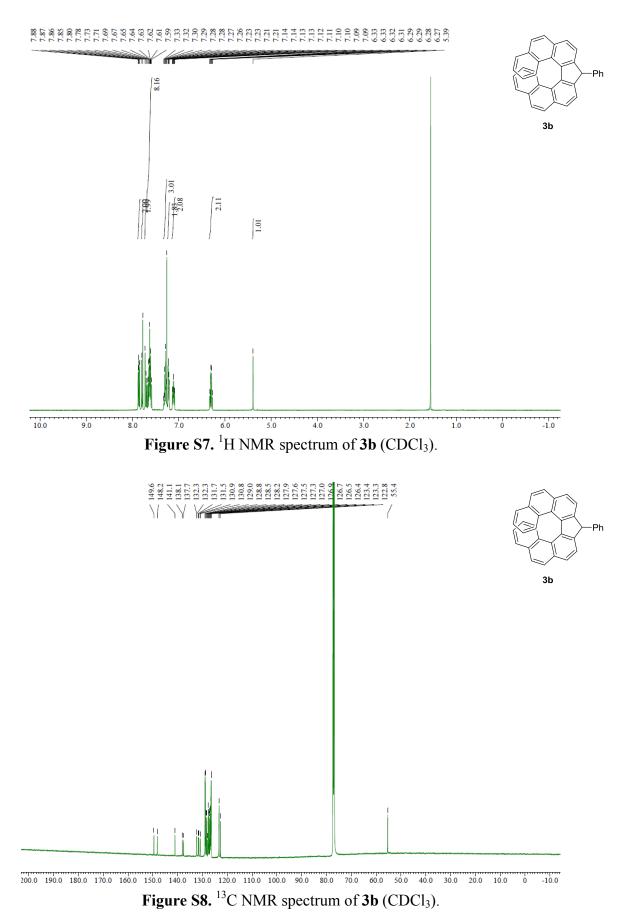
mixture of isomers was further used without separation. HRMS–ESI⁺ (m/z) calcd for C₃₅H₃₂OSi₂Na⁺ ([M + Na]⁺) 547.1884, found 547.1865.

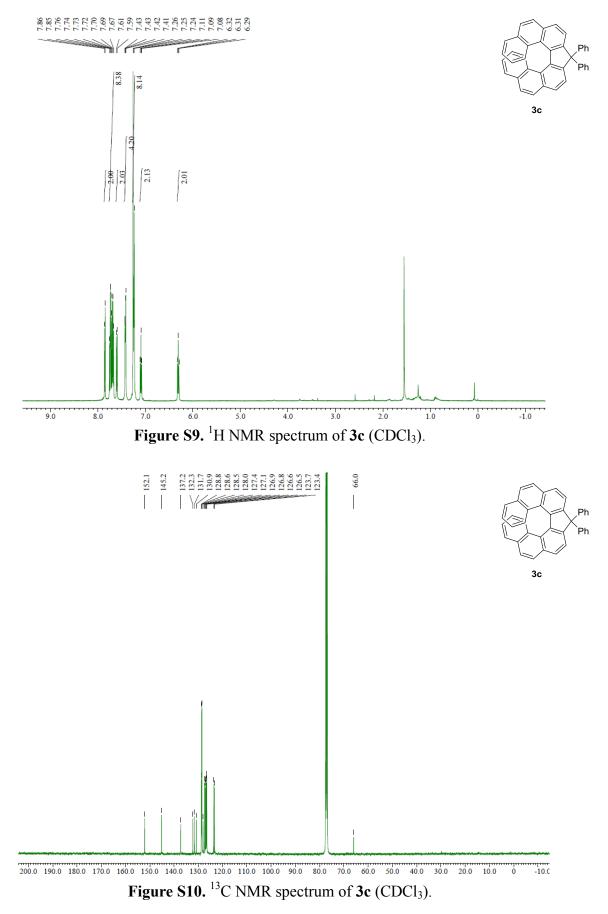
1,9-Bis(2-ethynylphenyl)fluorenone (7): A mixture of 1,9-bis{2-[(trimethlsilyl)ethynyl]phenyl}fluorenone (4.5 g, 8.6 mmol), K₂CO₃ (2.6 g, 19 mmol), CH₂Cl₂ (20 mL), MeOH (200 mL) was vigorously stirred until completion of the reaction, which was monitored by TLC. After water (10 mL) was added, the resulting mixture was extracted with CH₂Cl₂. The organic layer was washed with brine, dried over MgSO₄, filtered, and concentrated under reduced pressure. The crude residue was purified by recrystallization from CH₂Cl₂/hexane to give a mixture of *cis*- and *trans*-isomers of **7** (2.96 g) as a yellow solid. The obtained mixture of isomers was further used without separation. HRMS–ESI⁺ (m/z) calcd for C₂₉H₁₆ONa⁺ ([M + Na]⁺) 403.1093, found 403.1081.


*rac-9H-*Cyclopenta[1,2-*c*:4,3-*c*']diphenanthren-9-one (5): A mixture of **7** (2.72 g, 7.15 mmol) and PtCl₂ (190 mg, 0.715 mmol) in toluene (200 mL) was refluxed for 18 h. The reaction mixture was concentrated under reduced pressure, and the crude residue was purified by silica-gel column chromatography with chloroform. The obtained solid was recrystallized from hexane/CH₂Cl₂ to give *rac*-5 (2.64 g, 32% from compound **6**) as a red solid. *rac*-5 can be separated into enatiomerically-pure (*P*)-**5** and (*M*)-**5** by HPLC equipped with a DICEL CHIEAPAK[®] IF-3 column (4.6 mm × 250 mm)[*t*_R = 3.5 min and 4.2 min (flow rate: 1.0 mL; eluent: CH₂Cl₂/hexane = 50/50)]: mp 187-188 °C; ¹H NMR (500 MHz, CDCl₃) δ = 7.91 (d, *J* = 7.6 Hz, 2H), 7.77 (d, *J* = 7.6 Hz, 2H), 7.65 (d, *J* = 8.2 Hz, 2H), 7.61 (d, *J* = 8.7 Hz, 2H), 7.56 (d, *J* = 8.4 Hz, 2H), 7.54 (d, *J* = 7.8 Hz, 2H), 7.11 (t, *J* = 7.4 Hz, 2H), 6.30 (t, *J* = 7.7 Hz, 2H),; ¹³C NMR (101 MHz, CDCl₃) δ = 193.4, 147.2, 138.2, 135.2, 132.1, 130.7, 129.7 (2C), 128.5, 128.0, 127.7, 127.0, 126.7, 123.8, 120.8; HRMS-ESI⁺ (*m/z*) calcd for C₂₉H₁₆ONa⁺ ([M + Na]⁺) 403.1093, found 403.1092.


*rac-9H-*Cyclopenta[1,2-*c*:4,3-*c*']diphenanthrene (3a): A mixture of 5 (50 mg, 0.13 mmol) and hydrazine monohydrate (0.10 mL mg, 3.2 mmol), and KOH (22 mg, 0.40 mmol) in diethylene glycol (6 mL) was heated at 170 °C for 24 h. After cooling to room temperature, the reaction mixture was poured into a solution of concentrated HCl at 0 °C. The resulting colorless precipitate was collected by filtration and washed with water to give a *rac*-3a (37 mg, 78%) as a colorless solid. *rac*-3a can be separated into enatiomerically-pure (*P*)-3a and (*M*)-3a by HPLC equipped with a DICEL CHIEAPAK[®] IF-3 column (4.6 mm × 250 mm)[t_R = 9.2 min and 10.8 min (flow rate: 1.0 mL; eluent: CHCl₃/hexane = 50/50)]: mp 178-179 °C; ¹H NMR (500 MHz, CDCl₃) δ = 7.92 (d, *J* = 7.8 Hz, 2H), 7.88 (d, *J* = 7.6 Hz, 2H), 7.82 (d, *J* = 8.7 Hz, 2H), 7.71 (d, *J* = 8.7 Hz, 2H), 7.62 (d, *J* = 7.8 Hz, 2H), 7.53 (d, *J* = 8.3 Hz, 2H), 7.09 (dt, *J* = 7.3, 1.0 Hz, 2H), 6.26 (dt, *J* = 7.7, 1.1 Hz, 2H), 4.35 (s,2H); ¹³C NMR (101 MHz, CDCl₃) δ = 144.1, 138.4, 131.9, 131.5, 130.7, 127.74, 127.71, 127.4, 126.9, 126.43, 126.40, 126.36, 123.2, 122.9, 38.5; HRMS-ESI⁺ (*m*/z) calcd for C₂₉H₁₈⁺ (M⁺) 366.1403, found 366.1404.


rac-9-Phenyl-9*H*-cyclopenta[1,2-*c*:4,3-*c*']diphenanthrene (3b): To a solution of 5 (100 mg, 0.26 mmol) in THF (5 mL), phenyllithium in cyclohexane and diethylether (1.09 M, 0.30 mL, 0.33 mmol) was added dropwise at -78 °C. After stirring -78 °C for 30 min, methanol and water were added to the mixture. The resulting mixture was concentrated under reduced pressure, extracted with CH₂Cl₂ (twice). The combined organic layers were dried over MgSO₄ and concentrated. The resulting residue was dissolved into CH₂Cl₂ under Ar atmosphere, and triethylsilane (0.10 mL) and trifluoroacetic acid (0.05 mL) were added to the solution at 0 °C. The resulting mixture was stirred at room temperature for 20 min, and concentrated. The crude residue was purified by silica-gel column chromatography using hexane/CH₂Cl₂ (3/1) as an eluent to afford **3b** (99 mg, 85% yield for two steps) as a colorless solid. *rac*-**3b** can be separated into enatiomerically-pure (*P*)-**3b** and (*M*)-**3b** by HPLC equipped with a DICEL CHIEAPAK[®] IF-3 column (4.6 mm × 250 mm) [$t_R = 10.2$ min and 12.2 min (flow rate: 0.75 mL; eluent: CH₂Cl₂/hexane = 10/90)] A crystal suitable for an X-ray diffraction


analysis was obtained by recrystallization by slow evaporation from CH₂Cl₂/hexane solution.: ¹H NMR (400 MHz, CDCl₃) δ 7.87 (d, *J* = 7.8 Hz, 1H), 7.86 (d, *J* = 7.8 Hz, 1H), 7.80–7.78 (m, 2H), 7.73–7.59 (m, 8H), 7.33–7.21 (m, 5H), 7.14–7.09 (m, 2H), 6.33–6.27 (m, 2H), 5.39 (s, 1H); ¹³C NMR (126 MHz, CDCl₃) δ 149.6, 148.2, 141.1, 138.1, 137.7, 132.34, 132.27, 131.7, 131.5, 130.9, 130.8, 129.0, 128.8, 128.5, 128.2, 127.9, 127.6, 127.5, 127.3, 127.0, 126.9, 126.72, 126.70, 126.5, 126.4, 123.4, 123.32, 123.29, 122.8, 55.4; HRMS-ESI⁺ (*m/z*) calcd for C₃₅H₂₂⁺ (M⁺) 442.1716, found 442.1714.


rac-9,9-Diphenyl-9H-cyclopenta[1,2-c:4,3-c']diphenanthrene (3c): To a solution of PhMgBr (1.0 M solution in THF. 0.12 mL. 0.12 mmol) was added a mixture of 5 (30 mg, 79 umol) in THF (1.0 mL). The resulting mixture was stirred for 30 min, and saturated aqueous NH₄Cl (0.1 mL) was added. The resulting mixture was then filtered through a pad of silica gel and concentrated to give a colorless solid (35 mg). The obtained solid was dissolved in a mixture of trifluoroacetic acid (12 μ L, 0.13 mmol), and the resulting mixture was heated at 80 °C for 21 h. After the addition of saturated aqueous NaHCO₃ (0.1 mL), the resulting mixture was concentrated under reduced pressure. The crude residue was purified by silica-gel column chromatography using AcOEt/hexane (1/5) as an eluent to afford *rac*-3c (32 mg, 78% yield) as a colorless solid. *rac*-3c can be separated into enatiomerically-pure (P)-3c and (M)-3c by HPLC equipped with a DICEL CHIEAPAK[®] IF-3 column (4.6 mm \times 250 mm) $[t_{\rm R} = 12.2 \text{ min and } 16.1 \text{ min (flow rate: } 1.0 \text{ mL; eluent: CHCl₃/hexane = 25/75)]: mp 185-186 °C; ¹H$ NMR (500 MHz, CDCl₃) $\delta = 7.85$ (d. J = 8.0 Hz, 2H), 7.76–7.67 (m. 8H), 7.60 (d. J = 8.0 Hz, 2H). 7.43–7.41 (m, 4H), 7.26–7.24 (m, 8H), 7.09 (t, J = 7.4, 2H), 6.31 (dt, J = 7.7, 2H), 4.35 (s,2H); ¹³C NMR (101 MHz, CDCl₃) $\delta = 152.1$, 145.2, 137.2, 132.3, 131.7, 130.9, 128.8, 128.6, 128.5, 128.0, 127.4, 127.1, 126.9, 126.8, 126.6, 126.5, 123.7, 123.4, 66.0; HRMS-ESI⁺ (m/z) calcd for C₄₁H₂₆ (M⁺) 518.2029, found 518.2013.

X-ray Crystallography. For X-ray crystallographical analyses, suitable single crystals were selected under ambient conditions, mounted with perfluoroalkyl ether to the glass fiber, and transferred to the goniometer of a VariMax diffractometer with a graphite-monochromated Mo–K α radiation ($\lambda = 0.71075$ Å) or Cu–K α irradiation ($\lambda = 1.54187$ Å). The structures were solved by a direct method (SIR 2002²) and refined by full-matrix least-squares techniques against *F*2 (SHELXL-97³). The intensities were corrected for Lorentz and polarization effects. All non-hydrogen atoms were refined anisotropically. Hydrogen atoms were placed using AFIX instructions.

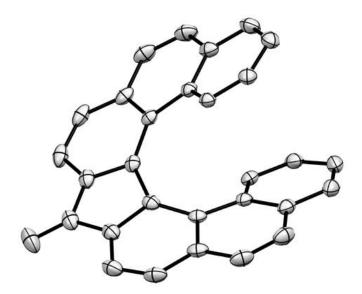


Figure S11. ORTEP drawing of 5 (50% thermal ellipsoids. All hydrogen atoms are omitted for clarity.)

Formula	$C_{29}H_{16}O$		
Formula weight	380.42		
Temperature	293(2) K		
Wavelength	0.71075 Å		
Crystal system	'orthorhombic'		
Space group	'Pbca'		
Unit cell dimensions	$a = 13.816(2) \text{ Å} \qquad \alpha = 90^{\circ}$		
	$b = 13.862(3) \text{ Å} \qquad \beta = 90^{\circ}$		
	$c = 19.248(4) \text{ Å}$ $\gamma = 90^{\circ}$		
Volume	3686.3(12)Å ³		
Z	8		
Density (calculated)	1.371 g/cm^3		
Absorption coefficient	0.082 mm^{-1}		
F(000)	1584		
Crystal size	$0.25 \times 0.20 \times 0.10 \text{ mm}^3$		
Theta range for data collection	3.30 to 25.00°		
Index ranges	-16<=h<=16, -16<=k<=15, -17<=l<=22		
Reflections collected	23178		
Independent reflections	$3219 [R_{int} = 0.0420]$		
Completeness to theta = 25.00°	99.0%		
Max. and min. transmission	0.9919 and 0.9799		
Refinement method	Full-matrix least-squares on F^2		
Data / restraints / parameters	3219 / 0 / 271		
Goodness-of-fit on F^2	1.071		
Final R indices [I>2sigma(I)]	$R_1 = 0.0394, wR_2 = 0.1259$		
R indices (all data)	$R_1 = 0.0439, wR_2 = 0.1324$		
Largest diff. peak and hole	0.193 and -0.180 e/Å^3		
- 1			

Table S1. Crystallographic data and structure refinement details for 5

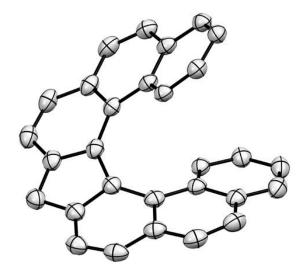


Figure S12. ORTEP drawing of 3a (50% thermal ellipsoids. All hydrogen atoms are omitted for clarity.)

Table S2. Crystallographic data and structure refinement details for 3a

Formula	$C_{29}H_{18}$
Formula weight	366.43
Temperature	93(2) K
Wavelength	1.54187 Å
Crystal system	'orthorhombic'
Space group	<i>P</i> 2 ₁ 2 ₁ 2 ₁ [']
Unit cell dimensions	$a = 8.051(3) \text{ Å}$ $\alpha = 90^{\circ}$
	$b = 14.010(6) \text{ Å} \qquad \beta = 90^{\circ}$
	$c = 16.659(6) \text{ Å}$ $\gamma = 90^{\circ}$
Volume	1879.0(13)Å ³
Z	4
Density (calculated)	1.295 g/cm^3
Absorption coefficient	0.557 mm^{-1}
F(000)	768
Crystal size	$0.20 \times 0.20 \times 0.20 \text{ mm}^3$
Theta range for data collection	4.123 to 73.770°
Index ranges	-10<=h<=9, -17<=k<=17, -20<=l<=20
Reflections collected	28093
Independent reflections	$3735 [R_{int} = 0.0515]$
Completeness to theta = 25.00°	99.1%
Refinement method	Full-matrix least-squares on F^2
Data / restraints / parameters	3735/0/262
Goodness-of-fit on F^2	1.071
Final R indices [I>2sigma(I)]	$R_1 = 0.0438$, w $R_2 = 0.1070$
R indices (all data)	$R_1 = 0.0456, wR_2 = 0.1087$
Largest diff. peak and hole	0.124 and -0.217 e/Å^3

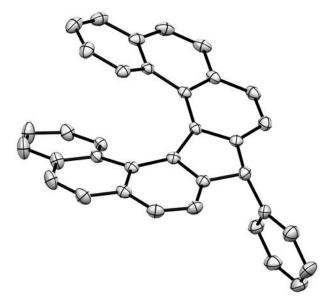


Figure S13. ORTEP drawing of 3b (50% thermal ellipsoids. All hydrogen atoms are omitted for clarity.)

Formula	$C_{35}H_{22}$	
Formula weight	442.52	
Temperature	93(2) K	
Wavelength	0.71075 Å	
Crystal system	'monoclinic'	
Space group	'P21/c'	
Unit cell dimensions	a = 12.558(4) Å	$\alpha = 90^{\circ}$
	b = 14.180(4) Å	$\beta = 102.720(5)^{\circ}$
	c = 26.385(8) Å	$\gamma = 90^{\circ}$
Volume	$4583(2) \text{ Å}^3$	
Z	8	
Density (calculated)	1.283 Mg/cm^3	
Absorption coefficient	0.073 mm^{-1}	
F(000)	1856	
Crystal size	$0.500 \times 0.500 \times 0.05 \text{ mm}$	3
Theta range for data collection	2.456 to 27.499 °	
Index ranges	-16<=h<=16, -18<=k<=	=18, -34 <=l<=34
Reflections collected	72605	
Independent reflections	10523	
R _{int}	0.0874	
Data / restraints / parameters	10523 / 0 / 631	
Goodness-of-fit on F^2	1.257	
Final R indices [I>2sigma(I)]	$R_1 = 0.0817, wR_2 = 0.146$	54
R indices (all data)	$R_1 = 0.0985, wR_2 = 0.154$	
Largest diff. peak and hole	0.227 and -0.236 e/Å^3	

Table S3. Crystallographic data and structure refinement details for 3b

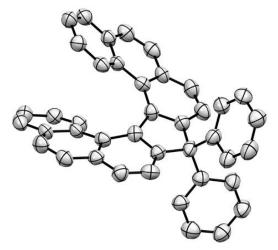


Figure S14. ORTEP drawing of 3c (50% thermal ellipsoids. All hydrogen atoms are omitted for clarity.)

Table S4. Crystallographic data and structure refinement details for 3c

Formula	$C_{41}H_{26}$
Formula weight	5182.62
Temperature	296(2) K
Wavelength	1.54187 Å
Crystal system	'orthorhombic'
Space group	'P2 ₁ 2 ₁ 2 ₁ '
Unit cell dimensions	$a = 9.8499(2) \text{ Å} \qquad \alpha = 90^{\circ}$
	$b = 11.1882(4) \text{ Å} \qquad \beta = 90^{\circ}$
	$c = 24.6237(4) \text{ Å} \qquad \gamma = 90^{\circ}$
Volume	$2713.60(9) \text{ Å}^3$
Z	4
Density (calculated)	1.269 g/cm^3
Absorption coefficient	0.546 mm^{-1}
F(000)	1088
Crystal size	$0.10 \times 0.10 \times 0.10 \text{ mm}^3$
Theta range for data collection	3.59 to 66.97°
Index ranges	-11<=h<=11, -13<=k<=13, -29<=l<=29
Reflections collected	31160
Independent reflections	$4830 [R_{int} = 0.0336]$
Completeness to theta = 25.00°	100%
Max. and min. transmission	0.9474 and 0.9474
Refinement method	Full-matrix least-squares on F^2
Data / restraints / parameters	4830 / 0 / 371
Goodness-of-fit on F^2	1.777
Final R indices [I>2sigma(I)]	$R_1 = 0.0758, wR_2 = 0.2675$
R indices (all data)	$R_1 = 0.1146, wR_2 = 0.1882$
Absolute structure parameter	-1(4)
Largest diff. peak and hole	0.359 and -0.312 e/Å^3

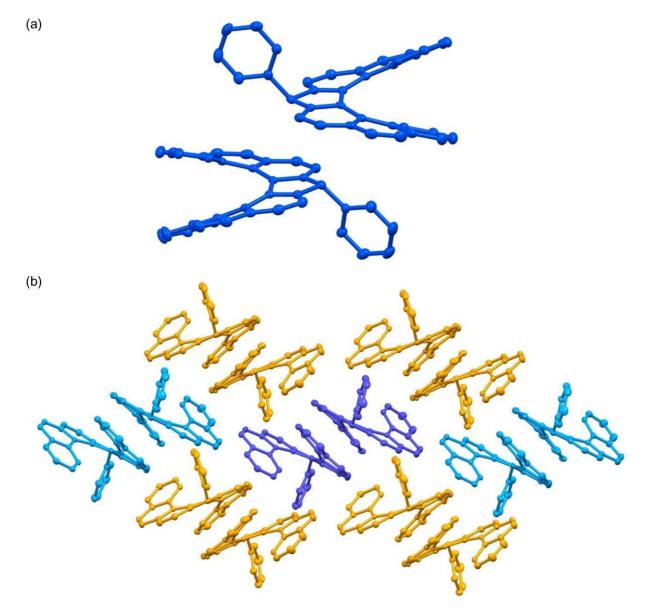


Figure S15. (a) Dimer and (b) packing structures of *rac-3b*.

atom	X	у	Z	atom	X	у	Z
С	-0.548767	-1.028563	-1.553853	С	-4.080074	-0.077137	0.576651
Н	0.208705	-0.281737	-1.751328	Н	-5.028248	0.204976	1.028165
С	-1.766554	0.584573	-0.040717	С	-3.372894	2.264980	0.818254
С	-2.666373	-1.685144	-0.558245	Н	-4.373439	2.489418	1.179288
С	1.626227	-0.713185	0.692207	С	-2.532666	-2.947918	-1.180472
С	1.142748	2.923581	-0.270364	Н	-3.327558	-3.678210	-1.046903
С	-0.745667	1.587627	0.067805	С	3.872646	-1.345366	-0.138616
С	-1.440012	-3.241162	-1.972754	Н	4.643940	-2.104428	-0.244646
Н	-1.355307	-4.211614	-2.454357	С	2.666793	-1.684565	0.558323
С	-1.626019	-0.713578	-0.692156	С	3.372206	2.265591	-0.818856
С	0.549032	-1.028387	1.553963	Н	4.372540	2.490077	-1.180449
Н	-0.208576	-0.281723	1.751414	С	3.064786	0.933291	-0.459261
С	-1.143348	2.923406	0.270724	С	2.533357	-2.947362	1.180615
С	0.745302	1.587828	-0.067615	Н	3.328341	-3.677537	1.046930
С	1.766473	0.584840	0.040645	С	-0.000329	3.863167	0.000372
С	-3.065154	0.932804	0.458794	Н	0.228906	4.522656	0.850086
С	-3.872397	-1.346155	0.138586	Н	-0.229556	4.523245	-0.848870
Н	-4.643407	-2.105483	0.244814	С	1.440810	-3.240783	1.972933
С	-0.454737	-2.258789	-2.179639	Н	1.356312	-4.211203	2.454632
Н	0.385422	-2.461744	-2.838045	С	2.442261	3.272261	-0.648398
С	-2.442973	3.271845	0.648271	Н	2.701941	4.311607	-0.833273
Н	-2.702922	4.311107	0.833300	С	4.079933	-0.076387	-0.577058
С	0.455332	-2.258572	2.179812	Н	5.028015	0.205845	-1.028714
Н	-0.384755	-2.461697	2.838260				
	absolute energy E (B3LYP): -1115.94597398 au						
^a Calculated by DFT method [B3LYP/6-31G(d)]							

Table S5. Coordinates (Å) and Absolute Energy of the Optimized Structure for $3a^{a}$

atom	X	у	Z	atom	X	у	Z
С	-2.668076	-0.428945	-0.971459	Н	0.557958	4.983093	-1.323112
Н	-2.955447	-0.745170	-1.986321	С	2.780289	0.734340	2.457397
С	0.322464	1.705567	-0.262360	Н	2.932318	-0.074703	3.166510
С	0.721236	-1.806596	-0.236961	С	-3.951079	-0.250445	-0.169869
С	1.462275	1.715930	0.648739	С	3.789424	-0.201285	-1.781530
С	-1.962548	-2.771661	-0.095095	Н	4.033624	0.651678	-2.408698
Н	-2.985428	-3.137575	-0.113790	С	-3.905318	0.103032	1.187208
С	-1.305689	3.105755	-1.500083	Н	-2.941638	0.247536	1.668710
Н	-1.558643	4.073568	-1.925693	С	2.004786	4.014970	-0.097010
С	-0.385362	-0.903429	-0.370928	Н	2.680474	4.866300	-0.065429
С	0.417591	-3.130961	0.223078	С	3.669534	1.823945	2.431490
С	-1.681822	-1.446948	-0.438588	Н	4.520559	1.852198	3.106603
С	2.104099	-1.527160	-0.610075	С	3.431081	2.872284	1.564480
С	-0.919596	-3.580737	0.312113	Н	4.081420	3.744101	1.563186
Н	-1.106799	-4.594533	0.657069	С	2.786817	-3.680765	0.405288
С	3.132426	-2.451194	-0.245987	Н	3.585414	-4.361151	0.690981
С	-0.052957	2.953106	-0.861737	С	-5.079999	0.269966	1.917385
С	1.706370	0.684948	1.586687	Н	-5.026845	0.544360	2.967739
Н	1.024678	-0.153230	1.642968	С	4.807206	-1.069445	-1.346881
С	-0.517912	0.577300	-0.548093	Н	5.841723	-0.880575	-1.620613
С	-1.812301	0.818844	-1.042156	С	4.475072	-2.182129	-0.598747
С	-2.216825	2.068762	-1.518670	Н	5.242963	-2.889153	-0.293046
Н	-3.219709	2.207227	-1.913537	С	-6.323350	0.086607	1.303627
С	2.473301	-0.427593	-1.420311	Н	-7.238875	0.217302	1.874311
Н	1.706250	0.240474	-1.788639	С	-6.380327	-0.265531	-0.044135
С	1.484183	-4.024603	0.580393	Н	-7.340905	-0.412019	-0.531223
Н	1.217997	-4.993803	0.995383	С	-5.199766	-0.432884	-0.774159
С	2.320206	2.858863	0.689555	Н	-5.250465	-0.709694	-1.825165
C	0.841130	4.075389	-0.795638				
absolute energy <i>E</i> (B3LYP): -1346.99097542 au							

 Table S6. Coordinates (Å) and Absolute Energy of the Optimized Structure for $3b^a$

^aCalculated by DFT method [B3LYP/6-31G(d)]

atom	Х	y	Z	atom	x	У	Z
С	2.344287	-1.740650	0.250438	Н	-0.830048	3.879523	2.332233
С	-1.289189	-1.028618	-0.568249	С	1.732432	-3.761700	-1.643922
С	0.042511	0.699264	0.262614	Н	1.459833	-4.551894	-2.339301
С	3.322055	-2.703625	-0.150993	С	4.578789	2.740465	-0.496382
С	1.051681	1.706384	0.426512	Н	5.314047	3.467890	-0.159882
С	0.716073	2.820911	1.263430	С	4.859963	-1.901764	1.557022
С	3.871233	-1.011342	2.013241	Н	5.825730	-1.948326	2.052918
Н	4.064640	-0.379918	2.875990	С	4.578745	-2.740386	0.496292
С	1.051703	-1.706214	-0.426751	Н	5.314014	-3.467793	0.159776
С	2.344312	1.740746	-0.250599	С	4.860064	1.901763	-1.557033
С	2.996056	3.676521	1.152185	Н	5.825850	1.948312	-2.052892
Н	3.761019	4.386963	1.456067	С	-3.122769	-0.578030	1.151827
С	3.322078	2.703725	0.150861	С	-2.701961	1.696173	-1.885546
С	0.042543	-0.699089	-0.262935	Н	-1.792368	2.215267	-1.603311
С	1.732396	3.761833	1.643701	С	-4.299656	0.071688	1.558770
Н	1.459783	4.552045	2.339055	Н	-4.656143	0.934889	1.005465
С	0.716106	-2.820777	-1.263649	С	-1.624581	2.174125	1.296145
С	-2.267864	0.000025	-0.000091	Н	-2.657415	2.373360	1.563326
С	-1.624540	-2.173962	-1.296453	С	-3.123193	0.577903	-1.151627
Н	-2.657376	-2.373212	-1.563631	С	-5.033635	0.384461	-2.654052
С	3.871366	1.011309	-2.013247	Н	-5.943059	-0.135907	-2.943597
Н	4.064831	0.379813	-2.875932	С	-4.605027	-1.503257	3.371688
С	2.646618	-0.935625	1.374059	Н	-5.177403	-1.862831	4.222563
Н	1.894922	-0.260805	1.761356	С	-3.436014	2.154544	-2.981325
С	-1.289218	1.028749	0.567960	Н	-3.087890	3.026281	-3.529376
С	-2.701145	-1.696257	1.885556	С	-5.032739	-0.384828	2.654821
Н	-1.791589	-2.215238	1.603028	Н	-5.942138	0.135414	2.944676
С	-0.611624	-3.018433	-1.705773	С	-3.434807	-2.154727	2.981572
Н	-0.829994	-3.879402	-2.332476	Н	-3.086405	-3.026437	3.529490
С	2.646713	0.935632	-1.374136	С	-4.300140	-0.071929	-1.558216
Н	1.895043	0.260772	-1.761414	Н	-4.656387	-0.935170	-1.004812
С	2.996083	-3.676381	-1.152374	С	-4.606291	1.502927	-3.371060
Н	3.761069	-4.386801	-1.456251	Н	-5.178972	1.862429	-4.221761
С	-0.611675	3.018576	1.705498				
absolute energy <i>E</i> (B3LYP): -1578.02594106 au							

Table S7. Coordinates (Å) and Absolute Energy of the Optimized Structure for $3c^{a}$

^aCalculated by DFT method [B3LYP/6-31G(d)]

	electron transition	transition energy (eV)	wavelength (nm)	main transition configuration (CI expansion coefficient)	oscillator strength f
3 a	$S_0 \rightarrow S_1$	3.26	381	HOMO \rightarrow LUMO (0.670)	0.2401
				HOMO \rightarrow LUMO+1 (-0.168)	
3 b	$S_0 \to S_1$	3.22	385	HOMO \rightarrow LUMO (0.674)	0.1675
				HOMO-1 \rightarrow LUMO (-0.153)	
	$S_0 \to S_1$	3.16	392	HOMO \rightarrow LUMO (0.677)	0.1361
				HOMO-1 \rightarrow LUMO (-0.137)	

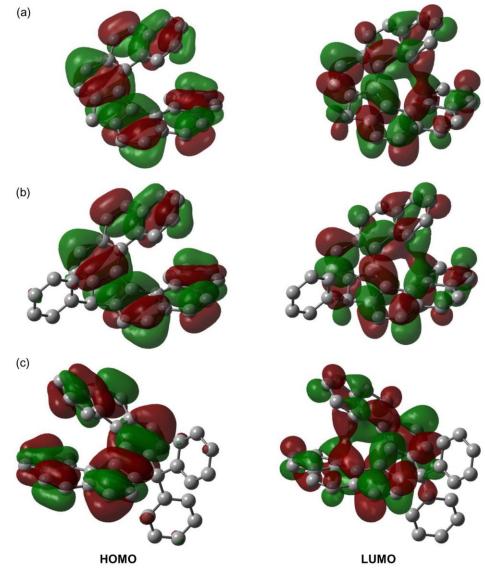


Figure S16. The HOMOs and LUMOs of (a) 3a, (b) 3b, and (c) 3c calculated by DFT method [B3LYP /6-31G(d)].

References

 Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J. A., Jr.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G; Voth, G. A.; Salvador, P; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, Ö.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. *Gaussian 09*, Revision D.01; Gaussian, Inc.: Wallingford CT, 2009.
 Altomare, A.; Burla, M. C.; Camalli, M.; Cascarano, G. L.; Giacovazzo, C.; Guagliardi, A.; Moliterni,

A. G. G.; Polidori, G.; Spagna, R. J. Appl. Crystallogr. 1999, 32, 115.

3. Sheldrick, G. M. SHELXL-97, Program for the Refinement of Crystal Structures, University of Göttingen; Göttingen, Germany, 1997.