Supporting Information of

A Wearable Electrochemical Platform for Non-Invasive Simultaneous Monitoring of Ca²⁺ and pH

Hnin Y. Y. Nyein^{1,2,3‡}, Wei Gao^{1,2,3‡}, Ziba Shahpar¹, Sam Emaminejad^{1,2,3,4}, Samyuktha Challa⁴, Kevin Chen^{1,2,3}, Hossain M. Fahad^{1,2}, Li-Chia Tai^{1,3}, Hiroki Ota^{1,2,3}, Ronald W. Davis⁴, Ali Javev^{1,2,3*}

¹Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, California 94720, USA.

²Berkeley Sensor and Actuator Center, University of California, Berkeley, California 94720, USA.
³Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA.

⁴Stanford Genome Technology Center, Stanford School of Medicine, Palo Alto, California 94304, USA

Table of Contents:

Figure S1. Long-term stability of Ca^{2+} and pH sensors.

Figure S2. pH sensor tested with Ag/AgCl and PVB reference electrodes in varying [Cl⁻] solutions.

Figure S3. Temperature dependence of Ca^{2+} and pH sensor.

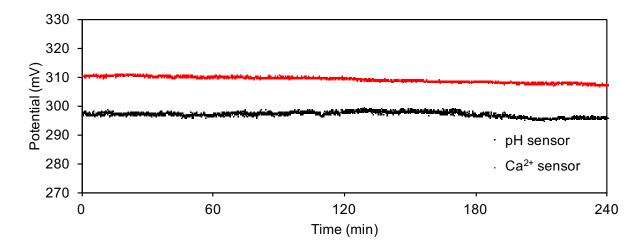


Figure S1. Long-term stability of Ca^{2+} and pH sensors in 0.01 M acetate buffer containing 1 mM $CaCl_2$ in 4 hours. Potential is reported with respect to a standard Ag/AgCl reference electrode.

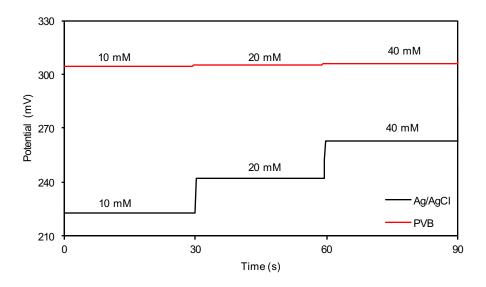


Figure S2. pH sensor tested with Ag/AgCl and PVB reference electrodes in McIlvaine's buffer of pH 5.0 with varying concentration of NaCl. Potential is reported with respect to a standard Ag/AgCl reference electrode.

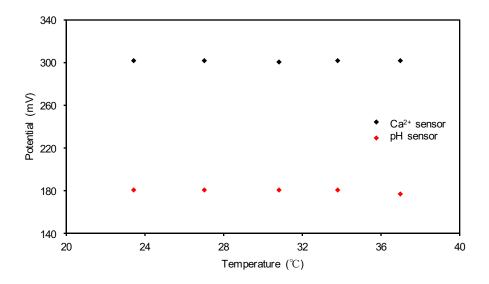


Figure S3. Temperature dependence of Ca^{2+} and pH sensor in a solution containing 0.5 mM Ca^{2+} in McIlvaine's buffer of pH 5.0.