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Figure S1. Molecular formulas of the DPPG and dDPPG employed in this study. 
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Figure S2. Dependence of 
( )2

eff
χ

 
on the methyl tilt angle (θ) (assuming a δ-distribution) for 

methyl “ss” and “as” modes in ssp and ppp spectra collected using the silica window (A) and 

silica prism (B) geometries. The dashed lines are just used for guiding eyes. 

For the interfacial Fresnel coefficient calculation, only the 1–0 interface should 

be considered for the silica window geometry, as shown in Figure S3A. Numbers 1 

and 0 represent the air and silica media, respectively. For the two input beams (for 

simplification, only one input beam is depicted here) focusing at the 1–0 interface, ϕ1 

stands for the incident angle of these two input beams at the 1–0 interface versus the 

surface normal (ϕ1 = 65° for visible and ϕ1 = 54° for infrared in this study). Therefore, 

the transmitted angle ϕ0 of these two beams can be expressed as eqn S1. 
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Here ni (i = 1 or 0) is the refractive index of the corresponding medium, which 

are listed in table S1.  Assuming the output angle of the SFG signal beam at the 1–0 

interface is ϕ1su, the ϕ1su can be written as eqn S2: 
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Using these input and output angles, we can calculate the interfacial Fresnel 

coefficients of a DPPG monolayer on a silica window. For the 1–0 interface, the 

following eqns S3–S5 can account for the Fresnel coefficients for the interfacial layer 

at different directions (x, y, or z).
1 

These equations are applicable to both input and 

output beams. So here no subscripts are marked. 
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Here n′ represents the refractive index of the interfacial layer (See Table S1).
1,2

  

the average refractive index of the silica and air were used for the n′.3 
Lii (i = x, y, or z) 

is the interfacial Fresnel coefficient for input and output beams.  

Together with the above equations, the overall interfacial Fresnel coefficients for 

the silica window geometry can be calculated using eqns S6-S10 for ssp and ppp 

polarization combinations: 

( ) ( ) ( ) ininzzviyysuyyyyzssp sinLLLF ,1, ϕωωω=                  (S6) 
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( ) ( ) ( ) ininzzvivixxsusuxxxxzppp sinLcosLcosLF ,1,1,1, ϕωϕωϕω−=       (S7) 

( ) ( ) ( ) ininxxvivizzsusuxxxzxppp LLcosLF ,1,1,1, cossin ϕωϕωϕω−=      (S8) 

( ) ( ) ( ) ininxxvivixxsusuzzzxxppp LLLF ,1,1,1, coscossin ϕωϕωϕω=       (S9) 

( ) ( ) ( ) ininzzvivizzsusuzzzxxppp LLLF ,1,1,1, sinsinsin ϕωϕωϕω=
 

      (S10) 

 

For the interfacial Fresnel coefficient calculation of the silica prism geometry 

shown in Figure S3B, three interfaces should be considered. Medium 0 represents the 

prism; media 1, 2, and 3 represent the air. For simplification, only one input beam was 

shown. For the two input beams, σ0 is the incident angle at the 1–0 interface (σ1 = 25° 

for visible and σ1 = 36° for infrared versus the surface normal in this research). So the 

transmitted angle σ0 of the two beams can be acquired from eqn S11: 









= 1

0

1
0 sinarcsin σσ

n

n
                (S11) 

Supposing the incident angle of the input beam is ϕ0 at the 0–2 interface, it can 

thus be calculated as ϕ0 = π/2 – σ1. The SFG signal was generated at the interfacial 

layer and then reflected back into the medium 0 again. The reflected SFG signal beam 

subsequently passed through the 0–3 interface, and was finally detected by the 

monochromator/PMT. Assuming that the reflected angle of the SFG signal beam at 

the 0–2 interface is ϕ0su, and thus the incident angle of the SFG signal beam at the 0–3 

interface is σ0su = ϕ0su – π/4. So the output angle of the SFG signal beam at the 0–3 

interface can be expressed as eqn S12: 
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Using these angles, we can calculate the interfacial Fresnel coefficients of a DPPG 

lipid monolayer for the silica prism geometry. At the 1–0 interface, eqns S13–S16 can 

account for the two input beams transmitting from air into the silica prism: 
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At the 0–2 interface, the Fresnel coefficients for the input and output beams with 

respect to the interfacial layer can also be expressed as eqns S3–S5. And then at the 

0–3 interface, eqns S17 and S18 can account for the output SFG signal beam 

transmitting from the silica into air and finally being detected: 
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Finally, the overall interfacial Fresnel coefficients can be acquired for the silica 

prism geometry: 
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Figure S3. Propagation of the light beam was also plotted for these two geometries (A and B, for 

simplification, only one input beam was shown). 

Table S1. Refractive index of the corresponding medium 

Refractive index (ni) Visible beam Infrared beam Sum frequency beam 

Silica (n0)
4
  1.46 1.41 1.46 

Air (n1)
4
 1 1 1 

Silica/lipid/air interfacial layer (n′)3
 1.23 1.21 1.23 

n′: the average refractive index of the silica and the air  

For the calculation of the molecular hyperpolarizability tensor component, a bond 

additive approach can be employed.
5 

So we have:  
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Here 0a is related to the product of the infrared transition moment and Raman 

polarizability tensors, and ρ is the ratio of the Raman polarizability tensor 

components perpendicular and parallel for the single C-H bond.
6
 Based on previous 

studies, we have ρ = 0.14.
7,8

 so r = βaac,ss/βccc,ss = 2.2, which is in the reasonable range 

from 1.5 to 4 for the methyl group as reported by literatures.
9–15
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According to earlier study.
16

 we have: 
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So the βaca,as/βccc,ss is 1.7. 
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Figure S4. SFG ssp (A) and ppp (B) spectra of a DPPG monolayer on water. 
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Figure S5. SFG ssp and ppp spectra of the self-assembled octadecyltrichlorosilane (OTS) 

monolayer on silica window (A and B) and silica prism (C and D). 
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Figure S6. SFG ssp (A) and ppp (B) spectra of an Octadecanethiol (ODT) monolayer on Au. 
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Figure S7. SFG ppp signal strength dependence on the visible bean input angle (σ0 or ϕ1) and 

average tilt angle θ0 of CH3 group for both the silica prism (A and B) and silica window (C and D) 

geometries. ϕ1 and σ0 represent the visible beam input angles for the silica window and silica 

prism geometries, respectively. The angle difference between visible and infrared beams is fixed 

at 11° for both geometries. 
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