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Experimental Methods and Measurements 

Materials and Synthesis. The phosphors were synthesized by a sol-gel combustion 
method. Firstly, the metal nitrate solutions were obtained in stoichiometric proportions 
by dissolving rare earth oxides in nitric acid. Anhydrous ethanol was added to the 
resulting solution with heating at 65 oC to evaporate superfluous water until a 
transparent sol was obtained. The sol was dried at 95 oC to form a dry gel which was 
then fired in a muffle furnace at 700 oC in air for 3 hours to obtain a precursor. After 
grinding, the precursor was sintered at 1400 oC for 6 h in a CO reducing atmosphere 
created by burning activated carbon. The product was reground, washed twice by 
warm dilute nitric acid and water, and finally oven-dried. The XANES (Figure S1) 
shows that ytterbium is present in the samples in the trivalent state even though a 
reducing atmosphere was employed in synthesis. In fact the PL and PLE spectra are 
unchanged whether an ambient air or reducing atmosphere is employed in the 
synthesis (Figure S2). 
 

Instrumental Measurements. The final products were examined on a Bruker D8 
Advance type powder X-ray diffractometer, using Cu Kа radiation (λ = 1.5404 Å) and 
operating at 40 kV and 40 mA. The UV-excitation and UV-visible emission spectra at 
room temperature, as well as the luminescence decay curves, were measured by a 
FLS920-combined Fluorescence Lifetime and Steady State Spectrometer (Edinburgh 
Instruments) equipped with a 450 W Xe lamp, a TM300 excitation monochromator 
and two TM300 emission monochromators, equipped with a red sensitive PMT for 
visible spectral measurements and a R5509-72 NIR-PMT in a liquid nitrogen cooled 
housing (Hamamatsu Photonics) for NIR spectral measurements. A 150 W nF900 
flash lamp was employed for measurement of nanosecond lifetime decay curves. For 
lifetimes in the microsecond and millisecond range a 60W uF900 flash lamp with a 
pulse width of 1.5–3.0 µs and a pulse repetition rate of 50 Hz was employed.  
The Yb X-ray absorption near-edge structure (XANES) analysis (Fig. S1) was carried 
out in the fluorescence mode at room temperature on the beamline 1W2B of the 
Beijing Synchrotron Radiation Facility (BSRF). The oxidation state detected in all 
samples is +3. The excitation and emission spectra of samples prepared in an ambient 
or reduced atmosphere are similar (Fig. S2). 
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Fig. S1. Yb-L3 X-ray Absorption Near-edge Structure in Ca3-2xYbxNaxSc2Si3O12 
Samples. 
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Fig. S2. The Excitation and Emission Spectra of Ca2.94Yb0.03Na0.03Sc2Si3O12 
Synthesized Under Air and CO Reduced Atmosphere. 
 

 

 

 

 

 

 

 



SI5 

 

* *

 

Ca
2.94

Ce
0.03

Na
0.03

Sc
1.97

Yb
0.03

Si
3
O

12

 

 

 

Ca
2.88

Ce
0.03

Yb
0.03

Na
0.06

Sc
2
Si

3
O

12  

 

2θ (degree)

*

 

Ca
3
Sc

1.97
Yb

0.03
Si

3
O

12  

*

 

 

 

Ca
3
Sc

2
Si

3
O

12
 Host

Ca
2.94

Yb
0.03

Na
0.03

Sc
2
Si

3
O

12

ICDD 76-0149 Sc
2
O

3

  

ICDD 72-1969 Ca
3
Sc

2
Si

3
O

12
 

 

  
 R

e
la

ti
v
e

 i
n
te

n
s
it
y
 (

a
rb

. 
u

n
it
s
)

25 30 35 40

  ICDD 86-1564 SiO
2

900 1000 1100

 Ca
2.94

Yb
0.03

Na
0.03

Sc
2
Si

3
O

12

 Ca
3
Sc

1.97
Yb

0.03
Si

3
O

12

λ
ex

 = 289 nm

 

 

 R
e
la

ti
v
e
 i
n
te

n
s
it
y
 (

a
rb

. 
u
n
it
s
)

RT

900 1000 1100

 Ca
2.88

Ce
0.03

Yb
0.03

Na
0.06

Sc
2
Si

3
O

12

 Ca
2.94

Ce
0.03

Na
0.03

Sc
1.97

Yb
0.03

Si
3
O

12

λ
ex

 = 440 nm

 

 

Wavelength (nm)

RT

 

Evidence That Yb
3+

 Substitutes at the Ca
2+

 and Not the Sc
3+

 Site. The electronic 
spectra of several lanthanide ions diluted into the Ca3Sc2Si3O12 host have been 
reported and it has been demonstrated that Ln3+ substitutes at the Ca2+ site of D2 point 
group symmetry.S1,S2 The Yb3+ ion is slightly smaller than the Eu3+ or Tb3+ ions so 
that some additional proof may be required to show that it does not substitute at the 
Sc3+ site. Therefore, we synthesized Ca3Sc2-xYbxSi3O12 (x = 0.03) and compared the 
X-Ray diffractogram as in Figure S3 below. It is evident that Sc2O3 and SiO2 are 
produced in this case, but not for Ca3-2xSc2YbxNaxSi3O12 (x = 0.03).   
 Figure S4 shows the Yb3+ emission spectra of samples prepared with starting 
stoichiometries for Yb3+ substituting at the Ca2+ or Sc3+ sites. The spectra are very 
similar. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. S3. X-ray Diffractograms of Ce, Yb, and Na-substituted Ca3Sc2Si3O12 Host. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. S4. Yb3+ Emission Spectra at RT of Yb- and Ce, Yb-doped Ca3Sc2Si3O12. 
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Artefact in Lifetime Measurements. For 289 nm excitation of CSS:YbxNax (and 
CSS:Ce0.1YbxNax+0.1), in addition to excitation at 440 nm and 896 nm, we observe a 
biexponential decay of Yb3+ emission with a rise lifetime of ~9.7 µs. Since this 
phenomenon also occurs during direct excitation at 896 nm, it is attributed to the 
instrumental response using NIR detection. The decay curves of the 2F5/2 J-multiplet 
of CSS:Yb0.27Na0.27 at 3 K are shown in Figure S5. On taking into account this artifact, 
the lifetime decay at RT is monoexponential but a slight decrease from 0.97±0.04 ms 
to 0.86±0.03 ms is observed for the (different) direct 2F5/2 population mechanism 
when the excitation wavelength changes from 289 nm to 884 or 896 nm.  

  
Ce

3+
 Lifetime at 77 K. At 77 K, with excitation at 440 nm and emission at 550 nm, 

the lifetime of Ce3+ in CSS:Ce0.1Yb0.03Na0.13 can be fitted by a monoexponential 
function (τ = 58.1±0.2 ns R2

adj = 0.9964), or a biexponential function with similar 
results to that in Table 1 for this sample (τ1 = 66.9±1.3 ns, τ2 = 26.8±2.5 ns, R2

adj = 
0.9970).  
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Fig. S5. The Emission Decay Curves of CSS:Yb0.27Na0.27 at 3 K. 
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Fig. S6. Temperature Dependence of the Yb3+ Lifetime of CSS:Yb0.27Na0.27 Upon CT 
Excitation. 
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Fig. S7. Room Temperature Decay Curves of the 2F5/2 State as a Function of Yb3+ 
Concentration in CSS:YbxNax. 
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Fig. S8. Room Temperature Monoexponential Lifetimes of the Yb3+ 2F5/2 J-multiplet 
as a Function of Yb Concentration in CSS:YbxNax. The Numbers are the Adjusted 
Coefficients of Determination, R2

adj, For the Fits. (λexc = 289 nm, λem = 969 nm) 
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Fig. S9. Inokuti-Hirayama Fits to the RT Ce3+ Emission in CSS:Ce0.1YbxNa0.1+x for s 
= 6, 8 and 10 
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Ca2.8-2xCe0.1YbxNa0.1+xEuxSc2Si3O12 

xYb
3+

 Radj
2
 CA/C0 

0 0.9984 - 

0.001 0.9984 0.14 

0.03 0.9979 0.33 

0.15 0.9949 0.95 

0.27 0.8437 1.24 

0.36 0.9932 1.25 

 

Table S1. Inokuti-Hirayama Fitting Parameters for s = 8.  
 
 

Analysis of Energy Transfer in CSS:Ce0.1YbxNax+1 Using the 

Dornauf-Heber Model
S3

 

 
The acceptor Ca2+ lattice points are arranged in spherical coordination shells around 

the •
CaYb donor, where N, the number of acceptors per unit volume is approximated by 

its mean value Zx, where, as previously, x is the molar concentration and Z is the sum 
over k shells where shell l has lZ sites. The donor-acceptor distance in the lth shell is 
l
R. Then for multipole-multipole interactions (index s), the change of intensity with 
time is given by: 
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∑

 

 
where τ0 = 66.8 ns; cA is the acceptor (Yb3+) concentration = (x×8/1837.8); R0 is the 
critical transfer radius (Å); and the particulars for the shells are listed in Table S2. The 
fitted values of R0 are listed in Table S3. 
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Shell Coordination number Distance (Å) 

1 4x 3.7508 

2 8x 5.7294 

3 2x 6.1250 

4 8x 6.8480 

5 4x 7.1822 

6 8x 8.3870 

7 4x 8.6621 

8 12x 9.4393 

9 8x 10.3854 

10 8x 10.6088 

11 8x 11.0420 

12 16x 11.2523 

13 16x 12.0571 

14 6x 12.2500 

15 8x 12.8114 

16 8x 13.5236 

17 8x 13.6959 

18 16x 14.0341 

19 20x 14.2002 

20 16x 14.8460 

21 8x 15.0031 

22 8x 15.4649 

23 24x 16.0599 

24 24x 16.4921 

25 12x 16.6336 

26 24x 17.1882 

27 12x 17.3241 

28 28x 17.7255 

29 8x 18.2470 

30 10x 18.3750 

31 8x 18.6285 

32 20x 18.7539 

33 16x 19.2475 

34 8x 19.3689 

35 20x 19.7288 

 

Table S2. Ce3+ Donor - Yb3+ Acceptor Shell Distances and Coordination Numbers in 
CSS. 
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 In the case of exchange interaction: 
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where γ has the dimension L-1. 
 
There is only one variable parameter, R0. In the case of CSS:Ce0.1YbxNa0.1+x, the 
fittings for multipole interactions are superior for s = 8 and are displayed below for 15 
shells: 
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Fig. S10. Energy Transfer in CSS:Ce0.1YbxNax+1 Using the Dornauf-Heber Model:S3 

Individual Fits for s = 8 For Different Yb3+ Concentrations and Fits For s = 6 and 10. 
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Table S3. Dornauf-Heber Parameter R0 for Fits With s = 8. 
 
 

 
 
 
 
 
 
 

 
 

 
 
Fig. S11. The Fits Using Eq. (5) of Emission Intensities (a) and Lifetimes (b) as a 
Function of Temperature Dependence For Ce3+ in CSS:Ce0.1Yb0.03Na0.13. (λexc = 440 
nm, λem = 550 nm). 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

 
 
 
Fig. S12. FT-IR Spectrum of CSS Host at Room Temperature. 
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Fig. S13. (a) The Decay Curves of Yb3+ Emission at 969 nm Under Excitation of Ce3+ 
at 440 nm For Different Yb3+ Concentration Samples at RT; (b) Monoexponential Fit 
For the Decay of x = 0.15. 
 
Decay of Yb

3+
 Emission in CSS:Ce0.1YbxNa0.1+x. Figure S13(a) presents the decay 

curves of Yb3+ 2F5/2→
2F7/2 emission of CSS: Ce0.1YbxNa0.1+x under excitation of 440 

nm at RT. The fitting with a monoexponential function for x = 0.15 is shown in Figure 
S13(b). The fit of x = 0.03 gives the decay time of 1.36 ms and this decreases to 0.455 
ms when x = 0.36. Under 440 nm excitation at 77 K, the lifetime of Yb3+ for x = 0.03 
(i.e., Ca2.74Ce0.1Yb0.03Na0.13Sc2Si3O12) emission measured at 969 nm is similar 
1.267±0.004 ms (R2

adj = 0.9967) (Figure S14). This figure shows that direct excitation 
at 896 nm gives a fast component superimposed upon this lifetime, which could be 
due to Yb3+ defect site emission. However, the important result observed from this 
figure is that excitation at 289 nm into the CT band gives Yb3+ emission at the same 
wavelength of 969 nm with a lifetime of 0.630±0.005 ms (R2

adj = 0.9711). This is 
one-half of the lifetime under 440 nm excitation. It is also shorter than the RT lifetime 
of CSS:Yb0.03Na0.03 where Ce3+ is absent: 1.005±0.003 ms (R2

adj = 0.9982). It is 
therefore clear from the different lifetimes of the decay curves of 
Ca2.74Ce0.1Yb0.03Na0.13Sc2Si3O12 at 77 K under 289 nm and 440 nm excitation that 
different excitation mechanisms are operative in these cases. In fact, the former 
excitation wavelength has been associated with Ce3+ ions at minority sitesS4 so that a 
different energy transfer scenario is operative in this case and it requires further 
investigation.  
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Fig. S14. The Decay Curves of Yb3+ Emission in CSS:Ce0.1Yb0.03Na0.13 at 77 K. 

 

Contributions of Dipole-dipole and Dipole-quadrupole Energy 

Transfer Mechanisms to the Total Energy Transfer Rate 

 

KushidaS5 generalized the theory of energy transfer (ET) to calculate the average rate 

of ET between the manifolds Ja and Jb by summing over all the possible 

terminal crystal field (CF) states |a’b’> and taking the Boltzmann-weighted average 

of the initially occupied CF states, |ab>: 

SJP AB
22

h

π
=

,                   (1)  

and: 

2''

','
,

2 ||||
]][[

1
><= ∑ baHab

JJ
J

ba
ba

AB

ba    (2) 

is the ‘squared electronic transition element’, averaged over the initial crystal field 

(CF) states but summed over the terminal CF states, for ET between the 
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is the averaged overlap integral between individual CF emission and individual CF 

absorption transitions, in which [J] = 2J + 1, Y is a normalized Boltzmann factor, and 

g is a line shape function. Here, a = Ce3+, b = Yb3+. The typical value of  at 

room temperature is 1 × 10-3
/cm-1.S5 In the present case, for multiphonon 

assisted ET, is given by an expression from Wassam and FongS6 and it is not 

necessary to include it here since we are taking a ratio.  

Since the Ce3+ 5d1 → 4f1 transition is electric dipole allowed, the possible multipolar 

mechanisms for Ce3+ → Yb3+ ET are dipole – quadrupole (dq) or dipole – (forced) 

electric dipole (dd). The can be calculated for these two mechanisms by the 

formulae as follows: 
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     (4) 

for (dd) interaction between the donor and acceptor with separation R; is the reduced 

matrix element of the unit tensor U(λ); and Ωλ (λ = 2, 4, 6) is the 

Judd parameter obtained by fitting manifold–manifold ED transition intensities. The 

reduced matrix elements are  
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(4)||2F7/2>

2  = 20/49  and   

<2F5/2|| U
(6)||2F7/2>

2  = 6/7.S5          

The values for Ωλ parameters for Yb3+ are scarce. Ω2 was given between 

0.93-36.9×10-20 cm2, Ω4 as 1.6×10-20 cm2; Ω6 as 1.6×10-20 cm2.S7 This gives a value of        

between (2.1-6.5)×10-20 cm2.  

Kushida gives the value for Yb3+ = 2×10-20 cm2 which we adopt here.S5  

 

The corresponding formula for dq interaction is: 
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where                                      = 0.691 a.u. = (0.691× 5.29×10-9)2 = 1.9337×10-17 cm2;   

 

= (-7)                                         = (-7) 0.195180014 = -1.366260098. 

The total ET rate is:  

∑=
shells

Yb
ABtotal PNCRPP )(

   (6) 

where                is the ET rate for Ce3+ - Yb3+ transfer at the separation R, N is the 

number of acceptor ions in the shell, CYb is the concentration of Yb doping, and P is 

the probability that the acceptor ion is in the initial state at the relevant ET process. 
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From the crystal structure, R1 = 3.7508 Å = 3.7508×10-8 cm, N1 = 4, etc., so  
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(cm-6 units for 1/R6) 

For dd transfer, up to 35 shells. 
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(cm-8 units for 1/R
8) for dq transfer up to 35 shells. 

So for up to 35 shells: 
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