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Experimental 

1.1 Methodology to obtain lifetime and quantum yields for complexes 3a-d. 

Lifetime. Emission lifetimes were determined by monitoring the entire emission spectrum at 

increasing delay time (td); the spectral shape remains constant with only a decrease in the overall 

intensity. The lifetime  is obtained by calculating the slope of the line obtained by plotting the 

log of the integrated intensity against time. Details are given for 3a with the same procedure 

followed for 3b-3d. The lifetime was determined for frozen glass matrix (Figures S1-S4) and for 

the solid state using special cuvette at 298 K as well.  

Quantum Yields. Quantum yields were determined as follows using 3a as an example. Quinine 

sulfate (QS), which has a known quantum yield () of 0.55 in water, was used as the standard.  

The first step in the quantum yield measurement is to obtain UV-Vis spectra. The UV-Vis 

spectrum was recorded for at least four solutions with increasing concentrations of 3a and QS. 

The absorbance values were noted for an excitation wavelength of 287 nm for 3a and QS. Then 

the emission spectrum for the same solutions (those used for UV-Vis measurements) of 3a and 

QS were recorded by exciting at 287 nm. Next the emission spectra were corrected using 

manufactures supplied correction factors for instrument response. Finally the emission spectra 

were integrated from 300 to 530 nm, and then the integrated fluorescence intensity vs absorbance 

was plotted. The following equation was used to determine the quantum yield:  
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x = STD [(Slope(X) / Slope(STD)(
2

X /
2

STD)] 

where the subscripts X and STD refer to unknown and standard respectively,  is the 

fluorescence quantum yield, the slope is obtained from the plot of integrated fluorescence 

intensity vs absorbance,  is the refractive index of the solvent.  Here as an illustration, the plot 

of integrated fluorescence (FL) intensity vs absorbance of 3a and QS are shown (Figure S11). 

The solvent used was dichloromethane (3a) and water (QS). By inserting the values of slope for 

3a, STD, STD = 0.55 and the refractive index of desired solvents the 3a is determined. The same 

procedure was followed to obtain quantum yields of 3b-3d. 

1.2. Table S1. UV-Vis data for 3a-d (298 K) in CH2Cl2 

complex  max (nm)  ε (M
−1 

cm
−1

) 

3a 252 72300 

 

287 15570 

 

317 6660 

 

337 2070 

   3b
a
 248 79380 

 

287 18120 

 

316 7710 

 

337 2050 

   3c 259 106970 

 

297 23420 

 

306 22600 

 

340 7250 

   3d 256 71800 

 

287 19330 

 

307 8690 

  320 6320 
a 
cyclohexane 
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1.3 Figures 

 

 

 

 

 

 

 

 

 

 

 

 

Figure S2 Graph representing Log(integrated intensity) vs time of 3a at 77 K. 
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Figure S3 Solid state emission spectra of 3a, delay time ranges from 25 s at highest 

intensity to 80 s at lowest intensity 
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Figure S1 Frozen glass emission spectra of 3a, delay time ranges from 20 s at highest 

intensity to 300 s at lowest intensity, (glassing solvent 2-MeTHF). 
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                Figures S4 Plot of Log (integrated intensity) vs time of 3a (solid) at 298 K  

 

 

Figure S5 Plot of Log (integrated intensity) vs time of 3b at 77 K (glassing solvent 2-

MeTHF). 
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Figure S6 Plot of Log(integrated intensity) vs time of 3b (solid) at 298 K 

 

 

Figure S7 Plot of Log(integrated intensity) vs time of 3c at 77 K (glassing solvent 2-

MeTHF). 
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Figure S8 Plot of Log(integrated intensity) vs time of 3c (solid)  at 298 K 

 

 

Figure S9 Plot of Log(integrated intensity) vs time of 3d at 77 K (glassing solvent 2-

MeTHF) 
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       Figure S10 Plot of Log(integrated intensity) vs time of 3d (solid) at 298 K 

 

 

 

Figure S11 Integrated Fluorescence intensity vs absorbance of 3a & QS 
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Figure S12. Photoemission intensity at room temperature and ~77 K for 3a in 2-MeTHF (ex = 

365 nm, concentration = 3.4 x 10
-3

 M, 5 mm quartz tubes). 

 

 

Figure S13. Photoemission intensity at room temperature of solid 3a, 3b, and 3d (ex = 365 nm). 
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Figure S14. Photoemission spectra of 3a-d in 2-methyltetrahydrofuran (2-MeTHF) glass (λex 

(nm) = 337 (3a) concentration = 2.4 x 10
-5

 M, 334 (3b) concentration = 3.2 x 10
-5

 M, 336 (3c) 

concentration = 5.7 x 10
-5

 M, 346 (3d), concentration = 5.6 x 10
-5

 M). Intensities are arbitrary 

and set to minimize overlap. 

 

Figure S15. Photoemission spectra of 3a-d at room temperature in the solid state (λex (nm) = 337 

(3a), 334 (3b), 336 (3c), 346 (3d)). Intensities are arbitrary. 
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Figure S16. Photoemission spectra of 3b at room temperature in various solvents (ex = 334 nm, 

concentration = 1.7 x 10
-5

 M). 
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Figure S17 Excitation spectra in comparison with UV-Vis spectrum of 3b at 298 K in 

degassed cyclohexane 
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Figure S18 Excitation spectra in comparison with UV-Vis spectrum of 3c at 298 K in degassed 

CH2Cl2 

 

 

 

 

 

 

 

 

 

0

0.2

0.4

0

5

10

15

20

25

30

280 310 340

A
b

so
rb

an
ce

 

In
te

n
si

ty
 (

a.
u

) 
 

 (nm) 

emission 505

nm

emission 543

nm

UV spectrum



S16 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure S19 Excitation spectra in comparison with UV-Vis spectrum of 3d at 298 K in degassed 

CH2Cl2 
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Figure S20 Effect of aeration on the emission spectrum of 3a, 298 K in CH2Cl2. 

 

Figure S21. 
1
H NMR of compound 3a. Solvent CD2Cl2. S: solvent I1: acetone I2: Petroleum 

ether w: water 
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Figure S22. 
13

C{
1
H} NMR of compound 3a. Solvent CD2Cl2. 
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Figure S23. 
1
H NMR of compound 3b. Solvent CD3COCD3. S: solvent 
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Figure S24. 
13

C{
1
H} NMR of compound 3b. Solvent CD3COCD3. 
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Figure S25. 
19

F{
1
H} NMR of compound 3b. Solvent CD3COCD3. 
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Figure S26. 
1
H NMR of compound 3c. Solvent CD2Cl2. 

 



S23 
 

 

Figure S27. 
13

C{
1
H} NMR of compound 3c. Solvent CD2Cl2. 

Table S2. Comparison of bond lengths and angles between X-ray and from DFT studies for 3b’-

3d’ 

Bond length  

& Bond Angles 3b (Xray) 3b' (DFT) 3c (Xray) 3c’ (DFT) 3d (Xray) 3d (DFT) 

Au-C 2.030(4) 2.0456 2.025(2) 2.043 2.033(1) 2.0475 

Au-C 2.033(4) 2.04564 2.026(2) 2.043 2.027(1) 2.0473 

Au-S 2.3802(11) 2.5043 2.3968(5) 2.5175 2.3810(3) 2.5194 

Au-S 2.3833(12) 2.5042 2.3968(5) 2.5172 2.3947(4) 2.5199 

S-C 1.724(5) 1.7208 1.7349(18) 1.7194 1.732(1) 1.7195 

Ph(C)-Ph(C) 1.478(6) 1.4631 1.485(4) 1.4632 1.470(2) 1.4602 

C-Au-C 81.48(18) 80.557 80.80(12) 80.323 81.47(5) 80.4717 

C-Au-S 176.65(12) 175.8215 176.86(6) 175.763 177.64(3) 175.6729 

S-Au-S 74.80(4) 72.2027 74.56(3) 71.8663 74.61(1) 71.8083 

S-C-S 113.6(3) 118.0737 113.61(18) 118.443 114.6(1) 118.4672 
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Figure S28 : Frontier orbitals of 3a 

Table S3: Major contributions MOs to the singlet and triplet transitions 

Singlets 

(nm) OS Major contribs (>6%) 

388 0.0003 HOMO->LUMO (96%) 

337 0.0231 HOMO->L+1 (86%), HOMO->L+2 (7%) 

313 0.0006 H-1->LUMO (95%) 

303 0 H-4->L+1 (10%), H-3->LUMO (87%) 

299 0.0001 H-2->LUMO (95%) 

297 0.0125 H-2->L+1 (18%), H-1->L+1 (71%) 

296 0 H-4->L+1 (85%), H-3->LUMO (11%) 

292 0.0132 HOMO->L+2 (76%), HOMO->L+1 (8%) 

279 0.0004 HOMO->L+4 (39%), H-2->L+1 (35%), H-2->L+2 (8%), H-1->L+1 (7%) 

268 0.0113 H-4->LUMO (10%), H-3->L+1 (78%) 

260 0 HOMO->L+3 (88%) 

259 0.0281 
H-2->L+1 (34%), HOMO->L+4 (29%), H-1->L+1 (15%), H-2->L+2 (9%), H-5->LUMO 
(7%) 

253 0.6416 H-4->LUMO (81%) 

Triplets 

(nm) OS Major contribs (>6%) 

457 - HOMO->L+1 (24%), HOMO->L+2 (58%) 

407 - HOMO->LUMO (92%) 
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Figure S29 : Frontier orbitals of 3b 

Table S4: Major contributions MOs to the singlet and triplet transitions in 3b. 

Singlets 

(nm) OS Major contribs (>7%) 

367 0.0003 HOMO->LUMO (95%) 

325 0.0274 HOMO->L+1 (80%), HOMO->L+2 (8%) 

317 0.0005 H-1->LUMO (98%) 

298 0.0028 H-1->L+1 (86%) 

296 0 H-3->LUMO (72%), H-4->L+1 (24%) 

291 0 H-4->L+1 (68%), H-3->LUMO (25%) 

290 0 H-2->LUMO (96%) 

283 0.0091 HOMO->L+2 (54%), HOMO->L+3 (12%), H-2->L+1 (11%), HOMO->L+1 (8%) 

277 0 HOMO->L+3 (41%), HOMO->L+2 (21%), H-2->L+1 (20%) 

264 0.0004 H-3->L+1 (63%), H-4->LUMO (15%), HOMO->L+5 (12%) 

253 0.6441 H-4->LUMO (75%) 

Triplets 

(nm) OS Major contribs (>7%) 

451 - HOMO->L+2 (46%), HOMO->L+1 (32%) 

383 - HOMO->LUMO (91%) 
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Figure S30 : Frontier orbitals of 3c 

Table S5: Major contributions MOs to the singlet and triplet transitions in 3c. 

Singlets 

(nm) OS Major contribs (>7%) 

407 0.0003 HOMO->LUMO (98%) 

348 0.0026 HOMO->L+1 (92%) 

342 0 H-1->LUMO (97%) 

318 0 H-2->LUMO (98%) 

308 0.0007 H-3->LUMO (98%) 

303 0.0153 HOMO->L+2 (80%) 

300 0.0819 H-1->L+1 (95%) 

296 0.0135 H-3->L+1 (58%), H-4->L+1 (34%) 

295 0.0078 H-4->L+1 (62%), H-3->L+1 (30%) 

290 0.0057 H-2->L+1 (63%), HOMO->L+4 (16%) 

271 0.0001 HOMO->L+3 (95%) 

270 0.0462 HOMO->L+4 (39%), H-2->L+2 (29%), H-2->L+1 (28%) 

269 0.0437 H-1->L+2 (85%) 

253 0.6408 H-4->LUMO (89%) 

Triplets 

(nm) OS Major contribs (>7%) 

443 - HOMO->L+2 (44%), HOMO->L+1 (20%), H-2->L+2 (15%) 

432 - HOMO->LUMO (97%) 
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Figure S31 : Frontier orbitals of 3d 

Table S6: Major contributions MOs to the singlet and triplet transitions in 3d. 

Singlets 

(nm) OS Major contribs (>7%) 

405 0.0002 HOMO->LUMO (97%) 

350 0.0419 HOMO->L+1 (90%) 

315 0.0006 H-1->LUMO (95%) 

305 0 
H-3->LUMO (78%), H-4->L+1 (11%), HOMO->L+1 (9%), H-6->LUMO (8%), H-1-
>L+1 (8%) 

303 0.0781 HOMO->L+2 (71%) 

301 0.0002 H-2->LUMO (88%) 

298 0.0004 H-2->L+1 (30%), H-1->L+1 (55%), HOMO->L+2 (11%) 

298 0 H-4->L+1 (82%), H-3->LUMO (13%) 

283 0.0043 HOMO->L+4 (49%), H-2->L+1 (26%), H-1->L+1 (8%), H-1->L+2 (8%) 

271 0 HOMO->L+3 (96%) 

270 0.0049  H-3->L+1 (74%), H-4->LUMO (11%) 

264 0.0735 H-2->L+1 (33%), H-1->L+1 (26%), HOMO->L+4 (26%) 

256 0.6035 H-4->LUMO (81%) 

Triplets 
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(nm) OS Major contribs (>7%) 

469 - HOMO->L+2 (59%), HOMO->L+1 (24%) 

423 - HOMO->LUMO (93%) 

 

 

 

Figure S32: Structure of triplet 
T1

3b’ with Mulliken spin density surfaces (isovalue = 0.004) and 

atomic spin values (|value| > 0.03, blue font) and selected distances (black font). (Lower half of 

the molecule is identical to the upper half. Au = yellow, S = red, N = blue, C = grey, H = white). 

Description: The structure of this triplet (
T1

3b’) is shown in Figure S32 As in 3a’, with the 

exception of the fluorine atoms the molecule is planar with C2v symmetry. The character of the 

triplet is revealed by the spin density surfaces, atomic spin values, and selected distances shown 

in the figure. Consistent with bph -* (HOMO->LUMO+2) character, spin density is localized 

in the bph-ligand  system with only a small amount on the Au atom. In addition, population of 

the predominantly bph * LUMO+2 orbital is evident from the C1-C1’ distance reduction from 

1.46 A in 3b’ to 1.38 A in 
T1

3b’. The lack of involvement of the Au-ligand antibonding LUMO 

is apparent from the Au-ligand distances which change little (<0.02 A) from those in 3b’. 



S29 
 

 

Figure S33. Structure of triplet 
T2

3a’ a) with Mulliken spin density surfaces (isovalue = 0.004) 

and atomic spin values (|value| > 0.01, blue font) and selected distances (black font) and b) side 

view showing slight “twist”. (Au = yellow, S = red, N = blue, C = grey, H = white). 

Description: A planar triplet structure (TS22a’) similar to 
T1

3b’ was obtained from 3a’ (Figure 

S42). However, TS22a’ is a transition state connecting two enantiomeric non-planar “twisted” 

triplet structures 
T2

3a’ (Figure S37). The twist of ~10
o
 is along the dtc-Au-bph axis and reduces 

the symmetry to C2. Spin density and bond distances indicate contributions from the Au-ligand 

antibonding LUMO and the HOMO. A slight reduction in the C1-C1’ distance from 1.48 Å in 

3a’ to 1.42 Å is consistent with partial depopulation of the HOMO, which is antibonding with 

respect to the C1-C1’ interaction. Partial population of the LUMO results in an increase in the 

Au-ligand distances from 2.05 (Au-C) and 2.50 Å (Au-S) in 3a’ to 2.12 and 2.60 Å in 
T2

3a’. A 

similar triplet structure (
T2

3d’) was located for 3d’ (Figure S34).  
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Figure S34 Structure of triplet 
T2

3d’ with Mulliken spin density surfaces (isovalue = 0.004) and atomic 

spin values (|value| > 0.02, blue font) and selected distances (black font). The structure is C2 symmetric. 
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Figure S35. Structure of triplet 
T3

3a’ a) with Mulliken spin density surfaces (isovalue = 0.004) 

and atomic spin values (|value| > 0.02, blue font) and selected distances and b) side view 

showing distorted coordination. 

Description. Other low-energy triplet structures were located for 3a’-3d’. These are more 

distorted structures than 
T2

3a’ and are non-planar with strongly different Au-S and Au-C 

distances. The first of these (
T3

3a’) is shown in Figure S35. While the distortion from 3a’ makes 

correlation of 
T3

3a’ with 3a’ orbital occupancy more difficult, the spin density and distances 

again suggest that this triplet is derived from partial population of the LUMO of 3a’. Some 

contribution from the  system is also present. Similar triplet structures (
T3

3c’ and 
T3

3d’, Figures 

S36-S37) were located for 3c’ and 3d’ but not for 3b’. 
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Figure S36 Structure of triplet 
T3

3c’ with Mulliken spin density surfaces (isovalue = 0.004) and atomic 

spin values (|value| > 0.02, blue font) and selected distances (black font). 
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Figure S37 Structure of triplet 
T3

3d’ with Mulliken spin density surfaces (isovalue = 0.004) and atomic 

spin values (|value| > 0.02, blue font) and selected distances (black font). 
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Figure S38. Structure of triplet 
T4

3a’ a) with Mulliken spin density surfaces (isovalue = 0.004) 

and atomic spin values (|value| > 0.02, blue font) and selected distances and b) side view 

showing distorted coordination. 

Description : All four model complexes yielded more severely distorted triplet structures 
T4

3a’-

T4
3d’. The structure for 

T4
3a’ is given in Figure S38 while those for 

T4
3b’-

T4
3d’ can be found in 

Figures S39-S41. The spin-density distribution in 
T4

3a’ is similar to that in 
T3

3a’ and a 

comparison of the geometries suggests that 
T4

3a’ is a rotamer of 
T3

3a’. Either rotation of the bph 

ligand around the short Au-C2 bonding axis by ~90
o
 or a similar rotation of the dtc ligand in 

T3
3a’ would yield the essential geometry of 

T4
3a’. A transition state structure (TS33c’) (Figure 

S45) connecting 
T3

3c’ with its enantiomer is located 0.9 kcal/mol above 
T3

3c’ (Table S7). 
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Figure S39. Structure of triplet 
T4

3b’ with Mulliken spin density surfaces (isovalue = 0.004) and 

atomic spin values (|value| > 0.02, blue font) and selected distances (black font). 
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Figure S40. Structure of triplet 
T4

3c’ with Mulliken spin density surfaces (isovalue = 0.004) and 

atomic spin values (|value| > 0.02, blue font) and selected distances (black font). 
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Figure S41 Structure of triplet 
T4

3d’ with Mulliken spin density surfaces (isovalue = 0.004) and atomic 

spin values (|value| > 0.02, blue font) and selected distances (black font). 
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Figure S42. Structure of transition state TS22a’. 

 

 

Figure S43. Structure of transition state TS23a’. 

 



S39 
 

 

Figure S44. Structure of transition state TS14b’. 
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Figure S45. Structure of transition state TS33c’. 

Figure S46. Structure of transition state TS34a’.  
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Figure S47. MECP structure for a) 3a’, b) 3b’, c) 3c’, and d) 3d’ (distances in Angstroms). 

Table S7. Triplet transition state free energies (kcal/mol, gas phase) relative to ground state 3x’ 

(x = a, b, c) and connected triplets. (The first two digits in the transition-state labels indicate the 

connected triplet structures.) 

Relative to TS22a’ TS23a’ TS34a’ TS14b’ TS33c’ 

Singlet 61.0 58.7 58.5 51.6 57.7 

1
st
/2

nd
 Triplet 2.9/2.9 0.6/0.9 0.8/2.6 3.9/5.4 0.9/1.2 

 




