Supporting Information

Insights on Foam Transport from a Texture-Implicit Local-Equilibrium Model with an Improved Parameter Estimation Algorithm

Yongchao Zeng[†], Aarthi Muthuswamy[†], Kun Ma[†], Le Wang[†], Rouhi Farajzadeh^{‡⊥}, Maura Puerto[†], Sebastien Vincent-Bonnieu[‡], Ali Akbar Eftekhari[⊥], Ying Wang[†], Chang Da[†], Jeffrey C. Joyce[†], Sibani L. Biswal[†]*, and George J. Hirasaki[†]*

[†]Rice University, 6100 Main St., MS-362, Department of Chemical and Biomolecular Engineering, Houston, TX, 77005 USA.

^{*}Shell Global Solutions International, 2288 GS Rijswijk, the Netherlands
^LDelft University of Technology, Delft, 2628 CN, the Netherlands
[¢] Current address: Total E&P Research and Technology USA, LLC, 1201 Louisiana Street, Houston, TX, 77002 USA

* To whom correspondence should be addressed: email: biswal@rice.edu, gjh@rice.edu

Parameter	Bentheimer sandstone
k ^o _{rw}	0.22
k _{rg}	0.94
S _{wc}	0.10
S _{gr}	0.05
n _w	4.00
n _g	1.80

Table S1: Relative permeability data of Bentheimer sandstone^{41,46}

Derivation for Equation 13 and Equation 14:

According to Darcy's law, the superficial velocity for gas and liquid phases can be expressed as:

$$u_g = -\frac{k_{rock} \cdot k_{rg}^f}{\mu_g} \nabla p = -\frac{k_{rock} \cdot k_{rg}^{nf} \cdot FM}{\mu_g} \nabla p$$
Equation S1

Equation S2

$$u_w = -\frac{k_{rock} \cdot k_{rw}}{\mu_w} \nabla p$$

According to the definition of apparent viscosity of foam in Equation 1, the $-k_{rock}\nabla p$ term can be expressed as:

$$-k_{rock}\nabla p = \mu_{app} \times (u_g + u_w)$$
Equation S3

Substitute Equation S3 into Equation S2, the relative permeability to aqueous phase can be solved as:

$$k_{rw} = \frac{\mu_w \times u_w (1 - f_g)}{\mu_{app} \times (u_w + u_g)} = \frac{\mu_w \times (1 - f_g)}{\mu_{app}}$$
Equation S4

Further substitute Equation S4 into Equation 11 and water saturation S_w can be solved for as in Equation 13.

In addition, k_{rg}^{nf} can be calculated from Equation 11 as:

$$k_{rg}^{nf} = k_{rg}^{o} \times \left(\frac{S_g - S_{gr}}{1 - S_{wc} - S_{gr}}\right)^{n_g} = k_{rg}^{o} \times \left(\frac{1 - S_w - S_{gr}}{1 - S_{wc} - S_{gr}}\right)^{n_g}$$
Equation S5

Plug Equation S3 and Equation S5 into Equation S1, *FM* can be solved for accordingly as shown in Equation 14.