Supporting Information

Insights on Foam Transport from a Texture-Implicit Local-Equilibrium Model with an Improved Parameter Estimation Algorithm

Yongchao Zeng ${ }^{\dagger}$, Aarthi Muthuswamy ${ }^{\dagger}$, Kun Ma ${ }^{\dagger \dagger}$, Le Wang ${ }^{\dagger}$, Rouhi Farajzadeh ${ }^{\ddagger}$, Maura Puerto ${ }^{\dagger}$, Sebastien Vincent-Bonnieu ${ }^{\ddagger}$, Ali Akbar Eftekhari ${ }^{\perp}$, Ying Wang ${ }^{\dagger}$, Chang Da ${ }^{\dagger}$, Jeffrey C. Joyce ${ }^{\dagger}$, Sibani L. Biswal ${ }^{\dagger}$, and George J. Hirasaki ${ }^{\dagger}$ *

${ }^{\dagger}$ Rice University, 6100 Main St., MS-362, Department of Chemical and Biomolecular Engineering, Houston, TX, 77005 USA.
*Shell Global Solutions International, 2288 GS Rijswijk, the Netherlands
${ }^{\perp}$ Delft University of Technology, Delft, 2628 CN, the Netherlands
${ }^{〔}$ Current address: Total E\&P Research and Technology USA, LLC, 1201 Louisiana Street, Houston, TX, 77002 USA

* To whom correspondence should be addressed: email: biswal@rice.edu, gjh@rice.edu

Table S1: Relative permeability data of Bentheimer sandstone ${ }^{41,46}$

Parameter	Bentheimer sandstone
$k_{r w}^{o}$	0.22
$k_{r g}^{o}$	0.94
$S_{w c}$	0.10
$S_{g r}$	0.05
n_{w}	4.00
n_{g}	1.80

Derivation for Equation 13 and Equation 14:

According to Darcy's law, the superficial velocity for gas and liquid phases can be expressed as:

Equation S1
$u_{g}=-\frac{k_{\text {rock }} \cdot k_{r g}^{f}}{\mu_{g}} \nabla p=-\frac{k_{\text {rock }} \cdot k_{r g}^{n f} \cdot F M}{\mu_{g}} \nabla p$

Equation S2

$$
u_{w}=-\frac{k_{r o c k} \cdot k_{r w}}{\mu_{w}} \nabla p
$$

According to the definition of apparent viscosity of foam in Equation 1, the $-k_{r o c k} \nabla p$ term can be expressed as:

$$
-k_{\text {rock }} \nabla p=\mu_{a p p} \times\left(u_{g}+u_{w}\right)
$$

Substitute Equation S3 into Equation S2, the relative permeability to aqueous phase can be solved as:

$$
k_{r w}=\frac{\mu_{w} \times u_{w}\left(1-f_{g}\right)}{\mu_{a p p} \times\left(u_{w}+u_{g}\right)}=\frac{\mu_{w} \times\left(1-f_{g}\right)}{\mu_{a p p}}
$$

Equation S4

Further substitute Equation S4 into Equation 11 and water saturation S_{w} can be solved for as in Equation 13.

In addition, $k_{r g}^{n f}$ can be calculated from Equation 11 as:

$$
k_{r g}^{n f}=k_{r g}^{o} \times\left(\frac{S_{g}-S_{g r}}{1-S_{w c}-S_{g r}}\right)^{n_{g}}=k_{r g}^{o} \times\left(\frac{1-S_{w}-S_{g r}}{1-S_{w c}-S_{g r}}\right)^{n_{g}}
$$

Equation S5

Plug Equation S3 and Equation S5 into Equation S1, FM can be solved for accordingly as shown in Equation 14.

