Supporting Information

Light-Driven Water Oxidation using Polyelectrolyte Layer-by-Layer Chromophore-Catalyst Assemblies

Gyu Leem,[†] Benjamin D. Sherman, [‡] Alex J. Burnett,[†] Zachary A. Morseth,[‡] Kyung-Ryang Wee, [‡] John M. Papanikolas, [‡] Thomas J. Meyer, [‡] Kirk S. Schanze*,[†]

[†]Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States

[‡]Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill,

North Carolina 27599, United States

Experimental Methods

Materials and General. All chemicals were purchased from the indicated suppliers and used without purification: polydiallyldimethylammonium chloride (PDADMAC, $M_w = 200,000$ -350,000), polyacrylic acid (PAA, $M_v \sim 450,000$), and perchloric acid were purchased from Sigma-Aldrich Chemical Co. Deionized water was purified by using a Millipore purification system. PS-Ru (degree of polymerization ~ 80) and [Ru(tpy)(2-pyridyl-N-methylbenzimidazole)(OH₂)]²⁺ (RuC) were prepared as described in the literature.^{1,2} UV-visible absorption spectra were recorded using a Shimadzu UV-1800 dual beam absorption spectrophotometer. Cyclic voltammetry experiments were performed using a CH Instruments 760E bipotentiostat. An SEM instrument (SU5000, scanning electron microscope) was used to observe the morphology of bare FTO//(SnO₂/TiO₂), FTO//(SnO₂/TiO₂)//((PAA/PS-Ru)₅, and FTO//(SnO₂/TiO₂)//((PAA/PS-Ru)₅//(PAA/RuC)₅ films. This instrument was performed at an accelerating voltage of 10 kV and additional carbon conductive layers were coated on the samples.

Preparation of the Photoelectrodes. A SnO₂/TiO₂ mesoporous film on a fluorine doped SnO₂ (FTO) electrode (FTO//(SnO₂/TiO₂)) was prepared according to the previous report.³ To initiate multilayer deposition, the FTO//(SnO₂/TiO₂) electrode was dipped into a solution of PDADMAC (pH ~6.6) for 15 min., followed by deposition of PAA (pH ~4.2) and PS-Ru (pH ~6.8) for 15 min. each. These polyelectrolyte solutions of 1 mM with respect to the polymer repeat unit were prepared by dissolution in Millipore water and adjusted pH with HCl. After dipping with a polyelectrolyte solution, the electrodes were rinsed three times with Millipore water. Multilayers were constructed by continuing to deposit alternate layers of PAA polyanion and PS-Ru polycation on the electrode, FTO//(SnO₂/TiO₂)//((PAA/PS-Ru)_n (where n = the number of bilayers).

Subsequently, alternate deposition of PAA and the cationic water oxidation catalyst, RuC (1 mM, pH ~6.6) atop the FTO//(SnO₂/TiO₂)//(PAA/PS-Ru)_n assembly leads to the "chromophore-catalyst" multilayer structure, FTO//(SnO₂/TiO₂)//(PAA/PS-Ru)_n//(PAA/RuC)_m.

To investigate the visible absorption and cyclic voltammetry of the multilayers onto Sn(IV)doped In₂O₃ (ITO) (Sigma-Aldrich Chemical Co.) glass substrates, the ITO electrodes with loading polychromophores, catalyst, or polychromophore-catalyst assemblies were using the same procedure as above and denoted as ITO//(PAA/PS-Ru)₅, ITO//(PAA/RuC)₅ and ITO//(PAA/PS-Ru)₅/(PAA/RuC)₅.

Transient Absorption Measurements. Transient absorption measurements were conducted using a pump-probe technique based on a Ti:Sapphire chirped pulse amplification (CPA) laser system (Clark-MXR CPA2210). The amplifier produces 150 fs pulses at 775 nm and 1 kHz repetition rate. The 420 nm pump pulse was generated in a 2 mm BBO crystal by sum frequency generation of the 775 nm fundamental and the second harmonic of the 1840 nm idler from an optical parametric amplifier (Light Conversion TOPAS-C). The femtosecond probe pulse is generated by focusing 3 mW of the 775 nm amplifier output into a translating CaF2 window. The pump beam is focused onto the sample using a 300 mm lens and the probe beam is focused and overlapped with a 250 mm spherical aluminum mirror. Time-resolved spectra are collected by varying the delay between pump and probe pulses using a computer controlled delay stage. Spectra are collected on a shot-by-shot (1 kHz) basis over the range of 350 to 800 nm resulting in a high signal to noise ratio and an instrument sensitivity of up to 0.1 mOD. The angle between the pump and probe polarization vectors was set to magic angle (~54.7°) to avoid polarization effects and ensure that only excited-state population dynamics were being monitored. The films samples were

raster scanned at a rate of 1mm/s to prevent photodegradation of the samples. Following data collection, the frequency chirp in the probe pulse was characterized using the optical Kerr response of liquid CCl4 in a 2 mm cuvette in a polarization gating geometry. The spectra were chirp corrected using a data processing program written in LabVIEW.

Collector-Generator O₂ Detection.

A detailed description of the collector-generator method can be found in reference 19 of the manuscript. Briefly, two working (FTO based) electrodes were held in place 1 mm apart with a glass spacer on both the lateral edges. The spacer was bonded to each piece of FTO with epoxy (Hysol) forming a seal on each side. The electrodes were independently controlled using a CH Instruments 760E bipotentiostat. With gaps at the top and bottom of the electrode assembly, the internal volume between the electrodes fills by capillary action when placed in solution. Dioxygen (O_2) formed at the photoanode under study diffuses between the two electrodes and is reduced at the collector when a sufficiently negative bias is maintained at this electrode during the measurement. Under the neutral pH conditions used in this study, an applied potential of -1.1 V vs. NHE was used to sense for O_2 . Any observed cathodic current observed above a background measurement was attributed to O_2 .

Figure S1. SEM images (plane view) of (a) as-prepared $FTO//(SnO_2/TiO_2)$ film and (b) $FTO//(SnO_2/TiO_2)//(PAA/PS-Ru)_5$ film, and (c) $FTO//(SnO_2/TiO_2)//(PAA/PS-Ru)_5$ (PAA/RuC)₅ film.

Figure S2. (Top) Transient absorption spectra following 420 nm laser excitation for the PS-Ru complex on TiO_2 (TiO_2 //PAA/PS-Ru)_4 at 0.65, 25, 50, 250, 650, and 1300 ps. (Bottom) (TiO_2 //PAA/PS-Ru)_4 kinetics trace at 450 nm.

Figure S3. (Top) Current–time trace (30–630 s) with the illumination (1 sun, 100 mW cm⁻²; 400 nm cut-off filter) on FTO//(SnO₂/TiO₂)//(PAA/PS-Ru)₅ in 0.1 M phosphate buffer at pH 7 with an applied bias of 0.44 V versus NHE. (Bottom) current–time traces at an FTO collector electrode, ~ 1mm from the photoanode at an applied bias of -1.1 V versus NHE measured concurrently with the photoelectrochemical–time trace.

References

- Leem, G.; Keinan, S.; Jiang, J.; Chen, Z.; Pho, T.; Morseth, Z. A.; Hu, Z.; Puodziukynaite, E.; Fang, Z.; Papanikolas, J. M.; Reynolds, J. R.; Schanze, K. S. Ru(bpy)3²⁺ derivatized polystyrenes constructed by nitroxide-mediated radical polymerization. Relationship between polymer chain length, structure and photophysical properties. *Polym. Chem.* 2015, *6*, 8184.
- (2) Norris, M. R.; Concepcion, J. J.; Harrison, D. P.; Binstead, R. A.; Ashford, D. L.; Fang, Z.; Templeton, J. L.; Meyer, T. J. Redox mediator effect on water oxidation in a ruthenium-based chromophore–catalyst assembly. *J. Am. Chem. Soc.* **2013**, *135*, 2080.
- (3) Alibabaei, L.; Sherman, B. D.; Norris, M. R.; Brennaman, M. K.; Meyer, T. J. Visible photoelectrochemical water splitting into H₂ and O₂ in a dye-sensitized photoelectrosynthesis cell. *Proc. Natl. Acad. Sci.* **2015**, *112*, 5899.