
Supporting Information

Converting Light Energy to Chemical Energy: A New Catalytic Approach for Sustainable Environmental Remediation

Michelle A. Nguyen,¹ Elsayed M. Zahran,^{1§} Azaan S. Wilbon,¹ Alexander V. Besmer,¹ Vincent J. Cendan,¹ William A. Ranson,¹ Randy L. Lawrence,¹ Joshua L. Cohn,² Leonidas G. Bachas,¹ and Marc R. Knecht^{1,*}

¹Department of Chemistry, University of Miami, 1301 Memorial Drive, Coral Gables, Florida
33146, United States
²Department of Physics, University of Miami, 1320 Campo Sano Avenue, Coral Gables, Florida
33146, United States
[§]On academic leave from the Department of Applied Organic Chemistry, National Research
Centre, Egypt

*To whom correspondence should be addressed: MK: phone – (305) 284-9351 and email - knecht@miami.edu

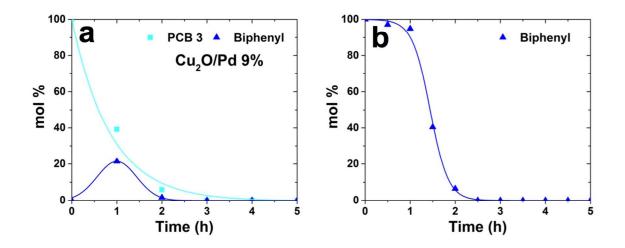
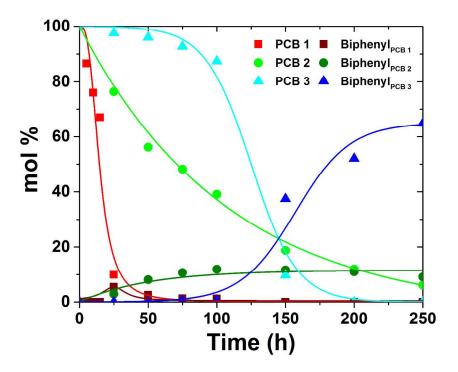


Figure S1. Size analysis of the Cu₂O/Pd materials with a Pd mass of (a) 1%, (b) 3%, (c) 6%, (d) 9%, and (e) 15%. Panel (f) presents the size analysis of the bare Cu₂O cubes.


	Pd wt%
Cu ₂ O/Pd 1%	0.92
Cu ₂ O/Pd 3%	2.35
Cu ₂ O/Pd 6%	5.65
Cu ₂ O/Pd 9%	7.62
Cu ₂ O/Pd 15%	14.99

	k _{PCB 1} (10 ⁻³ h ⁻¹)	<i>k</i> _{PCB 2} (10 ⁻³ h ⁻¹)	<i>k</i> _{РСВ 3} (10 ⁻³ h ⁻¹)
Cu ₂ O/Pd 1%	2.4 ± 0.7	2.3 ± 0.5	7.7 ± 0.7
Cu ₂ O/Pd 3%	3.4 ± 0.5	2.7 ± 0.1	6.3 ± 0.3
Cu ₂ O/Pd 6%	2.5 ± 0.2	4.0 ± 0.2	7.7 ± 0.3
Cu ₂ O/Pd 9%	1.9 ± 0.1	11.0 ± 0.7	50.8 ± 2.9
Cu ₂ O/Pd 15%	2.4 ± 0.2	6.3 ± 0.3	36.5 ± 1.3

Table S2. Pseudo-first-order rate constants for the PCB photodechlorination reactions for each of the Cu_2O/Pd materials indicated at a catalyst loading of 2 mg/mL

Figure S2. The overall reaction analysis for (a) the dechlorination of PCB 3 following H_2 being bubbled into the reaction for 5 h in the presence of Cu₂O/Pd 9% materials at a catalyst loading of 2 mg/mL while in the dark and (b) the aerosolization of biphenyl following H_2 being bubbled into the reaction for 5 h in the absence of a photocatalyst while in the dark. Note that lines are added to guide the eye.

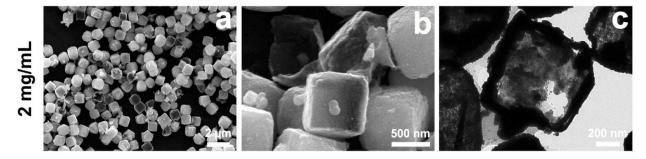
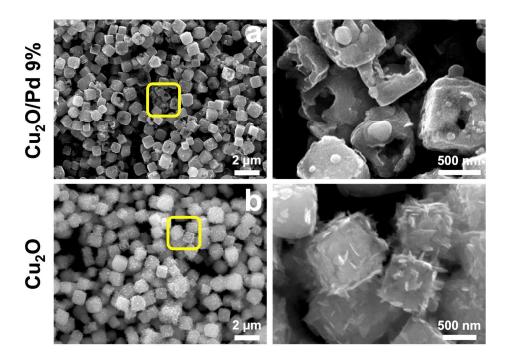

Figure S3 The overall reaction analysis for the photodegradation of PCBs 1, 2, and 3 following light irradiation for 250 h in the absence of a photocatalyst. Note that lines are added to guide the eye.

Table S3. Pseudo-first-order rate constants for the PCB 3 photodechlorination reaction using the Cu₂O/Pd 9% materials at the indicated catalyst loadings


_

Cu ₂ O/Pd 9%	1 mg/mL	2 mg/mL	3 mg/mL
<i>к</i> _{РСВ 3} (10 ⁻³ h ⁻¹)	17.6 ± 0.7	50.8 ± 2.9	9.9 ± 0.9

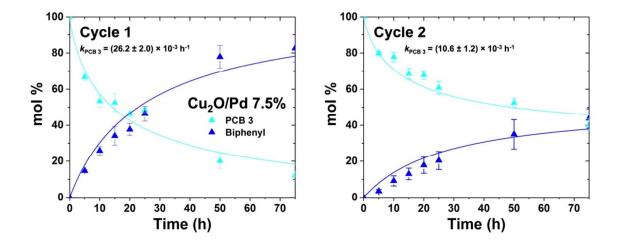

Cu₂O/Pd 9%

Figure S4. Additional SEM and TEM images of the Cu_2O/Pd 9% cubes presented for the postdechlorination analysis. Parts (a-b) present SEM images and part (c) displays a TEM image when a catalyst loading of 2 mg/mL was used in the reaction.

Figure S5. SEM images of (a) the Cu₂O/Pd 9% materials and (b) the bare Cu₂O cubes after being photoirradiated in ethanol/water for 250 h in the absence of PCB. The right panel shows the yellow box zoomed-in.

Figure S6. The reaction analysis for the recyclability study of the Cu_2O/Pd 7.5% materials for the photodegradation of PCB 3 at a catalyst loading of 2 mg/mL. Note that lines are added to guide the eye.