Supporting Information

Humic acid as sensitizer in highly stable dye solar cell : Energy from abundant natural polymer soil component

Rohit L. Vekariya,^{a,b} Keval K. Sonigara,^a Kishan B. Fadadu,^a Jayraj V. Vaghasiya,^a Saurabh S. Soni^{a,*}

^a. Department of Chemistry, Sardar Patel University, Vallabh Vidyanagar- 388 120, Gujarat, INDIA

^bSchool of Chemical Engineering, Fuzhou University, FUZHOU-350116, Fujian Province, P. R. CHINA

* Author to whom all correspondence should address (E-mail: <u>soni_b21@yahoo.co.in</u>)

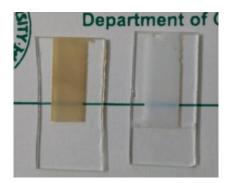


Figure S1. TiO₂ photoanode with and without HA

Dye adsorption - desorption study:

A stock solution of 0.4 %(w/v) HA was prepared in DMSO:DMF and diluted to 0.16 %(w/v) for dye adsorption on FTO/TiO₂ electrode having area 1.0 cm². Dye bath containing FTO/TiO₂ was kept at 40 °C for 48 hrs and sensitized photoanode was washed thoroughly with DMSO:DMF solvent mixture followed by drying.

For desorption process, pre-sensitized FTO/TiO₂ electrode was kept in 0.001M aqueous NaOH solution for 24 hrs. Amount of dye loading was determined by measuring absorbance in UV-Vis spectra (**Figure S2**) before and after desorption using calibration curve method. Calculation shows that, 0.02%(w/v) of HA was adsorbed on 1 cm² titania electrode from 0.16%(w/v) HA solution.

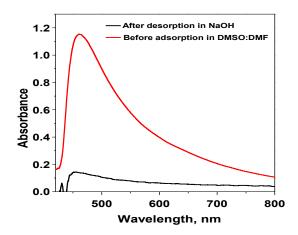


Figure S2. UV-Vis spectra of HA solutions

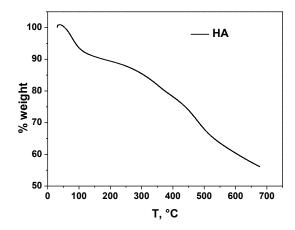


Figure S3. TGA characteristic of HA