SUPPORTING INFORMATION

Injectable Hydrogel: Amplifying the pH Sensitivity of a Triblock Copolypeptide by Conjugating the N-termini via Dynamic Covalent Bonding

Maria-Teodora Popescu, ^a George Liontos, ^b Apostolos Avgeropoulos ^b Efstathia Voulgari, ^c Konstantinos Avgoustakis ^c and Constantinos Tsitsilianis ^{a*}

Table of Contents

- 1. pH responsiveness by ¹H NMR.
- 2. Polymersome preparation
- 3. Gelation threshold

^{*}Corresponding Author: ct@chemeng.upatras.gr

1. pH responsiveness by ¹H NMR.

Figure S1. ¹H NMR spectra of Bz-A₅E₁₁A₅-Bz in D₂O at pD 7.4 and 6.5.

2. Polymersome preparation

The polymersomes were prepared using PCL-PEO-P2VP-PEO-PCL pentablock terpolymers. Details of the synthesis and characterization are reported elsewhere. S1 The molecular characteristics of the terpolymers are gathered in Table S1.

Table S1. Molecular characteristics of the terpolymers.

POLYMER	$M_{ m W}^{a}$	PDI ^b PEO ^c P2VP ^c		QP2VP ^d		PCL ^c	
		V	wt%	wt%	wt%	mol%	wt%
PCL ₄₆ -PEO ₁₉₉ -P2VP ₅₉₈ -PEO ₁₉₉ -	90 950	1.14 1	19.4	69	-	-	11.6
PCL_{46} (P5b)							
PCL_{46} - PEO_{199} - $P(2VP$ - co - $2VP_q)_{598}$ -	108 840	1.14 1	16	45.5	29.9	19	8.6
PEO ₁₉₉ -PCL ₄₆ (Q5b)							

^a by LS and ¹H NMR, ^b by GPC, ^c by ¹H NMR, ^d by titration

3. Gelation threshold

Figure S2 Gelation threshold, T_{gel} as a function of the copolypeptide $(A_5E_{11}A_5)$ fraction of the $A_5E_{11}A_5/Bz-A_5E_{11}A_5-Bz$ blend. The physiological temperature window is marked with red area.

From the above plot, the gelation threshold T_{gel} can be regulated as to cover the physiological region (36-37 °C) by a $A_5E_{11}A_5/Bz$ - $A_5E_{11}A_5$ -Bz blend slightly rich with the bare $A_5E_{11}A_5$ copolypeptide, i.e 60/40 $A_5E_{11}A_5/Bz$ - $A_5E_{11}A_5$ -Bz mass ratio.

References

S1. Popescu, M.-T.; Korogianaki, M.; Marikou, K.; Tsitsilianis, C. CBABC Terpolymer-based Nanostructured Vesicles with Tunable Membrane Permeability as Potential Hydrophilic Drug Nanocarriers. *Polymer*, **2014**, 55, 2943-2951.