SUPPORTING INFORMATION

Injectable Hydrogel: Amplifying the pH Sensitivity of a Triblock
 Copolypeptide by Conjugating the N-termini via Dynamic Covalent Bonding

Maria-Teodora Popescu, ${ }^{\text {a }}$ George Liontos, ${ }^{\text {b }}$ Apostolos Avgeropoulos ${ }^{\text {b }}$
Efstathia Voulgari, ${ }^{\text {c }}$ Konstantinos Avgoustakis ${ }^{\mathrm{c}}$ and Constantinos Tsitsilianis ${ }^{\mathrm{a}^{*}}$

Table of Contents

1. pH responsiveness by ${ }^{1} \mathrm{H}$ NMR.
2. Polymersome preparation
3. Gelation threshold
[^0]1. pH responsiveness by ${ }^{1} H$ NMR.

Figure S1. ${ }^{1} \mathrm{H}$ NMR spectra of $\mathrm{Bz}-\mathrm{A}_{5} \mathrm{E}_{11} \mathrm{~A}_{5}-\mathrm{Bz}$ in $\mathrm{D}_{2} \mathrm{O}$ at pD 7.4 and 6.5.

2. Polymersome preparation

The polymersomes were prepared using PCL-PEO-P2VP-PEO-PCL pentablock terpolymers. Details of the synthesis and characterization are reported elsewhere. ${ }^{\text {S1 }}$ The molecular characteristics of the terpolymers are gathered in Table S1.

Table S1. Molecular characteristics of the terpolymers.

POLYMER	$\mathrm{M}_{\mathrm{W}}{ }^{\text {a }}$	$\mathrm{PDI}^{\text {b }}$	$\begin{aligned} & \mathrm{PEO}^{\mathrm{c}} \\ & \mathrm{wt} \% \end{aligned}$	$\begin{aligned} & \text { P2VP }{ }^{\mathrm{c}} \\ & \mathrm{wt} \% \end{aligned}$	QP2VP ${ }^{\text {d }}$		$\begin{aligned} & \text { PCL }{ }^{\text {c }} \\ & \text { wt } \% \end{aligned}$
					wt\%	mol\%	
$\begin{aligned} & \mathrm{PCL}_{46}-\mathrm{PEO}_{199}-\mathrm{P}_{2} \mathrm{VP}_{598}-\mathrm{PEO}_{199}- \\ & \mathrm{PCL}_{46} \text { (P5b) } \end{aligned}$	90950	1.14	19.4	69	-	-	11.6
$\begin{aligned} & \mathrm{PCL}_{46}-\mathrm{PEO}_{199}-\mathrm{P}\left(2 \mathrm{VP}-\mathrm{co}-2 \mathrm{VP}_{q}\right)_{598^{-}} \\ & \mathrm{PEO}_{199}-\mathrm{PCL}_{46}(\mathrm{Q} 5 \mathrm{~b}) \end{aligned}$	108840		16	45.5	29.9	19	8.6

${ }^{a}$ by LS and ${ }^{1}$ H NMR, ${ }^{b}$ by GPC, ${ }^{c}$ by ${ }^{\text {I }} \mathrm{H}$ NMR, ${ }^{\mathrm{d}}$ by titration
3. Gelation threshold

Figure $\mathbf{S 2}$ Gelation threshold, $\mathrm{T}_{\text {gel }}$ as a function of the copolypeptide $\left(\mathrm{A}_{5} \mathrm{E}_{11} \mathrm{~A}_{5}\right)$ fraction of the $\mathrm{A}_{5} \mathrm{E}_{11} \mathrm{~A}_{5} / \mathrm{Bz}-\mathrm{A}_{5} \mathrm{E}_{11} \mathrm{~A}_{5}-\mathrm{Bz}$ blend. The physiological temperature window is marked with red area.

From the above plot, the gelation threshold $\mathrm{T}_{\text {gel }}$ can be regulated as to cover the physiological region $\left(36-37^{\circ} \mathrm{C}\right)$ by a $\mathrm{A}_{5} \mathrm{E}_{11} \mathrm{~A}_{5} / \mathrm{Bz}-\mathrm{A}_{5} \mathrm{E}_{11} \mathrm{~A}_{5}$ - Bz blend slightly rich with the bare $\mathrm{A}_{5} \mathrm{E}_{11} \mathrm{~A}_{5}$ copolypeptide, i.e $60 / 40 \mathrm{~A}_{5} \mathrm{E}_{11} \mathrm{~A}_{5} / \mathrm{Bz}-\mathrm{A}_{5} \mathrm{E}_{11} \mathrm{~A}_{5}$ - Bz mass ratio.

References

S1. Popescu, M.-T.; Korogianaki, M.; Marikou, K. ; Tsitsilianis, C. CBABC Terpolymer-based Nanostructured Vesicles with Tunable Membrane Permeability as Potential Hydrophilic Drug Nanocarriers. Polymer, 2014, 55, 2943-2951.

[^0]: *Corresponding Author: ct@chemeng.upatras.gr

