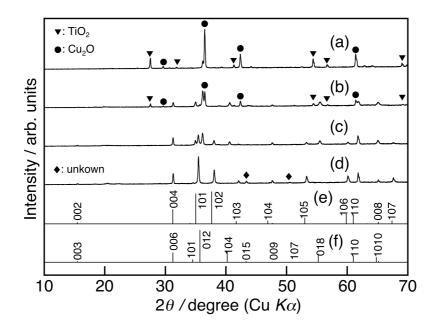
Supporting Information

Visible-Light-Responsive CuLi_{1/3}Ti_{2/3}O₂ Powders Prepared by a Molten CuCl Treatment of Li₂TiO₃ for Photocatalytic H₂ Evolution and Z-Schematic Water Splitting

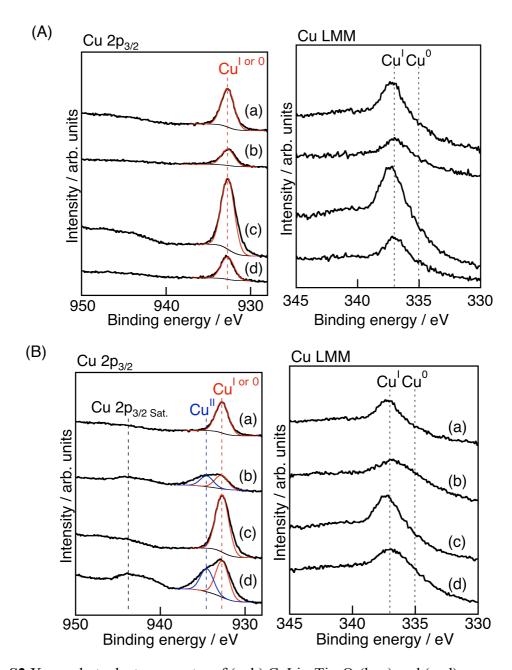
Katsuya Iwashina,^a Akihide Iwase,^{a,b} Shunsuke Nozawa,^c Shin-ichi Adachi,^{c,d} Akihiko Kudo^{a,b,*}

^a Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan

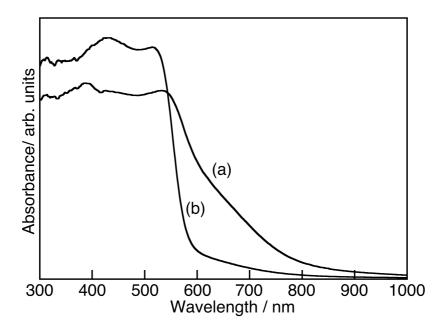
^b Photocatalysis International Research Center, Research Institute for Science and Technology, Tokyo University of Science, 2641 Noda-shi, Yamazaki, Chiba-ken, Japan


^c Institute of Materials Structure Science, High Energy Accelerator Research Organization, 1-1 Oho,

Tsukuba, Ibaraki 305-0801, Japan


^d Department of Materials Structure Science, School of High Energy Accelerator Science, The Graduate University for Advanced Studies, 1-1 Oho, Tsukuba, Ibaraki 305-0801, Japan

Photoelectrochemical measurement


CuLi_{1/3}Ti_{2/3}O₂ and TiO₂ electrodes were prepared by an electrophoretic method. 0.1 g of CuLi_{1/3}Ti_{2/3}O₂ or TiO₂ was dispersed in 20 mL of acetone (Kanto Chemical; 99.0%). Two FTO electrodes (AGC fabritech; < 12 Ω/\Box , 1.8 mm×10 mm×20 mm) were parallel immersed with distance of 1 cm in the suspension, and 60 V was applied between the two electrodes for 1–2 min using a direct-current power source (GPC-6030D; GW INSTEK). These electrodes calcined at 573 K for 2 h in N₂ for CuLi_{1/3}Ti_{2/3}O₂ and in air for TiO₂. Photoelectrochemical properties were evaluated using a potentiostat (Hokuto Denko; HZ-5000) and an H-type cell with Nafion 117 (Dupont). Platinum and Ag/AgCl with saturated KCl electrodes (DKK-TOA) were used as counter and reference electrodes, respectively. A buffered aqueous solution containing 0.1 mol L⁻¹ of K₂SO₄ (Kanto Chemical; 99.0%), 0.025 mol L⁻¹ of Na₂HPO₄ (Kanto Chemical; 99.5%), and 0.025 mol L⁻¹ of KH₂PO₄ (Kanto Chemical; 99.6%) was used as an electrolyte at pH 6.9. The electrolytes in both compartments were bubbled with N₂ for deaeration before measurements. A 300 W Xe arc lamp (PerkinElmer; CERMAX PE300BF) with long-pass filters (HOYA), an NIR-absorbing filter (Sigma Koki; CCF-50S-500C) and a plano-convex lens (Sigma Koki; SLSQ- 60_150P) was used as a light source.

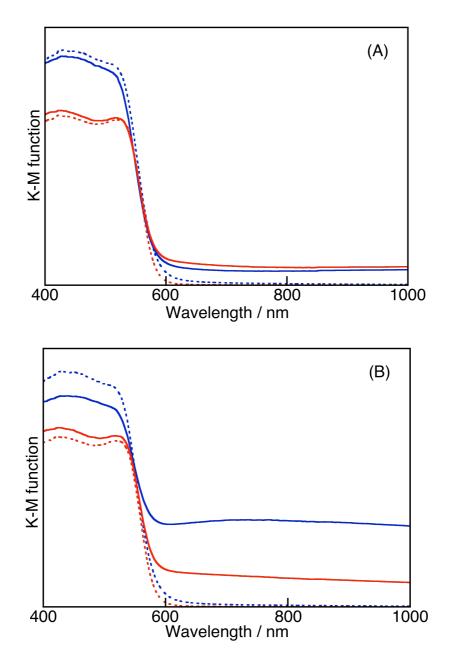

Figure S1 X-ray diffraction patterns of $CuLi_{1/3}Ti_{2/3}O_2$ prepared by a solid-state reaction at (a) 673, (b) 873, (c) 1073, and (d) 1273 K for 10 h, (e) hexagonal-CuFeO₂ (PDF: 1-75-2146), and (f) trigonal-CuFeO₂ (PDF: 1-75-2146).

Figure S2 X-ray photoelectron spectra of (a, b) $CuLi_{1/3}Ti_{2/3}O_2(hex)$ and (c, d) $CuLi_{1/3}Ti_{2/3}O_2(tri)$ (a, c) before and (b, d) after photocatalytic H₂ evolution from aqueous (A) 0.5 mol L⁻¹ K₂SO₃ + 0.1 mol L⁻¹ Na₂S and (B) methanol (pH 10, using NaOH_{aq.}) solutions. $CuLi_{1/3}Ti_{2/3}O_2(hex)$ and $CuLi_{1/3}Ti_{2/3}O_2(tri)$ were prepared by treating $Li_2TiO_3(cub)$ at 873 K and $Li_2TiO_3(mon)$ at 773 K with a molten CuCl, respectively.

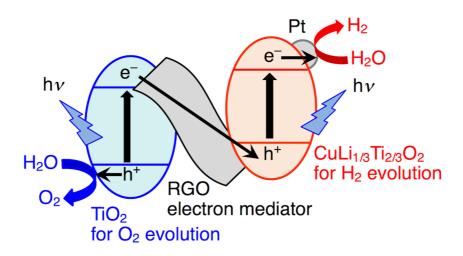


Figure S3 Diffuse reflectance spectra of hexagonal-CuLi_{1/3}Ti_{2/3}O₂ (a) obtained from CuLi_{1/3}Ti_{2/3}O₂(tri) by calcination at 1273 K for 2 h in N₂ and (b) prepared by a solid-state reaction at 1273 K for 10 h.

Figure S4 Diffuse reflectance spectra of (red lines) $CuLi_{1/3}Ti_{2/3}O_2(hex)$ and (blue lines) $CuLi_{1/3}Ti_{2/3}O_2(tri)$ (dotted lines) before and (solid lines) after photocatalytic H₂ evolution from aqueous (A) 0.5 mol L⁻¹ K₂SO₃ + 0.1 mol L⁻¹ Na₂S and (B) methanol (pH 10, using NaOH_{aq}) solutions.

 $CuLi_{1/3}Ti_{2/3}O_2(hex)$ and $CuLi_{1/3}Ti_{2/3}O_2(tri)$ were prepared by treating $Li_2TiO_3(cub)$ at 873 K and $Li_2TiO_3(mon)$ at 773 K with a molten CuCl, respectively.

Figure S5 An illustration of a constructed Z-scheme system consisting of $Pt/CuLi_{1/3}Ti_{2/3}O_2$, TiO_2 , and an RGO electron mediator.

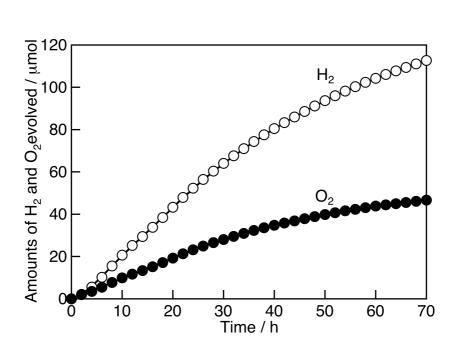
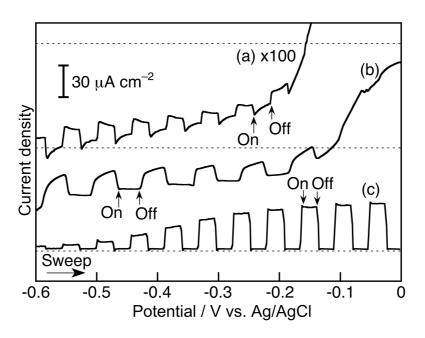



Figure S6 Z-schematic water splitting using Pt(0.3 wt%)-loaded $CuLi_{1/3}Ti_{2/3}O_2(hex)$ and RGO-TiO₂ composite.

Catalyst: 0.05 g each, solution: water without pH adjustment (120 mL), light source: 300 W Xe lamp, cell: top-irradiation cell with a Pyrex window.

CuLi_{1/3}Ti_{2/3}O₂(hex) was prepared by treating Li₂TiO₃(cub) at 873 K with a molten CuCl.

Figure S7 Current vs. potential curves of (a) CuLi_{1/3}Ti_{2/3}O₂(hex), (b) CuLi_{1/3}Ti_{2/3}O₂(tri), and (c) TiO₂ photoelectrodes. (a, b) $\lambda > 420$ nm and (c) $\lambda > 300$ nm. Electrolyte: 0.1 mol L⁻¹ K₂SO_{4 aq.} + 0.05 mol L⁻¹ KH₂PO_{4 aq.} + 0.05 mol L⁻¹ NaH₂PO_{4 aq.} (pH 6.8), sweep rate: 20 mV s⁻¹, light source: 300 W Xe lamp. Dashed line showed 0 A for each electrode. CuLi_{1/3}Ti_{2/3}O₂(hex) and CuLi_{1/3}Ti_{2/3}O₂(tri) were prepared by treating Li₂TiO₃(cub) at 873 K and Li₂TiO₃(mon) at 773 K with a molten CuCl, respectively.