Confronting Neutrality: Maximizing Success in the Analysis of Transition-Metal Catalysts by MALDI Mass Spectrometry

Gwendolyn A. Bailey and Deryn E. Fogg*

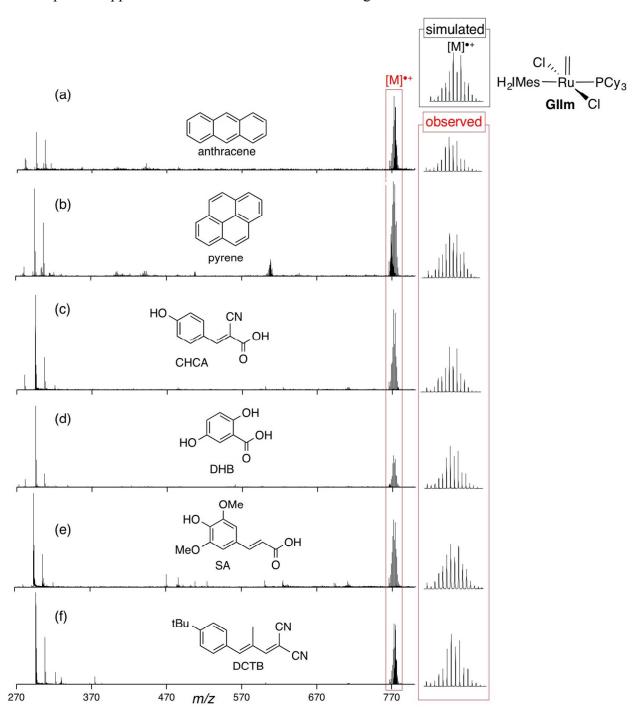
Centre for Catalysis Research & Innovation, Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario, Canada K1N 6N5

*Corresponding author. Email: dfogg@uottawa.ca

Table of Contents

S1. Spectrometers and experimental parameters used.	
S2. Additional examples showing impact of matrix ε_M on fragmentation	S3
S3. Spectra showing aggressive decomposition by functionalized matrices	S4
S4. Spectra showing impact of laser beam profile on fragmentation.	S5
S5. UV-Vis spectra of selected matrices and analytes	S6

S1. Spectrometers and experimental parameters used.


Table S1. MALDI mass spectrometers used, and relevant instrument parameters.

	,	Laser		
Instrument	Location	Type	Wavelength	Figure
AB Sciex 5800	MALDI MS / Functional	Nd:YLF	349 nm	3, S3a
TOF/TOF	Proteomics Facility,			
	London Regional			
	Proteomics Centre,			
	Western Univ.			
AB Sciex 5800	AB Sciex	Nd:YLF	349 nm	5e
TOF/TOF	Framingham, MA			
Applied Biosystems	MALDI MS / Functional	Nd:YAG	355 nm	S4a a
4700 TOF/TOF	Proteomics Facility,			
	London Regional			
	Proteomics Centre,			
	Western Univ.			
Applied Biosystems	Univ. Toronto	Nd:YAG	355 nm	2, 6, 9a
4800 TOF/TOF	Forestry Dept.			
Bruker Microflex TOF	Bruker Daltonics	N_2	337 nm	S3c
	Billerica MA			
Bruker Omniflex TOF	Fogg Anaerobic MALDI-	N_2	337 nm	S3c
	MS Facility, Univ.			
	Ottawa			
Bruker Reflex IV TOF	MALDI MS / Functional	N_2	337 nm	S4b ^a
	Proteomics Facility			
	London Regional			
	Proteomics Centre,			
	Western Univ.			
Bruker Ultraflex II	Bruker Daltonics	N_2	337 nm	9b
TOF/TOF	Billerica, MA			
Bruker UltrafleXtreme	Bruker Daltonics	contoured	355 nm	1, 4, 5a-d, 7,
TOF/TOF	Billerica, MA	Nd:YAG		9c, S1, S2
Shimadzu Performance	Shimadzu	N_2	337 nm	S3c
TOF/TOF	Columbia MD			
ThermoFisher MALDI	Laboratory of Imaging	N_2	337 nm	8
LTQ Orbitrap XL	Mass Spectrometry			
	Univ. North Texas			
Waters Micro MX	Advanced Instrumental	N_2	337 nm	S3c
TOF	Mass Spectrometry Lab			
	Univ. Toronto			
Waters Synapt G2-Si	Waters Corp.	Nd:YAG	355 nm	S3b
MALDI-QTOF	Milford MA			

^a At the time of use, these lasers were near the end of their operational lifetimes, and higher applied laser energies were therefore required. The impact on fragmentation is illustrated in Fig. S4.

S2. Additional examples showing impact of matrix ε_M on fragmentation.

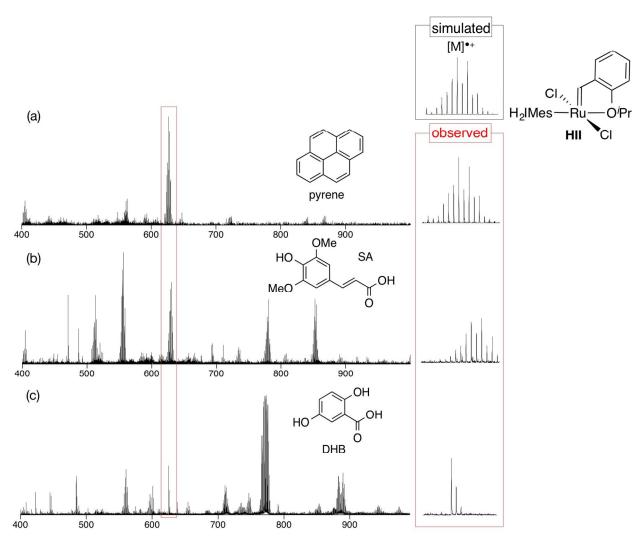
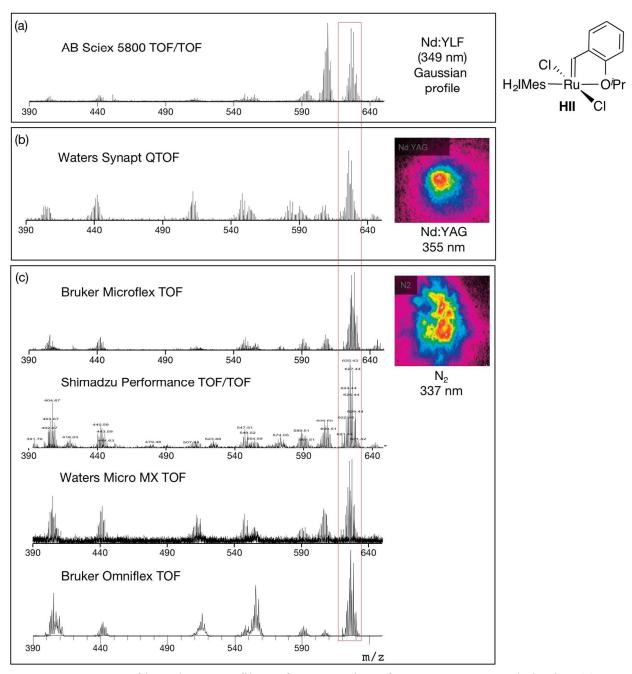
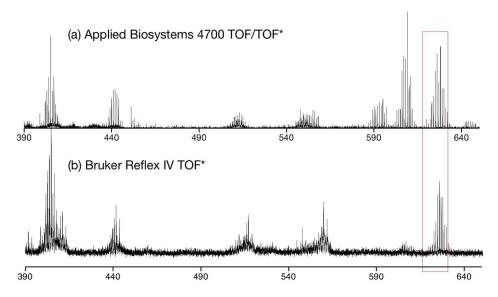

These spectra supplement the two extremes shown in Figure 4.

Figure S1. Impact of matrix ε_M on fragmentation, assessed in analysis of non-labile **GIIm.** MALDI mass spectra of **GIIm** with (a) anthracene; (b) pyrene; (c) CHCA; (d) DHB; (e) SA; (f) DCTB.

S3. Spectra showing aggressive decomposition by functionalized matrices.


These examples supplement the spectra shown in Figure 5, which focus on more widely-used matrices.


Figure S2. MALDI mass spectra showing gas-phase decomposition of **HII** by functionalized matrices, as compared to the benchmark pyrene. (a) Pyrene; (b) SA; (c) DHB.

S4. Spectra showing impact of laser beam profile on fragmentation.

These examples supplement the spectra shown in Figure 9 (which were drawn from instruments matched as closely as possible, to facilitate comparison).

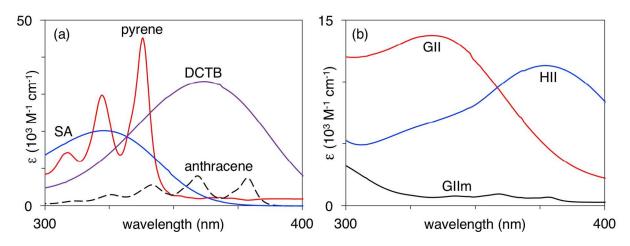


Figure S3. Impact of laser beam profile on fragmentation of **HII**. Spectra recorded using (a) a Nd:YLF laser; (b) a Nd:YAG laser; and (c) a N₂ laser.

Figure S4. Negative impact of laser age on performance. MALDI mass spectra recorded for **HII** on (a) Nd:YAG (Applied Biosystems 4700) and (b) N₂ (Bruker Reflex II) lasers that were nearing the end of their lifetime, necessitating use of higher applied laser energies.

S5. UV-vis spectra of selected matrices and analytes.

Figure S5. (a) UV-vis spectra of the matrices pyrene, anthracene, and DCTB in CH_2Cl_2 ; spectrum of SA (which is very poorly soluble in CH_2Cl_2) in methanol. (b) UV-vis spectra of the analytes **GII**, **GIIm**, and **HII** in CH_2Cl_2 .