Supporting Information

Aggregation induced FRET via Polymer-Surfactant

Complexation: A New Strategy for the Detection of

Spermine

Akhtar Hussain Malik^a, Sameer Hussain^a and Parameswar Krishnan Iyer^{a,b}*

^aDepartment of Chemistry, Indian Institute of Technology Guwahati, Guwahati-781039, India.

^bCentre for Nanotechnology, Indian Institute of Technology Guwahati, Guwahati, 781039, India

AUTHOR INFORMATION

Corresponding Author

*Tel: +91-361-258-2314 (O). Fax: +91-361-269-0762 / 258-2349.

E-mail: pki@iitg.ernet.in

Figure S1. ¹H NMR (400 MHz, CDCl₃) spectrum of M0.

Figure S2. ¹³C NMR (100 MHz, CDCl₃) spectrum of M0.

Figure S3. ¹H NMR (400 MHz, CDCl₃) spectrum of M1.

Figure S4. ¹³C NMR (100 MHz, CDCl₃) spectrum of M1.

Figure S5. ¹H NMR (600 MHz, CDCl₃) spectrum of PFBT.

Figure S6. ¹³C NMR (150 MHz, CDCl₃) spectrum of PFBT.

Figure S7. ¹H NMR (600 MHz, CD₃OD) spectrum of PFBT-MI.

Figure S8. ¹³C NMR (150 MHz, CD₃OD) spectrum of PFBT-MI.

Figure S9. GPC chromatogram of PFBT.

Figure S10. The pH dependent fluorescence response of PFBT-MI $(6.6 \ \mu M)$ in different pH buffers.

Figure S11. Detection limit plot for SDS.

LOD =
$$3 \times \sigma/k$$

LOD = $3 \times 1725.58/4.43 \times 10^{10}$
= $0.12 \mu M (34 ppb)$

Figure S12. Detection limit plot for SDBS.

LOD =
$$3 \times \sigma/k$$

LOD = $3 \times 1725.58/3.89 \times 10^{10}$
= $0.13 \mu M (45 ppb)$

Figure S13. Stern-Volmer plot for spermine with PFBT-MI/SDS (6.6 μ M/ 18 μ M).

Figure S14. (a) Changes in the emission spectra of PFBT-MI/SDS (6.6 μ M/ 18 μ M) with various concentrations of spermine (0, 1.6, 3.3, 5.0, 6.6 μ M) in aqueous solution.

LOD =
$$3 \times \sigma/k$$

LOD = $3 \times 3363.20/3.0 \times 10^{10}$
= 0.33 µM (66 ppb)

Figure S15. Effect of various cancer biomarkers (120 μ M) on the emission of PFBT-MI/SDS complex.

Figure S16. Effect of spermine (120 μM) on the emission of PFBT-MI.

Figure S17. Control experiment showing the effect of undoped-urine specimen (10 μ L) on the emission of PFBT-MI/SDS (6.6 μ M/ 18 μ M).

Figure S18. Fluorescence quenching of PFBT-MI/SDS (6.6 μ M/ 18 μ M) assembly on addition of different urine samples spiked with spermine.

Figure S19. Calibration plot for spermine.