A Soluble, Folded Protein Without Charged Amino Acid Residues

Casper Højgaard ${ }^{\#}$, Christian Kofoed ${ }^{\#, \dagger}$, Roall Espersen ${ }^{\#, \ddagger}$, Kristoffer Enøe Johansson ${ }^{\text {§ }}$, Mara Villa ${ }^{\text {『 }}$, Martin Willemoës, Kresten Lindorff-Larsen, Kaare Teilum and Jakob R. Winther*

Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, DK-2200 Copenhagen N, Denmark

Contents:

Multiple Alignment of family 2 CBMs (Figure S1)
Precipitation propensity for EXG:CBM and EXG:CBM ${ }^{\text {MQM }}$ (Figure S2)
Cellulose binding assay of acEXG:CBM ${ }^{\mathrm{MQMW}}$ after two weeks (Figure S3)
Effect of initial protein concentration on solubility in ammonium sulfate. (Table S1)
Residue specific fraction of solvent accessible surface area in selected proteins. (Table S2)
Reversible Chemical Unfolding of EXG:CBM Variants. (Figure S4)
Non-normalized chemical unfolding (Figure S5)
${ }^{1} \mathrm{H},{ }^{15} \mathrm{~N}$-HSQC of EXG:CBM at pH 2, 6 and 9 (Figure S6)
${ }^{1} \mathrm{H},{ }^{15} \mathrm{~N}-\mathrm{HSQC} / \mathrm{HMQC}$ of EXG:CBM and EXG:CBM ${ }^{\mathrm{MQMw}}$ at pH 6 (Figure S7)
Far- and Near-UV CD of acEXG:CBM ${ }^{\text {MQMW }}$. (Figure S8)
Titration curves from amide signals (Figure S9 and S10)

Figure S1. Multiple Alignment of family 2 CBMs. The boxes show the aligned positions of the four charged amino acid residues in EXG:CBM. The numbers after the vertical lines refer to the number of the first amino acid in the original sequence counted from the first translated Met residue of the respective proteins (except for EXG:CBM). All Asp and Glu residues are shown in red, and all Arg, His and Lys residues are shown in blue. The alignments are made with MAFFT's L-INS-i algorithm (61) and viewed with Jalview (62), which also was used for calculation of Conservation scores. The Swiss-Prot or NCBI Reference IDs of the sequences used for the multiple alignment are given to the right.

Figure S2. Precipitation propensity for EXG:CBM and EXG:CBM ${ }^{\text {MQMW }}$. The tendency for the wild-type and chargedeprived mutant to precipitate was followed over time at three different pH conditions. Measurements were performed in triplicates and normalized to the mean of the measurements at time-point 1 hour. The initial protein concentrations were between 8 and $11 \mathrm{mg} / \mathrm{ml}$. Time-points are indicated in the legend on the right.

Figure S_{3} acEXG:CBM ${ }^{\text {MQMW }}$ is functional after 14 days at $\mathbf{p H} 2,7$ and 11 . After 14 days incubation at the indicated pH , the cellulose binding assay was repeated. The resulting Tricine-SDS-PAGE is shown above.

Table Sı Effect of Initial Protein Concentration on Solubility in Ammonium Sulfate.

	[Ammonium sulfate] (M)	Initial protein concentration $(\mathrm{mg} / \mathrm{ml})$	Solubility $^{a}(\mathrm{mg} / \mathrm{ml})$
EXG:CBM	1.2	3.5	1.48
		7	1.35
		1.42	
MQMW	0.6	6	2.27
		11	2.37
		21	2.28

${ }^{a}$ The values are the average of at least two independent measurements.

Table S2 Residue Specific Fraction of Solvent Accessible Surface Area in Selected Proteins.

	PDB entry	Solved by	Ser + Thr ${ }^{\text {a }}$	Asn+Gln ${ }^{\text {a }}$	Ionizable residues ${ }^{a, b}$	Sum
EXG:CBM	1EXG	NMR	32\%	19\%	6\%	57\%
Spider eggcase silk protein type 2 repetitive sequence	2K3O	NMR	30\%	22\%	9\%	61\%
CBM of Endoglucanase D	3NDY:E	X-ray	35\%	16\%	11\%	62\%
Protein S6	1RIS	X-ray	2\%	16\%	49\%	66\%
Protein $\mathrm{S6}^{+1,-17}$	$1 \mathrm{RIS}^{\text {c }}$		16\%	18\%	25\%	59\%
Ubiquitin	1UBQ	X-ray	12\%	12\%	47\%	71\%
	1D3Z	NMR	11\%	13\%	47\%	72\%
Lysozyme	2LZT	X-ray	11\%	18\%	41\%	70\%
	1E8L	NMR	11\%	16\%	45\%	71\%
Ribonuclease A	5RSA	X-ray	21\%	17\%	34\%	73\%
Staphylococcal nuclease	1STN	X-ray	6\%	9\%	56\%	71\%
Thioredoxin	3VFI	X-ray	12\%	16\%	42\%	70\%
α-lactalbumin	1ALC	X-ray	8\%	12\%	49\%	70\%
Bovine serum albumin	4F5S	X-ray	10\%	7\%	56\%	72\%
Green fluorescent Protein	1GFL	X-ray	11\%	10\%	51\%	71\%
Average			11\%	13\%	47\%	71\%

${ }^{a}$ The fraction of the surface in the respective structures occupied with atoms from the specified residues estimated by the use of the Get Area command in PyMOL with a solvent radius of 1.4 and a dot density on 4 . Waters and other small molecules were removed from the structures before the estimations and all proteins were assumed to be monomers. Structures were used without adding or removing hydrogen atoms.
${ }^{b}$ Here defined as Asp, Glu, His, Lys and Arg residues.
${ }^{c}$ The used structure was made by replacing all Lys and Arg residues with Ser using the PyMOL Mutagenesis Wizard.

Figure S2 Reversible Unfolding of EXG:CBM Variants. Representative plots of unfolding curves at $\mathrm{pH} 2.6(\mathbf{\nabla})$ and pH $7.0(\uparrow)$, and of refolding at $\mathrm{pH} 2.6(\nabla)$ and $\mathrm{pH} 7.0(\rangle)$.

Figure S_{5} Non-normalized unfolding curves of EXG:CBM variants. The figure shows the raw data used in figure 5 , before normailzation.

Figure S6 (${ }^{1} \mathbf{H},{ }^{15} \mathrm{~N}$)-HSQC of EXG:CBM at $\mathbf{~ p H} 2.3$ (red), $\mathbf{p H} 6$ (black) and $\mathbf{p H} 9$ (blue). Several signals are missing at pH 9 due to the higher exchange rate of amide protons at this pH .

Figure $S_{7}\left({ }^{1} \mathrm{H},{ }^{15} \mathrm{~N}\right)$-HSQC of EXG:CBM (green, pH 6.3) and $\left({ }^{1} \mathrm{H}^{15} \mathrm{~N}\right)$-HMQC of EXG:CBM ${ }^{\mathrm{MQMW}}$ (black, pH 6.2)

Figure S8 Far- and Near-UV CD of acEXG:CBM ${ }^{\text {MQMw }}$.

Figure S9 Weighted chemical shift changes of amide signals in EXG:CBM as function of $\mathbf{p H}$. The weighted data points are calculated from chemical shift data of backbone amide signals with equation (1), and the red lines represent the fitting of the data to equation (2).

${ }^{2}$ Gly 74

Figure Sio Weighted chemical shift changes of amide signals in EXG:CBM ${ }^{\text {MQMW }}$ as function of $\mathbf{p H}$. The weighted data points are calculated from chemical shift data of backbone amide signals with equation (1), and the red lines represent the fitting of the data to equation (2).

