Supporting Information Simple and rapid manipulation of a single circulating tumor cell using visualization of hydrogel encapsulation to facilitate single-cell whole-genome amplification Tomoko Yoshino*, Tsuyoshi Tanaka, Seita Nakamura, Ryo Negishi, Masahito Hosokawa and Tadashi Matsunaga Fig. S1 CTC recovery device equipped with a microcavity array. (A) Scanning electron microscope image of the microcavity array. Scale bar: 100 $\mu m.$ (B) Schematic image of the CTC recovery device. Fig. S2 SEM images of photopolymerized PEGDA hydrogels varying the distance between the cover glass and microcavity array. The heights were (i) 205 μ m, (ii) 327 μ m, and (iii) 567 μ m. Fig. S3 Cell transfer rate by using different molecular weight of PEGDA. All values are mean \pm standard deviation of n = 3. Fig. S4 Recovery rates of CellTracker Orange Stained NCI-H1975 cells from 100 cells spiked whole blood sample per one milliliter when using microcavity array. All values are mean \pm standard deviation of n = 3. Table S1 Evaluation of whole genome amplification (WGA) bias | Gene name
(Chr.) | PIK3CA
(3q) | MSH2
(2p) | CAT
(11p) | P53
(17p) | ADCYAP1
(18p) | PMS2
(7p) | C6orf195
(6p) | PTEN
(10q) | TOP1
(20q) | |--|----------------|--------------|--------------|--------------|------------------|--------------|------------------|---------------|---------------| | | | | | | | | | | | | Single-cell encapsulated "on" hydrogel
(Pre amplification : 12 cycles
Amplification : 14 cycles) | 5/5 | 0/5 | 2/5 | 5/5 | 4/5 | 3/5 | 3/5 | 4/5 | 4/5 | | Single-cell encapsulated "on" hydrogel
(Pre amplification : 15 cycles
Amplification : 17 cycles) | 5/5 | 0/5 | 3/5 | 5/5 | 5/5 | 5/5 | 4/5 | 4/5 | 3/5 |