Supporting Information

Crystal Engineering Applied to Modulate the Structure and Magnetic Properties of Oxamate Complexes Containing the $[\mathrm{Cu}(\text { bpea })]^{+}$Cation

Willian X. C. Oliveira, ${ }^{\dagger}$ Carlos B. Pinheiro, ${ }^{\dagger}$ Marinez M. da Costa, ${ }^{\S}$ Ana P. S. Fontes, ${ }^{\perp}$ Wallace C. Nunes, ${ }^{\|}$Francesc Lloret, ${ }^{\nabla}$ Miguel Julve ${ }^{\nabla}$ and Cynthia L. M. Pereira ${ }^{+*}$ ${ }^{\dagger}$ Departamento de Química and ${ }^{\dagger}$ Departamento de Física, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais. Av. Pres. Antônio Carlos, 6627, Pampulha, 31270-901, Belo Horizonte, Minas Gerais, Brasil;
${ }^{\text {s }}$ Instituto Federal de Educação, Ciência e Tecnologia do Sudeste de Minas Gerais, IFSEMG, 36080-001, Juiz de Fora, Brazil.
${ }^{\perp}$ Departamento de Química, Instituto de Ciências Exatas, Universidade Federal de Juiz de Fora, 36036-900, Juiz de Fora, MG, Brazil.
"Instituto de Física, Universidade Federal Fluminense, 24210-346, Niterói, RJ, Brazil;
${ }^{\nabla}$ Instituto de Ciencia Molecular, Universitat de València, C/ Catedrático José Beltrán 2, 46980 Paterna, València, Spain.

Figure S1. Infrared spectra for $\mathrm{Et}_{2} \mathrm{H}_{2} \mathrm{ppba}(-), \mathrm{H}_{4} \mathrm{ppba}(-)$ and $\mathrm{K}_{2} \mathrm{H}_{2} \mathrm{ppba}(-)$.

\circ
$\stackrel{\circ}{\circ}$
1

$\stackrel{n}{\stackrel{n}{i}}$

No

Figure S2. ${ }^{1} \mathrm{H}$ NMR spectrum for $\mathrm{Et}_{2} \mathrm{H}_{2} \mathrm{ppba}$, in dmso- d_{6}, at 200 MHz .

Figure S3. ${ }^{13} \mathrm{C}$ NMR spectrum for $\mathrm{Et}_{2} \mathrm{H}_{2} \mathrm{ppba}$, in dmso- d_{6}, at 50 MHz .

Figure S4. ${ }^{1} \mathrm{H}$ NMR spectrum for $\mathrm{H}_{4} \mathrm{ppba}$, in dmso- $d_{6} / \mathrm{CDCl}_{3}$, at 200 MHz .

$\begin{aligned} & \text { Ǹ } \\ & \underset{\sim}{N} \\ & \end{aligned}$	$\begin{aligned} & \overrightarrow{+} \\ & \stackrel{\rightharpoonup}{m} \end{aligned}$			가 fơom m

Figure S5. ${ }^{13} \mathrm{C}$ NMR spectrum for $\mathrm{Et}_{2} \mathrm{H}_{2} \mathrm{ppba}$, in dmso- $d_{6} / \mathrm{CDCl}_{3}$, at 50 MHz .

Figure S6. ${ }^{1} \mathrm{H}$ NMR spectrum for $\mathbf{1}$, in $\mathrm{D}_{2} \mathrm{O}$, at 200 MHz .

Figure S7. Infrared spectrum for 1.

Figure S8. Infrared spectrum for 2.

Figure S9. Infrared spectrum for 4.

Figure S10. Infrared spectrum for 5 .

Figure S11. TG (-) and DTA ((\cdots) curves for 1.

Figure S12. TG (-) and DTA ((\cdots) curves for 2.

Figure S13. TG (-) and DTA (\cdots) curves for 4.

Figure S14. TG $(-)$ and DTA (\cdots) curves for 5.

Figure S15. Comparison between the experimental (-) and calculated (-) X-ray patterns for 1 .

Figure S16. Comparison between the experimental (-) and calculated (-) X-ray patterns for 2.

Figure S17. Comparison between the experimental (-) and calculated (-) X-ray patterns for 4.

Figure S18. Comparison between the experimental (-) and calculated (-) X-ray patterns for 5 .

Figure S19. Cut-off of electronic density map of 2 parallel to $b c$ plane at $a=0.5$. The structure of the $\left[\{\mathrm{Cu}(\text { bpca })\}_{2}\left(\mathrm{H}_{2} \mathrm{ppba}\right)\right]$ units present in the unit cell are overlaped for a better understanding of the residual eletron density.

Figure S11. Void projection (golden surface) on structure of 2, using two cell unit along crystallographic a axis, featuring the extended nature of the accessible voids in this structure.

Figure S21. Cut-off of electronic density map of $\mathbf{4}$ parallel to $b c$ plane at $a=0.5$. The structure of the $\left[\{\mathrm{Cu}(\mathrm{bpca})\}_{2}\left(\mathrm{H}_{2} \mathrm{ppba}\right)\right]$ units present in the unit cell are overlapped for a better understanding of the residual electron density.

Figure S12. Void projection (golden surface) on structure of 4, using three cell unit along crystallographic a axis, featuring the extended nature of the accessible voids in this structure.

Figure S23. A view of the packing of $\mathbf{1}$ down crystallographic b axis. Color scheme follows the one in Figure 1. The potassium(I) atoms are drawn as purple circles for the sake of clarity.

Figure S24. A view of the packing of $\mathbf{2}$ down crystallographic b axis. Color scheme follows the one in Figure 4 of the manuscript.

Figure S25. The supramolecular 3D network emphasizing the $\pi-\pi$ stacking interactions in 3.

(a)

(b)

(c)

1 Figure S26 - Superimposition of crystal structure of $\mathbf{2}$ (in green), $\mathbf{4}$ (in yellow) and $\mathbf{5}$ 2 (in red), using one $[\mathrm{Cu}(\mathrm{bpca})]$ moiety as anchor.

1 Table S1. Selected Bond Lengths (\AA) and Angles (deg) for $\mathbf{1}^{\text {a }}$

Pd1			K1			K2			
Bond length		Bond Angle	Bond length		Bond Angle	Bond length		Bond Angle	
Pd1-N2 ${ }^{\text {i }}$	2.010 (3)	N2 ${ }^{\text {i }}$-Pd1-N 105.70 (1	$\mathrm{K} 1-\mathrm{O} 2^{\text {ii }}$	2.709	$\mathrm{O} 2{ }^{\text {iii }}-\mathrm{K} 1-\mathrm{O} 3{ }^{\text {iii }}$	60.56	K2-O6 ${ }^{\text {i }} 2.654$ (3)	$\mathrm{O}^{\text {iv }}-\mathrm{K} 2-\mathrm{O}^{\text {vi }}$	77.54 (8)
Pd1-O1	2.014 (2)	O1-Pd1-N1 81.63 (11	$\mathrm{K} 1-\mathrm{O}^{\text {ii }}$	2.745	$\mathrm{O} 2{ }^{\text {iiii-K1-O6 }}$	134.05	K2-O3' 2.696 (3)	$\mathrm{O} 6^{\mathrm{iv}}-\mathrm{K} 2-\mathrm{O} 2^{\text {iii }}$	143.81 (9)
Pd1-N1	2.017 (3)	$\mathrm{N} 2{ }^{\mathrm{i}}$-Pd1-O< 81.36 (11	K1-O6	2.751	O3 $3^{\text {iiii-K1-O6 }}$	75.13	K2-O2 $2^{\mathrm{i}} 2.733$ (3)	$\mathrm{O}^{\text {vi }}-\mathrm{K} 2-\mathrm{O} 2{ }^{\text {iii }}$	138.63 (8)
Pd1-O4 ${ }^{\text {i }}$	2.040 (2)	O1-Pd1-O4 91.32 (10	K1-O7	2.813 (3	$\mathrm{O} 2{ }^{\text {iii }}$-K1-O7	77.23 (1	K2-O7 2.776 (4)	$\mathrm{O}^{6}-\mathrm{K} 2-\mathrm{O} 7$	82.14 (9)
			K1-O5 ${ }^{\text {iv }}$	2.842 (3	O3 ${ }^{\text {iiii }}$-K1-O7	74.25 (9	K2-O4' 2.880 (3)	$\mathrm{O}^{\text {vi }}-\mathrm{K} 2-\mathrm{O} 7$	119.17 (9)
			$\mathrm{K} 1-\mathrm{O} 4^{\mathrm{v}}$	3.050 (3	O6-K1-07	103.16	K2-O5 ${ }^{\text {i }} 2.931$ (3)	$\mathrm{O} 2{ }^{\text {iiii }}-\mathrm{K} 2-\mathrm{O} 7$	77.48 (9)
			$\mathrm{K} 1-\mathrm{O5}{ }^{\mathrm{v}}$	3.073	$\mathrm{O} 2{ }^{\text {iii }}-\mathrm{K} 1-\mathrm{O} 5^{\text {iv }}$	89.60 (8	K2-O1' 3.172 (3)	$\mathrm{O} 6^{\text {iv }}-\mathrm{K} 2-\mathrm{O} 4^{\text {vii }}$	79.77 (8)
					$\mathrm{O} 3{ }^{\text {iiii }}-\mathrm{K} 1-\mathrm{O} 5^{\text {iv }}$	143.78 ($\mathrm{O} 3{ }^{\text {vi }}-\mathrm{K} 2-\mathrm{O} 4^{\text {vii }}$	80.70 (8)
					O6-K1-O5 ${ }^{\text {iv }}$	136.18 ($\mathrm{O} 2^{\text {iii }}-\mathrm{K} 2-\mathrm{O} 4{ }^{\text {vii }}$	103.59 (8)
					O7-K1-O5 ${ }^{\text {iv }}$	79.71 (9		O7-K2-O4 ${ }^{\text {vii }}$	149.28 (9)
					$\mathrm{O} 2{ }^{\text {iii }}-\mathrm{K} 1-\mathrm{O} 4{ }^{\text {v }}$	83.05 (8		$\mathrm{O} 6^{\mathrm{iv}}-\mathrm{K} 2-\mathrm{O} 5^{\text {iv }}$	59.34 (8)
					$\mathrm{O} 3{ }^{\text {iii }}-\mathrm{K} 1-\mathrm{O} 4{ }^{\text {v }}$	76.94 (8		$\mathrm{O} 3{ }^{\text {vi }}-\mathrm{K} 2-\mathrm{O} 5^{\text {iv }}$	131.14 (8)
					O6-K1-O4 ${ }^{\text {v }}$	75.33 (7		$\mathrm{O} 22^{\text {iii }}-\mathrm{K} 2-\mathrm{O} 5^{\text {iv }}$	87.33 (8)
					O7-K1-O4 ${ }^{\text {v }}$	150.45		O7-K2-O5 ${ }^{\text {iv }}$	78.80 (9)
					$\mathrm{O} 5^{\mathrm{iv}}-\mathrm{K} 1-\mathrm{O} 4{ }^{\text {v }}$	122.28 ($\mathrm{O} 4{ }^{\text {vii }}-\mathrm{K} 2-\mathrm{O} 5^{\text {iv }}$	70.64 (7)
					$\mathrm{O} 2{ }^{\text {iii }}-\mathrm{K} 1-\mathrm{O} 5^{\mathrm{v}}$	113.09 (O6 $6^{\text {iv }}-\mathrm{K} 2-\mathrm{O} 1^{\text {viii }}$	128.98 (8)
					$\mathrm{O} 3{ }^{\text {iii }}-\mathrm{K} 1-\mathrm{O} 5^{\text {v }}$	117.46		$\mathrm{O}^{\text {vi }}-\mathrm{K} 2-\mathrm{O} 1^{\text {viii }}$	70.45 (7)
					O6-K1-O5 ${ }^{\text {v }}$	75.86 (7		$\mathrm{O} 2^{\mathrm{iii}}-\mathrm{K} 2-\mathrm{O} 1^{\text {viii }}$	77.72 (8)
					O7-K1-O5 ${ }^{\text {v }}$	166.88 (O7-K2-O1 ${ }^{\text {viii }}$	148.42 (9)

1 Table S2. Selected Bond Lengths (\AA) and Angles (deg) for $\mathbf{2}$ and $\mathbf{3}^{\mathbf{a}}$

2				3			
Bond length		Bond Angle		Bond length		Bond Angle	
Cu1-N2	2.023 (2)	$\mathrm{N} 2-\mathrm{Cu} 1-\mathrm{O} 2{ }^{\text {i }}$	97.26 (7)	Cu1-N2	2.001 (2)	N2-Cu1-O6	94.98 (7)
Cu1-N3	1.939 (2)	N2-Cu1-O3	90.68 (8)	Cu1-N3	1.9320 (18)	N3-Cu1-N2	82.58 (9)
Cu1-N4	2.007 (2)	N3-Cu1-N2	81.71 (9)	Cu1-N4	1.9991 (19)	N3-Cu1-N4	82.03 (8)
Cu1-O2	1.9813 (16)	N3-Cu1-N4	82.17 (9)	Cu1-O1	1.9355 (15)	N3-Cu1-O1	162.77 (7)
$\mathrm{Cu} 1-\mathrm{O} 2^{\text {i }}$	2.5421 (16)	N3-Cu1-O2	174.66 (8)	$\mathrm{Cu} 1-\mathrm{O} 6$	2.3519 (19)	N3-Cu1-O6	101.20 (7)
		N3-Cu1-O2 ${ }^{\text {i }}$	102.77 (7)			N4-Cu1-N2	163.82 (8)
		N3-Cu1-O3	110.07 (8)			N4-Cu1-O6	92.90 (7)
		$\mathrm{N} 4-\mathrm{Cu} 1-\mathrm{N} 2$	163.39 (9)			O1-Cu1-N2	99.51 (8)
		$\mathrm{N} 4-\mathrm{Cu} 1-\mathrm{O} 2^{\text {i }}$	90.19 (7)			$\mathrm{O} 1-\mathrm{Cu} 1-\mathrm{N} 4$	93.74 (7)
		N4-Cu1-O3	91.09 (8)			O1-Cu1-O6	95.67 (7)
		$\mathrm{O} 2-\mathrm{Cu} 1-\mathrm{N} 2$	96.40 (8)				
		$\mathrm{O} 2-\mathrm{Cu} 1-\mathrm{N} 4$	100.01 (8)				
		$\mathrm{O} 2-\mathrm{Cu} 1-\mathrm{O} 2^{\text {i }}$	72.44 (7)				
		$\mathrm{O} 2-\mathrm{Cu} 1-\mathrm{O} 3$	74.87 (6)				
		$\mathrm{O} 3-\mathrm{Cu} 1-\mathrm{O} 2^{\text {i }}$	147.00 (6)				

[^0]1 Table S3. Selected Bond lengths (\AA) and Angles (deg) for 4 and 5

4			5			
Bond length	Bond Angle		Bond length		Bond Angle	
Cu1-O1 2.394 (2)	N2-Cu1-O1	83.24 (10)	Cu1-N2	2.009 (4)	N2-Cu1-O3	91.30 (15)
Cu1-O3 1.952 (2)	N3-Cu1-N4	82.45 (11)	Cu1-N3	1.943 (4)	N3-Cu1-N2	82.13 (18)
Cu1-N2 2.010 (3)	N3-Cu1-N4	82.45 (11)	Cu1-N4	1.995 (4)	N3-Cu1-N4	81.58 (18)
Cu1-N3 1.927 (3)	N3-Cu1-O3	178.20 (11)	$\mathrm{Cu} 1-\mathrm{O} 2$	1.959 (3)	N3-Cu1-O2	177.72 (15)
Cu1-N4 1.989 (3)	N3-Cu1-O1	102.73 (10)	$\mathrm{Cu} 1-\mathrm{O} 3$	2.242 (4)	N3-Cu1-O3	98.57 (16)
	N4-Cu1-N2	163.05 (12)			N4-Cu1-N2	160.36 (18)
	N4-Cu1-O1	107.78 (10)			N4-Cu1-O3	101.90 (16)
	O3-Cu1-N2	99.24 (11)			$\mathrm{O} 2-\mathrm{Cu} 1-\mathrm{N} 2$	96.65 (17)
	$\mathrm{O} 3-\mathrm{Cu} 1-\mathrm{N} 4$	95.80 (11)			O2-Cu1-N4	99.98 (17)
	O3-Cu1-O1	77.41 (9)			$\mathrm{O} 2-\mathrm{Cu} 1-\mathrm{O} 3$	79.51 (14)

[^0]: ${ }^{\mathrm{a}}$ Symmetry code: $(\mathrm{i})=-x+2,-y+1,-z$.

