Supplementary Information

Cooling Growth of Millimeter-Size Single-Crystal Bilayer Graphene at Atmospheric Pressure

Haibin Sun^{†,‡}, Yan Han[†], Jun Wu[†], Yang Lu[‡], Junqi Xu[‡], Yongsong Luo[‡], Fengqi Song^{†,§},

Guanghou Wang $^{\dagger,\$},$ Jianguo Wan $^{*,\dagger,\$}$

[†]National Laboratory of Solid State Microstructures and Department of Physics, Nanjing

University, Nanjing 210093, China

[‡]Key Laboratory of Advanced Micro/Nano Functional Materials, Department of Physics and Electronic Engineering, Xinyang Normal University, Xinyang 464000, China

[§]Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China

*Corresponding author (wanjg@nju.edu.cn)

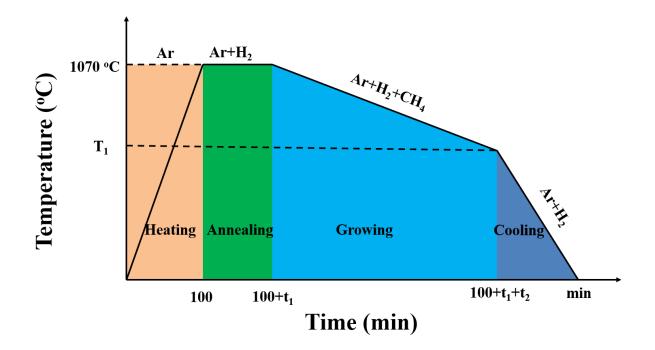
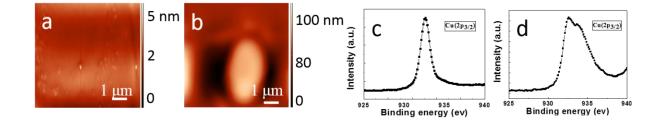
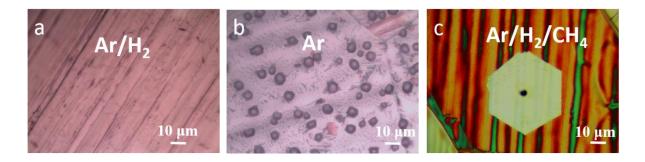




Figure S1. NI-APCVD growth process and experimental parameters for bilayer graphene production. A systematic study on nucleation density and synchronization growth property dependence on the different annealing duration (t_1), cooling growth duration (t_2) and cooling temperature (T_1). The plot profile shows growth stage for the growth processes with variable annealing duration (t_1) (see Fig. 2), for variable cooling temperature (T_1) with variable cooling growth duration (t_2) (see Fig. 3) in Ar/H₂ before ramping up to 1070 °C in Ar only for growth.

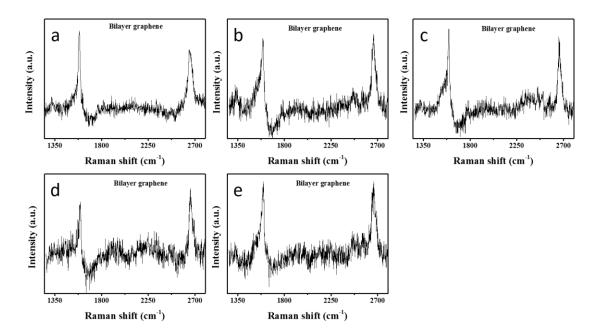


Figure S2. Morphology characterization of preheating Cu foils with Ar/H₂ and Ar-only. AFM images of Cu foils preheated in Ar/H₂ mixture (**a**) and in Ar-only (**b**). Cu 2P_{3/2} XPS spectra for Cu foils preheated in Ar/H₂ mixture (**c**) and in Ar-only (**d**). Preheated Cu foils showed a rather high roughness surface with a surface decorated nanoparticles, which proved that Cu foils have been oxidized after heating in Ar.

Figure S3. Optical microscope images of preheating Cu foils. (a) Preheated in Ar/H₂ mixture.

(b) Preheated in Ar-only. (c) Graphene nucleation with the Cu_2O particle in the center.

Figure S4. Raman spectroscopy characterization of graphene grains. (**a-e**) Raman spectra obtained from the SEM images in Fig 2 (c-g), there is a one-to-one correspondence between Raman spectra and SEM images, indicating that all samples are the bilayer graphene.

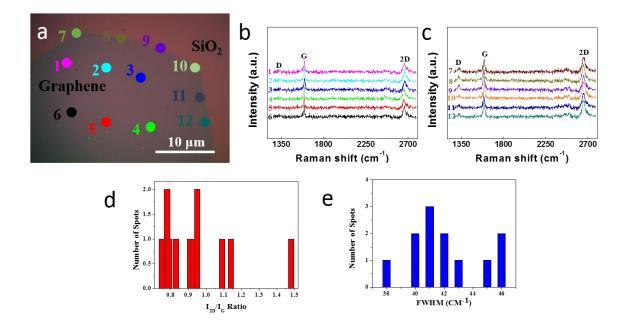
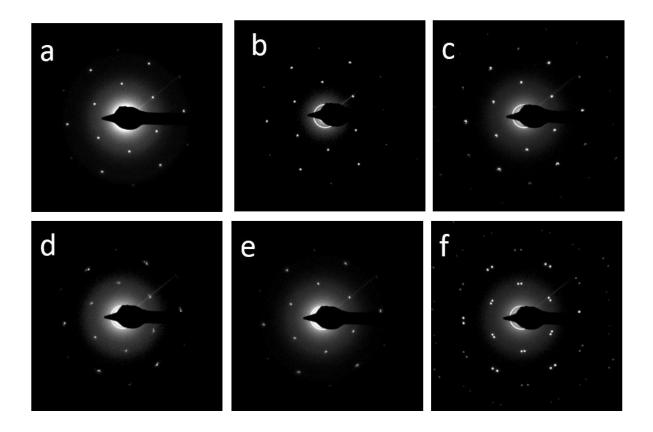



Figure S5. Raman spectroscopy characterization of the large-scale single-crystal graphene grain. (a) Optical microscope image of the graphene crystallite transferred to a SiO₂/Si substrate. (b-c). Color-coded stacked Raman spectra corresponding to the spots identified in a. (d-e) Histograms of the Raman spectrum $I_{2D}//I_G$ ratio and 2D band fwhm values of the bilayer graphene.

Figure S6. SAED characterization of graphene grains. (**a-f**) SAED patterns taken in different windows of the TEM grid, as shown in Fig 4e, and demonstrate that these points have the same orientations.

	Substrate	Temperature (°C)	Pressure	Synthesis method	Size (µm)	Shape	Reference
1	Cu	1050	Low	High temperature and low pressure of two-step CVD process	20	Hexagon	Acs Nano, 2012 ⁷
2	Cu	1030	Low	Reduce the flow rate ratio of H_2/CH_4 to keep lower growth rate	410	Flower	Nano Lett, 2013 ¹⁶
3	Cu	1070	Low	Maintain a Cu_2O layer and reduce the flow rate ratio of H_2/CH_4	300	Hexagon	Nat. Commun, 2013 ¹⁷
4	Cu	1050	Ambient	Oxidize the Cu surface to form Cu ₂ O nanoparticles as the growth seeds	540	Hexagon	Nanoscale, 2015 ¹⁸
5	O-rich Cu	1035	Low	Oxygen-activated CVD process	500	Hexagon	Nat. Nanotechnol, 2016 ³³
6	Cu	1070	Ambient	Oxidize the Cu surface and the following nonisothermal growth process	1000	Hexagon	This manuscript

Table S1. Comparison of the synthesis method and structure properties of single-crystal bilayer graphene domains obtained by CVD.

Number	Substrate	G/2D ratio	D/G ratio	Synthesis method	Layer
1	Graphene/SiO ₂ /Si		0.02	Fig. 1(c)	Bilayer graphene
2	Graphene/SiO ₂ /Si	1.2	0.10	Fig. 1(e)	Bilayer graphene
3	Graphene/SiO ₂ /Si	1.0	0.04	Fig. 1(f)	Bilayer graphene
4	Graphene/SiO ₂ /Si	0.8	0.08	Fig. 1(g)	Bilayer graphene
5	Graphene/SiO ₂ /Si	1.3	0.07	Fig. 2(c)	Bilayer graphene
6	Graphene/SiO ₂ /Si	0.9	0.08	Fig. 2(d)	Bilayer graphene
7	Graphene/SiO ₂ /Si	1.1	0.08	Fig. 2(e)	Bilayer graphene
8	Graphene/SiO ₂ /Si	0.8	0.05	Fig. 2(f)	Bilayer graphene
9	Graphene/SiO ₂ /Si	1.0	0.06	Fig. 2(g)	Bilayer graphene
10	Graphene/SiO ₂ /Si	0.9	0.08	Fig. 3(a)	Bilayer graphene
11	Graphene/SiO ₂ /Si	1.4	1.0	Fig. 3(b)	Multilayer graphene
12	Graphene/SiO ₂ /Si	1.1	0.06	Fig. 3(c)	Bilayer graphene

Table S2. Summary of Raman spectra of graphene growth from the different synthesis methods.

13	Graphene/SiO ₂ /Si	1.1	0.05	Fig. 3(d)	Bilayer graphene
14	Graphene/SiO ₂ /Si	1.7	0.08	Fig. 3(e)	Multilayer graphene
15	Graphene/SiO ₂ /Si	1.3	0.08	Fig. 3(f)	Bilayer graphene
16	Graphene/SiO ₂ /Si	1.1	0.04	Fig. 3(g)	Bilayer graphene
17	Graphene/SiO ₂ /Si	1.0	0.08	Fig. 3(h)	Bilayer graphene
18	Graphene/SiO ₂ /Si	1.3	0.02	Fig. S5-1	Bilayer graphene
19	Graphene/SiO ₂ /Si	1.3	0.02	Fig. S5-2	Bilayer graphene
20	Graphene/SiO ₂ /Si	1.3	0.02	Fig. S5-3	Bilayer graphene
21	Graphene/SiO ₂ /Si	1.2	0.02	Fig. S5-4	Bilayer graphene
22	Graphene/SiO ₂ /Si	1.1	0.02	Fig. S5-5	Bilayer graphene
23	Graphene/SiO ₂ /Si	1.1	0.02	Fig. S5-6	Bilayer graphene
24	Graphene/SiO ₂ /Si	1.3	0.08	Fig. S5-7	Bilayer graphene
25	Graphene/SiO ₂ /Si	1.1	0.08	Fig. S5-8	Bilayer graphene
26	Graphene/SiO ₂ /Si	0.9	0.08	Fig. S5-9	Bilayer graphene

27	Graphene/SiO ₂ /Si	0.9	0.08	Fig. S5-10	Bilayer graphene
28	Graphene/SiO ₂ /Si	0.7	1.0	Fig. S5-11	Bilayer graphene
29	Graphene/SiO ₂ /Si	1.1	0.08	Fig. S5-12	Bilayer graphene