Supporting information

Conjugated Microporous Polymers with Built-in Magnetic Nanoparticles for Excellent Enrichment of Trace Hydroxylated Polycyclic Aromatic Hydrocarbons in Human Urine

Langjun Zhou, Yuling Hu^{*}, Gongke Li^{*}

School of Chemistry and Chemical Engineering, Sun Yat-sen University, Guangzhou, 510275, China

* Corresponding author: Yuling Hu, Gongke Li

Tel. : +86-20-84110922

Fax : +86-20-84115107

E-mail : ceshyl@mail.sysu.edu.cn

cesgkl@mail.sysu.edu.cn

Section 1. Synthetic Method of Fe₃O₄@SiO₂ Nanoparticles

- Section 2. HPLC Conditions
- Section 3. FTIR Spectrum
- Section 4. Fluorescence Spectra
- Section 5. TGA Measurement
- Section 6. Pore Size Distribution
- Section 7. Adsorption Amount Curves
- Section 8. Adsorption Mechanism of OH-PAHs on Magnetic PP-CMP
- Section 9. Optimization of the Extraction Conditions
- Section 10. Chemical Stability of Magnetic PP-CMP

Section 1. Synthetic Method of Fe₃O₄@SiO₂ Nanoparticles

Synthesis of Fe_3O_4 Nanoparticles with 10 nm Size. 10 nm Fe₃O₄ nanoparticles were prepared via the modified coprecipitation method.¹ In a typical run, FeCl₂· 4H₂O (2.4 g) and FeCl₃· 6H₂O (4.6 g) were first dissolved in oxygen-free ultrapure water (pH 2, 20 mL) and subsequently were filtered into ultrapure water (80 mL). After purging with nitrogen gas for 30 min, NH₃· H₂O (28 wt%, 10 mL) was dropwise added into the above mixed solution under vigorous stirring at room temperature with nitrogen protection. The black colloidal solution was stirred at 40°C for 0.5 h and 85°C for 2 h, respectively. Finally, the Fe₃O₄ nanoparticles were separated and purified by magnetic separation and washed with deionized water and ethanol 3 times, respectively, and then dried in vacuum oven at 60°C for future use.

Synthesis of Fe_3O_4 Nanoparticles with 150 nm Size. 150 nm Fe₃O₄ nanoparticles were prepared via the modified solvothermal reduction method.² Briefly, ferric chloride (1.35 g) and sodium acetate (3.6 g) were dissolved in ethylene glycol (35 mL) and dissolved by an ultrasonic method. The mixture was transferred to a reaction still for 8 h solvothermal reaction at 200°C. After that, the Fe₃O₄ nanoparticles were washed with deionized water and then washed with ethanol 3 times, dried in vacuum oven at 60°C for future use.

10 nm Fe₃O₄ nanoparticles or 150 nm Fe₃O₄ nanoparticles (4.0 g) were dispersed in mixed solution of deionized water (40 mL) and ethanol (160 mL) and then NH₃· H₂O (28 wt%, 3 mL) and TEOS (2 mL) were added under mechanical mixing. After the mixture was stirred at 40°C for 24 h, Fe₃O₄@SiO₂ nanoparticles were obtained and washed with ethanol 5 times, dried in vacuum oven at 150°C for future use.

Supporting Reference

S1. Guan, G.; Yang, L.; Mei, Q.; Zhang, K.; Zhang, Z.; Han, M. Anal. Chem. 2012, 84, 9492-9497.

Deng, H.; Li, X.; Peng, Q.; Wang, X.; Chen, J.; Li, Y. Angew. Chem. Int. Ed. 2005, 44, 2782-2785.

Section 2. HPLC Conditions

All HPLC measurements were performed using a Waters 1525 (Waters, USA), which equipped with a fluorescence detector (Waters 2475). Separation was carried out on a reversed-phase column of C₁₈ (250 mm × 4.6 mm i.d., 5 µm) (Dimark, China). The mobile phase consisted of methanol and acetic acid-water (0.1%, v/v). The mobile phases were eluted at 1.0 mL·min⁻¹ at 40°C following the gradient as follows: 50% methanol and maintained for 5 min, gradually change to 65% of methanol in 9 min and maintained for 12 min, increased to 85% within 5 min and then increased to 100% within 9 min and held for 5 min. Fluorescence was monitored following the procedure as follows: 0-18.0 min, $\lambda_{ex} = 227$ nm, $\lambda_{em} = 355$ nm; 18.0-21.5 min, $\lambda_{ex} = 272$ nm, $\lambda_{em} = 336$ nm; 21.5-29.0 min, $\lambda_{ex} = 254$ nm, $\lambda_{em} = 369$ nm; 29.0-33.0 min, $\lambda_{ex} = 239$ nm, $\lambda_{em} = 392$ nm; 33.0-45.0 min, $\lambda_{ex} = 269$ nm, $\lambda_{em} = 392$ nm. The injection volume was 20 µL.

Section 3. FTIR Spectrum

Figure *S1*. FTIR spectrum of (a) $Fe_3O_4@SiO_2$ -APB-10, (b) magnetic PP-CMP-10 composites and (c) bare PP-CMP.

Section 4. Fluorescence Spectra

Figure S2. Fluorescence spectra: (a) fluorescence excitation spectra of magnetic PP-CMP composites, (b) fluorescence emission spectra of magnetic PP-CMP composites and (c) fluorescence emission spectra of $Fe_3O_4@SiO_2-APB$.

Section 5. TGA Measurement

Figure S3. TGA measurement of magnetic PP-CMP-10.

Figure S4. Pore size distributions of magnetic PP-CMP-10 by using N_2 adsorption isotherms at 77 K with the nonlocal density functional theory (NLDFT) method.

Section 7. Adsorption Amount Curves

Figure S5. Adsorption amount curves of OH-PAHs on magnetic PP-CMP-10.

Section	8. Adsor	ption Mee	chanism of	OH-PAHs	on Magnetic	PP-CMP
					7	

Compounds	Henry equation		Langmuir equation			Freundlich equation		
	K_d (L·g ⁻¹)	R ²	q_{max} (µg·mg ⁻¹)	K_L (L·mg ⁻¹)	R ²	K_F (µg·mg ⁻¹)(mg·L ⁻¹) ⁻ⁿ	n	R ²
2-NAP	13.16	0.9943	10.61	5.539	0.9586	12.74	0.5977	0.9832
1-NAP	11.97	0.9952	9.007	9.145	0.9260	11.78	0.5304	0.9762
2-FLUO	69.98	0.9911	46.00	2.432	0.9631	54.45	0.8133	0.9733
2-PHEN	167.2	0.9846	-15.00	-5.773	0.7492	302.0	1.277	0.9129
4-PHEN	166.2	0.9813	-14.32	-5.939	0.7018	312.6	1.289	0.8920
1-PYR	466.2	0.9484	-3.201	-19.39	0.7200	20654	2.350	0.8468

Table S1. Adsorption Isotherm Parameters of OH-PAHs on the Magnetic PP-CMP

Figure S6. Adsorption isotherms of 6 OH-PAHs with typical structure.

Section 9. Optimization of the Extraction Conditions

Figure *S7*. Effect of the experimental conditions, including desorption solvent (A), extraction time (B) and desorption time (C) on the extraction efficiency of the magnetic PP-CMP.

Section 10. Chemical Stability of Magnetic PP-CMP

Figure *S8*. Adsorption amounts of OH-PAHs on magnetic PP-CMP-10 treated with different solvents. The magnetic PP-CMP-10 was soaked in each solvent for 7 days before adsorption experience.