Supplementary Materials for

Cs[H₂NB₂(C₆F₅)₆], Featuring an Unequivocal 16-Coordinate Cation

David Pollak, Richard Goddard, and Klaus-Richard Pörschke

This PDF file includes:	Page
Isolation of $Cs[H_2NB_2(C_6F_5)_6]$ (1) from water	S2
IR spectrum of $Cs[H_2NB_2(C_6F_5)_6]$ (1)	S 3
IR spectrum of $Rb[H_2NB_2(C_6F_5)_6] \cdot CH_2Cl_2(2)$	S4
Lattice potential energy U_{POT} of 1 and $\text{Tl}[\text{B}(\text{C}_6\text{F}_5)_4]$	S5
Figure S1. Geometrical features of the 24-hedron in 1	S 6
Figure S2. Coordination sphere of Rb1 in the structure of 2	S7
Figure S3. Coordination sphere of Rb2 in the structure of 2	S7
Table S1. Prominent polyhedra having 16 vertices	S 8

Isolation of Cs[H₂NB₂(C₆F₅)₆] (1) from water

(a) Neat water

[Na(OEt₂)₃][H₂NB₂(C₆F₅)₆] (69.6 mg, 0.0541 mmol; FW = 1285.4; $c \approx 0.9 \ 10^{-4}$ M) was dissolved in 570 mL of water. CsCl (9.5 mg, 0.0564 mmol; FW = 168.4) was added and after brief mixing the clear solution was left unstirred. Soon colorless crystals began to separate. The mixture was left overnight and the precipitate was isolated by filtration; yield of **1** 42.1 mg (0.0359 mmol, 66%; FW = 1172.9). The aqueous mother liquor was extracted once with 20 mL of CH₂Cl₂. Evaporation of the solvent gave an additional crop of 20 mg (0.0170 mmol, 32%). Total isolated yield was 62.1 mg (0.053 mmol; 98%). The IR spectra of the isolated solids were identical with that of pure Cs[H₂NB₂(C₆F₅)₆] (**1**).

(b) Water, containing other metal salts

To a water solution (450 mL), containing the inorganic salts listed below, was added $[Na(OEt_2)_3][H_2NB_2(C_6F_5)_6]$ (27.5 mg, 0.0214 mmol; FW = 1285.4; $c \approx 4.75 \ 10^{-5}$ M) and the suspension was stirred overnight. A brown precipitate resulted (color presumably arising from Fe(OH)₃) which was filtered off and was washed with dichloromethane to extract **1**. The solvent of the extract was evaporated to dryness to leave a colorless residue: yield 19.2 mg of **1** (0.0163 mmol, 76%; FW = 1172.9), identified by comparison of the IR spectrum with that of pure **1**. The experiment showed that **1** can be isolated selectively and in relatively high yield from a dilute aqueous solution containing a variety of other cations.

8				
Salt	FW	mass [mg]	mass [mmol]	concentration [mol/L]
CsCl	168.4	3.8	0.0226	$5 \cdot 10^{-5}$
KCl	74.6	138.1	1.85	$4.1 \cdot 10^{-3}$
PbCl ₂	278.1	121.3	0.436	$1.0 \cdot 10^{-3}$
CrCl ₃ ·6H ₂ O	266.4	66.3	0.249	$0.55 \cdot 10^{-3}$
CaCl ₂	111	92.4	0.832	$1.85 \cdot 10^{-3}$
FeCl ₃ ·6H ₂ O	270.3	109.0	0.403	$0.9 \cdot 10^{-3}$

List of added inorganic salts

S4

Lattice potential energy $U_{\rm POT}$

*U*_{POT} was calculated by the Jenkins-Passmore equation, given in Jenkins, H. D. B.; Roobottom, H. K.; Passmore, J.; Glasser, L. *Inorg. Chem.* **1999**, *38*, 3609 (eq 3).

$Cs[H_2NB_2(C_6F_5)_6](1)$

$$U_{POT} = |z_{+}| |z_{-}| v \left(\frac{\alpha}{\sqrt[3]{Vm}} + \beta\right)$$

$$|z_{+}| = 1 \qquad (charge of cation)$$

$$|z_{-}| = 1 \qquad (charge of anion)$$

$$v = 2 \qquad (number of ions)$$

$$\alpha = 117.3 \text{ kJ mol}^{-1} \text{ nm} \qquad (empirical constant)$$

$$\beta = 51.9 \text{ kJ mol}^{-1} \qquad (empirical constant)$$

$$V_{m} \qquad molecular volume of 1, obtained from the structure data$$

$$V_{m} = V/Z = 0.8879 \text{ nm}^{3} ; \sqrt[3]{Vm} = \sqrt[3]{0.8879} \text{ nm} = 0.961 \text{ nm}$$

$$U_{\rm POT} = 2\left(\frac{117.3}{0.961} + 51.9\right) \text{kJ mol}^{-1} = 348 \text{ kJ mol}^{-1}$$

TI[B(C₆F₅)₄]
$$U_{\text{POT}} = |z_{+}| |z_{-}| v \left(\frac{\alpha}{\sqrt[3]{Vm}} + \beta\right)$$

 $V_{\rm m} = V/Z = 0.5802 \text{ nm}^3$; $\sqrt[3]{Vm} = \sqrt[3]{0.5802} \text{ nm} = 0.834051 \text{ nm} \approx 0.834 \text{ nm}$

$$U_{\rm POT} = 2\left(\frac{117.3}{0.834} + 51.9\right) \text{kJ mol}^{-1} = 385 \text{ kJ mol}^{-1}$$

Figure S1. Summary of geometrical features of the 24-hedron in 1. Length of edges in Å.

Bond distances (Å)		Bite angles of	Bite angles of chelate	
Cs–F2	3.569(2)	F2–Cs–F3	45.5(1)°	
Cs–F3	3.099(3)			
Cs–F4	3.799(1)	F4–Cs–F5	42.9(1)°	
Cs-F5	3.591(3)			
Cs–F8	3.200(2)	F8–Cs–F9	47.5(1)°	
Cs–F9	3.303(3)			
Cs–F15	3.629(5)	F15-Cs-F16	5 46.3(1)°	
Cs-F16	3.196(5)			

Figure S2. Coordination sphere of Rb1 in the structure of $Rb[H_2NB_2(C_6F_5)_6] \cdot CH_2Cl_2$ (2).

Figure S3. Coordination sphere of Rb2 in the structure of $Rb[H_2NB_2(C_6F_5)_6] \cdot CH_2Cl_2$ (2).

S7

Name	Description	group	References
Octagonal prism	vertices 16 edges 24 faces 10 8 squares 2 octagons	D _{8h}	http://polyhedra.org
Triakis truncated tetrahedron	vertices 16 edges 30 faces 16 12 triangles 4 hexagons	T _d	Conway, J. H.; Burgiel, H.; Goodman-Strauss, C. <i>The Symmetries of Things</i> , Taylor & Francis, 2008 (ISBN 1-5688-1220-5).
Octagonal antiprism	vertices 16 edges 32 faces 18 16 triangles 2 octagons	D _{8d}	http://polyhedra.org
Square orthobicupola	vertices 16 edges 32 faces 18 8 triangles 8+2 squares	D _{4h}	http://polyhedra.org Johnson Solid J28 Sironi, D'Alfonso, et al. <i>JACS</i> 1990, <i>112</i> , 9395.
Square gyrobicupola	vertices 16 edges 32 faces 18 8 triangles 8+2 squares	D _{4d}	http://polyhedra.org Johnson Solid J29 Lerner et al. <i>Chem. Commun.</i> 2005, 4545. Houser et al. <i>Dalton Trans.</i> 2009, 4439.
Disphenocingulum	vertices 16 edges 38 faces 24 20 triangles 4 squares	D _{2d}	http://polyhedra.org Johnson Solid J90
Snub square antiprism	vertices 16 edges 40 faces 26 8+16 triangles 2 squares	D _{4d}	http://polyhedra.org Johnson Solid J85 Longoni, Manassero, et al. <i>Inorg. Chem.</i> 1985, 24, 117.
Capped truncated tetrahedron Friauf polyhedron Franck-Kasper polyhedron	vertices 16 edges 42 faces 28 all triangles	T _d	Nesper, R. <i>ACIE</i> 1991, 30, 789. Bobev, S.; Sevov, S. C. <i>JACS</i> 2002, 124, 3359.
Thomson tetrahedron	vertices 16 edges 42 faces 28	Т	Thomson, J. J. <i>Philos. Mag.</i> 1904, <i>7</i> , 237. LaFave Jr., T. <i>J. Electrostatics</i> 2013, <i>71</i> , 1029.

all triangles

 Table S1. Prominent Polyhedra having 16 Vertices

 Point