Supplementary Materials for

$\mathrm{Cs}\left[\mathrm{H}_{2} \mathrm{NB}_{2}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{6}\right]$, Featuring an Unequivocal 16-Coordinate Cation

David Pollak, Richard Goddard, and Klaus-Richard Pörschke

This PDF file includes: Page
Isolation of $\mathrm{Cs}\left[\mathrm{H}_{2} \mathrm{NB}_{2}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{6}\right]$ (1) from water S2
IR spectrum of $\mathrm{Cs}\left[\mathrm{H}_{2} \mathrm{NB}_{2}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{6}\right]$ (1) S3
IR spectrum of $\mathrm{Rb}\left[\mathrm{H}_{2} \mathrm{NB}_{2}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{6}\right] \cdot \mathrm{CH}_{2} \mathrm{Cl}_{2}$ (2) S4
Lattice potential energy $U_{\text {POT }}$ of $\mathbf{1}$ and $\mathrm{Tl}\left[\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{4}\right]$ S5
Figure S1. Geometrical features of the 24 -hedron in $\mathbf{1}$ S6
Figure S2. Coordination sphere of Rb1 in the structure of 2 S7
Figure S3. Coordination sphere of Rb2 in the structure of 2 S7
Table S1. Prominent polyhedra having 16 vertices S8

Isolation of $\mathrm{Cs}\left[\mathrm{H}_{2} \mathrm{NB}_{2}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{6}\right]$ (1) from water

(a) Neat water
$\left[\mathrm{Na}\left(\mathrm{OEt}_{2}\right)_{3}\right]\left[\mathrm{H}_{2} \mathrm{NB}_{2}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{6}\right]\left(69.6 \mathrm{mg}, 0.0541 \mathrm{mmol} ; F W=1285.4 ; c \approx 0.910^{-4} \mathrm{M}\right)$ was dissolved in 570 mL of water. $\mathrm{CsCl}(9.5 \mathrm{mg}, 0.0564 \mathrm{mmol} ; F W=168.4$) was added and after brief mixing the clear solution was left unstirred. Soon colorless crystals began to separate. The mixture was left overnight and the precipitate was isolated by filtration; yield of 142.1 mg (0.0359 mmol , $66 \% ; F W=1172.9$). The aqueous mother liquor was extracted once with 20 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. Evaporation of the solvent gave an additional crop of 20 mg ($0.0170 \mathrm{mmol}, 32 \%$). Total isolated yield was 62.1 mg (0.053 mmol ; 98\%). The IR spectra of the isolated solids were identical with that of pure $\mathrm{Cs}\left[\mathrm{H}_{2} \mathrm{NB}_{2}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{6}\right](\mathbf{1})$.
(b) Water, containing other metal salts

To a water solution (450 mL), containing the inorganic salts listed below, was added $\left[\mathrm{Na}\left(\mathrm{OEt}_{2}\right)_{3}\right]\left[\mathrm{H}_{2} \mathrm{NB}_{2}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{6}\right]\left(27.5 \mathrm{mg}, 0.0214 \mathrm{mmol} ; F W=1285.4 ; c \approx 4.7510^{-5} \mathrm{M}\right)$ and the suspension was stirred overnight. A brown precipitate resulted (color presumably arising from $\mathrm{Fe}(\mathrm{OH})_{3}$) which was filtered off and was washed with dichloromethane to extract $\mathbf{1}$. The solvent of the extract was evaporated to dryness to leave a colorless residue: yield 19.2 mg of $\mathbf{1}$ (0.0163 mmol, $76 \% ; F W=1172.9$), identified by comparison of the IR spectrum with that of pure $\mathbf{1}$. The experiment showed that $\mathbf{1}$ can be isolated selectively and in relatively high yield from a dilute aqueous solution containing a variety of other cations.

List of added inorganic salts

Salt	FW	mass [mg]	mass [mmol]	concentration $[\mathrm{mol} / \mathrm{L}]$
CsCl	168.4	3.8	0.0226	$5 \cdot 10^{-5}$
KCl	74.6	138.1	1.85	$4.1 \cdot 10^{-3}$
PbCl_{2}	278.1	121.3	0.436	$1.0 \cdot 10^{-3}$
$\mathrm{CrCl}_{3} \cdot 6 \mathrm{H}_{2} \mathrm{O}$	266.4	66.3	0.249	$0.55 \cdot 10^{-3}$
CaCl_{2}	111	92.4	0.832	$1.85 \cdot 10^{-3}$
$\mathrm{FeCl}_{3} \cdot 6 \mathrm{H}_{2} \mathrm{O}$	270.3	109.0	0.403	$0.9 \cdot 10^{-3}$

Lattice potential energy $\boldsymbol{U}_{\text {pot }}$

$U_{\text {POT }}$ was calculated by the Jenkins-Passmore equation, given in Jenkins, H. D. B.;
Roobottom, H. K.; Passmore, J.; Glasser, L. Inorg. Chem. 1999, 38, 3609 (eq 3).

$\mathbf{C s}\left[\mathrm{H}_{2} \mathrm{NB}_{2}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{6}\right](\mathbf{1})$

$$
\begin{array}{ll}
U_{\mathrm{POT}}=\left|z_{+}\right|\left|z_{-}\right| v\left(\frac{\alpha}{\sqrt[3]{V m}}+\beta\right) \\
\left|z_{+}\right|=1 & \text { (charge of cation) } \\
\left|z_{-}\right|=1 & \text { (charge of anion) } \\
v=2 & \text { (number of ions) } \\
\alpha=117.3 \mathrm{~kJ} \mathrm{~mol}^{-1} \mathrm{~nm} & \text { (empirical constant) } \\
\beta=51.9 \mathrm{~kJ} \mathrm{~mol}^{-1} & \text { (empirical constant) }
\end{array}
$$

$$
V_{\mathrm{m}} \quad \text { molecular volume of } \mathbf{1} \text {, obtained from the structure data }
$$

$$
\begin{aligned}
& V_{\mathrm{m}}=V / Z=0.8879 \mathrm{~nm}^{3} ; \quad \sqrt[3]{V m}=\sqrt[3]{0.8879} \mathrm{~nm}=0.961 \mathrm{~nm} \\
& U_{\mathrm{POT}}=2\left(\frac{117.3}{0.961}+51.9\right) \mathrm{kJ} \mathrm{~mol}^{-1}=348 \mathrm{~kJ} \mathrm{~mol}^{-1}
\end{aligned}
$$

$\operatorname{Tl}\left[B\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{4}\right]$

$$
\begin{aligned}
& U_{\mathrm{POT}}=\left|z_{+}\right|\left|z_{-}\right| v\left(\frac{\alpha}{\sqrt[3]{V m}}+\beta\right) \\
& V_{\mathrm{m}}=V / Z=0.5802 \mathrm{~nm}^{3} ; \quad \sqrt[3]{V m}=\sqrt[3]{0.5802} \mathrm{~nm}=0.834051 \mathrm{~nm} \approx 0.834 \mathrm{~nm} \\
& U_{\mathrm{POT}}=2\left(\frac{117.3}{0.834}+51.9\right) \mathrm{kJ} \mathrm{~mol}^{-1}=385 \mathrm{~kJ} \mathrm{~mol}^{-1}
\end{aligned}
$$

Figure S1. Summary of geometrical features of the 24-hedron in 1. Length of edges in \AA.

Bond distances (A)			Bite angles of chelate	
Cs-F2	$3.569(2)$	F2-Cs-F3	$45.5(1)^{\circ}$	
Cs-F3	$3.099(3)$			
Cs-F4	$3.799(1)$	F4-Cs-F5	$42.9(1)^{\circ}$	
Cs-F5	$3.591(3)$			
Cs-F8	$3.200(2)$	F8-Cs-F9	$47.5(1)^{\circ}$	
Cs-F9	$3.303(3)$			
Cs-F15	$3.629(5)$	F15-Cs-F16 46.3(1)		

Figure S2. Coordination sphere of Rb 1 in the structure of $\mathrm{Rb}\left[\mathrm{H}_{2} \mathrm{NB}_{2}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{6}\right] \cdot \mathrm{CH}_{2} \mathrm{Cl}_{2}$ (2).

Figure S3. Coordination sphere of Rb 2 in the structure of $\mathrm{Rb}\left[\mathrm{H}_{2} \mathrm{NB}_{2}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{6}\right] \cdot \mathrm{CH}_{2} \mathrm{Cl}_{2}$ (2).

Table S1. Prominent Polyhedra having 16 Vertices

Name	Description	Point group	References
Octagonal prism	vertices 16 edges 24 faces 10 8 squares 2 octagons	$D_{8 h}$	http://polyhedra.org
Triakis truncated tetrahedron	vertices 16 edges 30 faces 16 12 triangles 4 hexagons	T_{d}	Conway, J. H.; Burgiel, H.; Goodman-Strauss, C. The Symmetries of Things, Taylor \& Francis, 2008 (ISBN 1-5688-1220-5).
Octagonal antiprism	vertices 16 edges 32 faces 18 16 triangles 2 octagons	$D_{8 d}$	http://polyhedra.org
Square orthobicupola	vertices 16 edges 32 faces 18 8 triangles $8+2$ squares	$D_{4 n}$	http://polyhedra.org Johnson Solid J28 Sironi, D'Alfonso, et al. JACS 1990, 112, 9395.
Square gyrobicupola	vertices 16 edges 32 faces 18 8 triangles $8+2$ squares	$D_{4 d}$	http://polyhedra.org Johnson Solid J29 Lerner et al. Chem. Commun. 2005, 4545. Houser et al. Dalton Trans. 2009, 4439.
Disphenocingulum	vertices 16 edges 38 faces 24 20 triangles 4 squares	$D_{2 d}$	http://polyhedra.org Johnson Solid J90
Snub square antiprism	vertices 16 edges 40 faces 26 $8+16$ triangles 2 squares	$D_{4 d}$	http://polyhedra.org Johnson Solid J85 Longoni, Manassero, et al. Inorg. Chem. 1985, 24, 117.
Capped truncated tetrahedron Friauf polyhedron Franck-Kasper polyhedron	vertices 16 edges 42 faces 28 all triangles	T_{d}	Nesper, R. ACIE 1991, 30, 789. Bobev, S.; Sevov, S. C. JACS 2002, 124, 3359.
Thomson tetrahedron	vertices 16 edges 42 faces 28 all triangles	T	Thomson, J. J. Philos. Mag. 1904, 7, 237. LaFave Jr., T. J. Electrostatics 2013, 71, 1029.

