Supporting Information

Direct Growth of Ultrathin NiCo₂O₄/NiO Nanosheets on SiC

Nanowires as a Free-Standing Advanced Electrode for

High-Performance Asymmetric Supercapacitors

Jian Zhao,[†] Zhenjiang Li,^{*,†} Meng Zhang,[†] Alan Meng,^{*,‡} and Qingdang Li[§]

[†]*Key Laboratory of Polymer Material Advanced Manufacturing Technology of Shandong Provincial, Qingdao University of Science and Technology, 99 Songling Road, Qingdao 266061, Shandong, P. R. China.*

[‡]State Key Laboratory Base of Eco-chemical Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, 53

Zhengzhou Road, Qingdao 266042, Shandong, P. R. China.

[§]College of Sino-German Science and Technology, Qingdao University of Science and Technology, 99 Songling Road, Qingdao 266061, Shandong, P.R.China.

Corresponding Author

*E-mail: zjli126@126.com

*E-mail: <u>mengalan@126.com</u>

Calculations:

(1) The specific capacitances of the SiC NWs @NiCo₂O₄/NiO NSs on CC electrode calculated from GV curves are obtained according to the following equation:

$$C = \frac{I\Delta t}{m\Delta V}$$

where I is the discharge current, Δt is the discharge time in GV test, m is the active material mass, and ΔV is the voltage window.

(2) The specific capacitance of the SiC NWs@NiCo₂O₄/NiO NSs on CC // AC on NF asymmetric supercapacitor (ASC) device can be got in accordance with the following equation:

$$C_{\text{device}} = \frac{I\Delta t}{M\Delta V}$$

Herein, I is the discharge current, Δt is the discharge time in GV test, M is the total mass of both positive and negative electrodes, and ΔV is the voltage window of the device.

(3) Methods to calculate the energy and power density of the ASC device:

$$E = \frac{1}{2} C_{\text{device}} \Delta V^2; \quad P = \frac{E}{t}$$

Here, C_{device} is the specific capacitance of the device, ΔV is the potential window, and *t* is the discharge time.

Figure S1. SEM image of the Ni-Co precursor

Figure S2. Low-magnification SEM image of the SiC NWs

Figure S3. (a) Low-magnification and (b) high-magnification SEM images of the

pure NiCo₂O₄/NiO NSs

Figure S4. The relationship between peak current and the square root of scan

rates for the SiC NWs@NiCo2O4/NiO NSs

Figure S5. (a) CV curves and (b) GV curves of the $\rm NiCo_2O_4/\rm NiO~\rm NSs$

Figure S6. Specific capacitance as a function of specific measurement value of the

current

Material	Fabrication method	capacitance (F	capacitance (F g^{-1})	
		g ⁻¹) at low current	at high current	Reference
		density	density	
CNT/NiCo2O4 core/shell	Electrochemical	694 (1 A g ⁻¹)	591 (10 A g ⁻¹)	S1
	deposition			
Cu/CuOxNW@NiCo2O4	Hydrothermal and	578 (1 A g ⁻¹	462 (10 A g ⁻¹)	S2
NSs	calcination			
RGO/CNT/NiO	Hydrothermal and	1180 (1 A g ⁻¹)	840 (10 A g ⁻¹)	S3
composites	calcination			
NiCo ₂ O ₄ NWs	Hydrothermal and	401 (1 A g ⁻¹)	300 (8 A g ⁻¹)	S4
	calcination			
NiCo ₂ O ₄ -RGO	Self-assembly and	835 (1 A g ⁻¹)	617 (16 A g ⁻¹)	S5
	thermal treatment			
NiO nanoflower	a sol-gel method	480 (0.5 A g ⁻¹)	252 (5 A g ⁻¹)	S6
SWCNT@NiCo2O4	Hydrothermal and	$1642 (0.5 \text{ A g}^{-1})$	$1100 (10 \mathrm{A g}^{-1})$	S 7
core-shell	sintering			
NiCo ₂ O ₄ @NiCo ₂ O ₄	Hydrothermal and	900 (1 A g ⁻¹)	675 (20 A g ⁻¹)	S8
core/shell	chemical deposition			
CNS/NiCo ₂ O ₄ core-shell	Hydrothermal and	1420 (1 A g ⁻¹)	1022 (10 A g ⁻¹)	S9
	calcination			
CNT films@Ni-Co oxide	Electrodeposition	No data	569 (10 mA cm ⁻²)	S10
SiC NWs@NiCo2O4/NiO NSs	TT 1 /1 1 1	1801 (1 mA cm ⁻²)	1499 (10 mA cm ⁻²)	T (1.
	Hydrothermal and	or 1801 (~1.67 A	or 1499 (~16.67 A	in this work
	calcination	g ⁻¹)	g ⁻¹)	

Table S1. Comparison of the electrochemical properties of the as-fabricated SiC

NWs@NiCo2O4/NiO NSs with the reported ones

Figure S7. (a) CV and (b) GV curves of activated carbon (AC) on NF; (c)

specific capacitance calculated from the GV curves as a function of current density; (d)

EIS of activated carbon (AC) on NF

Figure S8. SEM (a) and TEM (b) images of the SiC NWs@NiCo₂O₄/NiO NSs

after 2000 cycles at 20 mA cm⁻².

REFERENCES

(S1) Liu, W. W.; Lu, C. X.; Liang, K.; Tay, B. K. A Three Dimensional Vertically Aligned Multiwall Carbon Nanotube/NiCo₂O₄ Core/Shell Structure for Novel High-Performance Supercapacitors. *J. Mater. Chem. A* **2014**, *2*, 5100-5107.

(S2) Kuang, M.; Zhang, Y. X.; Li, T. T.; Li, K. F.; Zhang, S. M.; Li, G.; Zhang, W. Tunable Synthesis of Hierarchical NiCo₂O₄ Nanosheets-Decorated Cu/CuO_x Nanowires Architectures for Asymmetric Electrochemical Capacitors. *Journal of Power Sources* **2015**, *283*, 270-278.

(S3) Bai, Y.; Du, M.; Chang, J.; Sun J.; Gao, L. Supercapacitors with High Capacitance Based on Reduced Graphene Oxide/Carbon Nanotubes/NiO Composite Electrodes. J. Mater. Chem. A, **2014**, *2*, 3834-3840.

(S4) Yuan, C. Z.; Li, J. Y.; Hou, L. R.; Yang, L.; Shen, L. F.; Zhang, X. G. Facile Template-Free Synthesis of Ultralayered Mesoporous Nickel Cobaltite Nanowires Towards High-Performance Electrochemical Capacitors. *J. Mater. Chem.* **2012**, *22*, 16084-16090.

(S5) Wang, H. W.; Hu, Z. A.; Chang, Y. Q.; Chen, Y. L.; Wu, H. Y.; Zhang, Z. Y.
Yang, Y. Y. Design and Synthesis of NiCo₂O₄-Reduced Graphene Oxide Composites
for High Performance Supercapacitors. *J. Mater. Chem.* 2011, *21*, 10504-10511.

(S6) Kim, S. I.; Lee, J. S.; Ahn, H. J.; Song, H. K.; Jang, J. H. Facile Route to an Efficient NiO Supercapacitor with a Three Dimensional Nanonetwork Morphology. *ACS Appl. Mater. Interfaces* **2013**, *5*, 1596-1603.

(S7) Wang, X.; Han, X. D.; Lim, M. F.; Singh, N. D.; Gan, C. L.; Jan, M.; Lee, P.

S. Nickel Cobalt Oxide-Single Wall Carbon Nanotube Composite Material for Superior Cycling Stability and High-Performance Supercapacitor Application. *J. Phys. Chem. C* **2012**, *116*, 12448-12454.

(S8) Liu, X. Y.; Shi, S. J.; Xiong, Q. Q.; Li, L.; Zhang, Y. J.; Tang, H.; Gu, C. D.; Wang, X. L.; Tu, J. P. Hierarchical NiCo₂O₄@ NiCo₂O₄ core/shell nanoflake arrays as high-performance supercapacitor materials. *ACS Appl. Mater. Interfaces*, **2013**, *5*, 8790-8795.

(S9) Li, D. L.; Gong, Y. N.; Zhang, Y. P.; Luo, C. Z.; Li, W. P.; Fu Q.; Pan, C. X.
Facile Synthesis of Three-Dimensional Structured Carbon Fiber-NiCo₂O₄-Ni(OH)₂
High-Performance Electrode for Pseudocapacitors. *Scientific Reports* 2015, *5*, 9277.

(S10) Fan, Z.; Chen, J. H.; Cui, K. Z.; Sun, F.; Xu, Y.; Kuang, Y. F. Preparation and Capacitive Properties of Cobalt-Nickel Oxides/Carbon Nanotube Composites. *Electrochim. Acta* **2007**, *52*, 2959-2965.