
Aromatic-Exfoliated Transition Metal Dichalcogenides: Implications for Inherent Electrochemistry and Hydrogen Evolution

Shu Min Tan,^a Zdeněk Sofer,^b Jan Luxa,^b Martin Pumera^a*

^a School of Physical and Mathematical Sciences, Division of Chemistry and Biological Chemistry, Nanyang Technological University, 21 Nanyang Link, 637371 Singapore.

^b Department of Inorganic Chemistry, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague 6, Czech Republic.

Figure S1 Scanning electron micrograph of $MoSe_2$, after treatment with phenyllithium, followed by exfoliation in water. Scale bar represents 10 μ m.

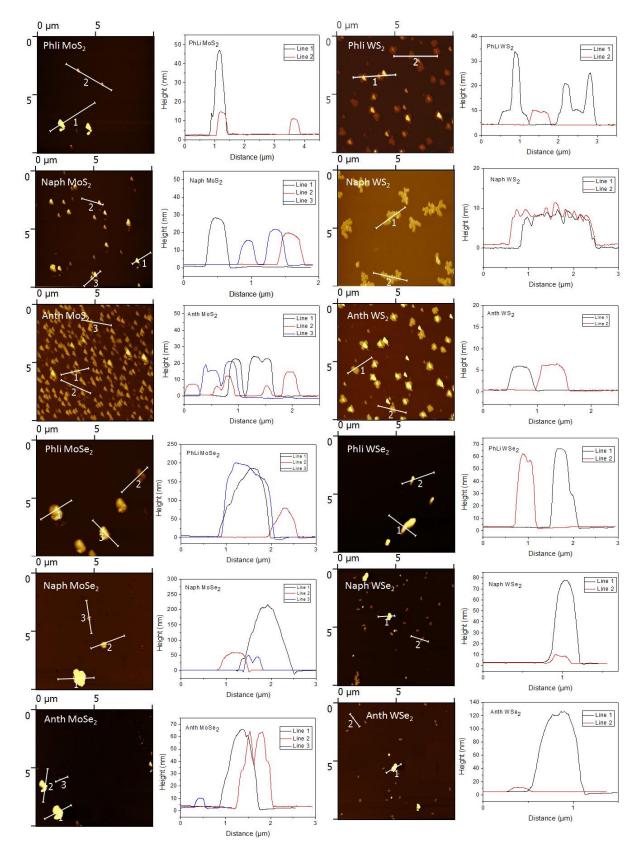
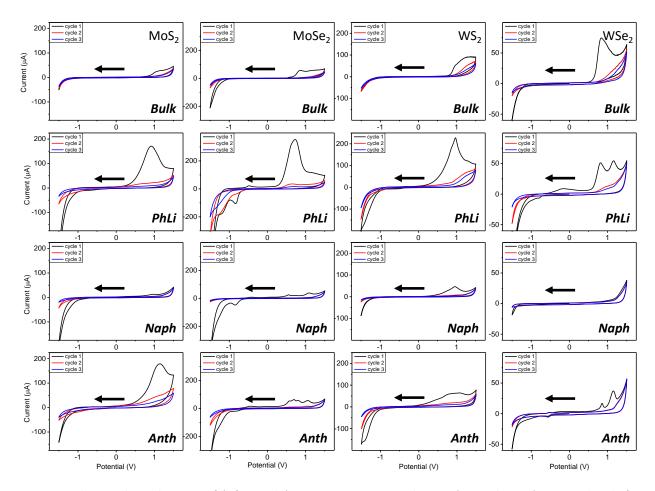
	fwhm (cm⁻¹)		Peak separation between
Material	E_{2g}	A_{1g}	E_{2g} and A_{1g} (cm ⁻¹) ^c
Bulk MoS ₂	6.3	7.0	25.8
PhLi MoS ₂	7.7	8.0	25.4
Naph MoS_2	10.2	10.7	25.0
Anth MoS_2	9.5	9.8	24.8
Bulk MoSe ₂ ^a	-	6.5	43.1
PhLi MoSe ₂ ª	-	8.1	44.2
Naph MoSe ₂ ^a	-	19.4	49.1
Anth MoSe ₂ ^a	-	7.7	45.0
Bulk WS ₂	13.2	6.6	70.0
PhLi WS ₂	14.2	8.1	68.7
Naph WS_2	7.9	8.5	64.2
Anth WS_2	12.9	10.6	63.9
Bulk WSe ₂ ^b	11.7		-
PhLi WSe ₂ ^b	17.9		-
Naph WSe ₂ ^b	23.8		-
Anth WSe ₂ ^b	42.3		-

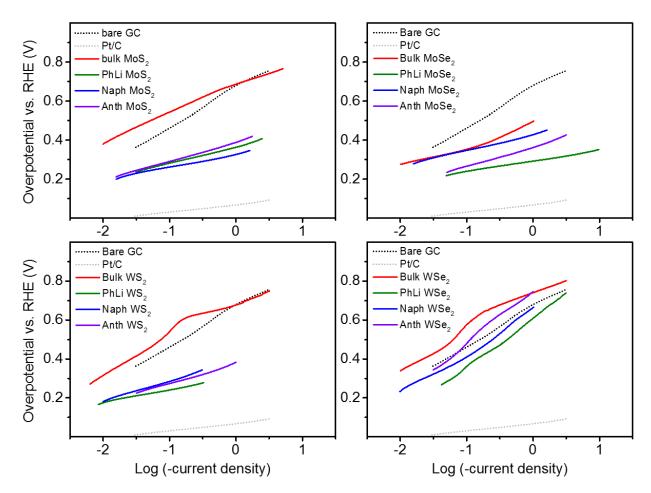
Table S1 Full width at half maximum (fwhm) values of E_{2g} and A_{1g} peaks of MoS₂, MoSe₂, WS₂, and WSe₂, together with the corresponding peak separations.

^a The signal-to-noise ratio of E_{2q} peak of MoSe₂ is low for determination of its fwhm.

^b The E_{2g} and A_{1g} peaks of WSe₂ overlap, rendering the peak separation indeterminate. The fwhm provided are of the overlapped E_{2g}/A_{1g} peaks of WSe₂.

^c The differing exfoliation efficiencies derived from the Raman spectroscopy (based on E_{2g} - A_{1g} peak separation) and surface area measurements are likely due to the utilization of different solvents for sample preparation (DMF for Raman spectroscopy and deionized water for methylene blue adsorption), which is limited by the suitability of their properties for the technique used. However, since TMD dispersions in DMF were used for all measurements except for methylene blue adsorption, the Raman spectroscopy data is expected to be more illustrative of the relationship between the extent of exfoliation and the intercalant used, compared to the surface area measurements.


Figure S2 AFM measurements and corresponding height profiles of exfoliated MoS₂, MoSe₂, WS₂, and WSe₂.

1T/2H ratio	Materials					
	MoS ₂	MoSe ₂	WS_2	WSe ₂		
Bulk	0	0.205	0.108	0		
PhLi	0.367	1.002	4.369	0.921		
Naph	0.406	0.709	3.485	0.987		
Anth	0.156	0.258	0.678	0		

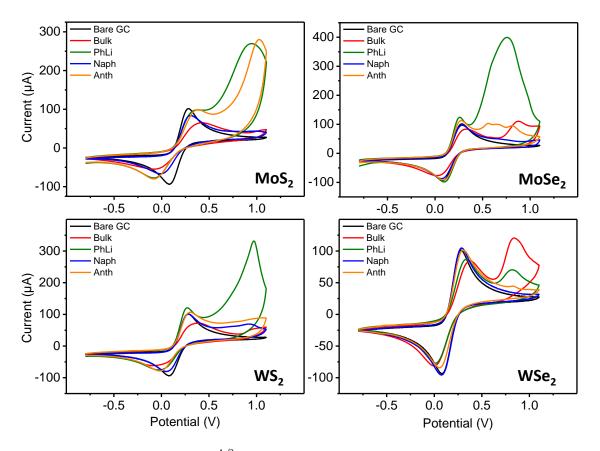

Table S2 1T/2H ratios of MoS₂, MoSe₂, WS₂ and WSe₂ in the bulk state and after treatment with phenyllithium, sodium naphthalenide or sodium anthracenide, followed by exfoliation in water, obtained from XPS data.

Figure S3 Inherent electrochemistry of (left to right) MoS_2 , $MoSe_2$, WS_2 , and WSe_2 , (top to bottom) untreated and after treatment with phenyllithium, sodium naphthalenide or sodium anthracenide, followed by exfoliation in water. Each measurement was run for three cycles (as indicated), with the starting potential at 0 V. The arrows denote the initial scan direction and the y-axes were scaled to a uniform range for each TMD. Conditions: scan rate of 100 mV s⁻¹, phosphate buffer solution (50 mM, pH 7.2) as electrolyte, purged with N₂.

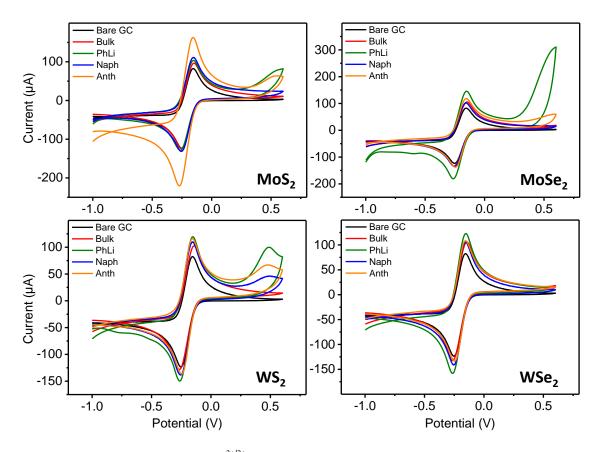

Figure S4 Plots of Tafel slopes of MoS₂, MoSe₂, WS₂, and WSe₂, untreated and after treatment with phenyllithium, sodium naphthalenide or sodium anthracenide, followed by exfoliation in water, together with those of Pt/C (grey, dotted) and bare GC electrode (black, dotted).

Figure S5 Cyclic voltammograms of $Fe(CN)_6^{4-/3-}$ on MoS₂, MoSe₂, WS₂, and WSe₂, as indicated, untreated and after treatment with phenyllithium, sodium naphthalenide or sodium anthracenide, followed by exfoliation in water, as well as that of bare GC. Conditions: 10 mM Fe(CN)₆^{4-/3-}, scan rate of 100 mV s⁻¹, 50 mM phosphate buffer solution (pH 7.2) as supporting electrolyte, purged with N₂.

Table S3 Calculated heterogeneous electron transfer rate constant (k_{obs}^0) for Fe(CN)₆^{4-/3-} on MoS₂, MoSe₂, WS₂ and WSe₂ in the bulk state and after treatment with phenyllithium, sodium naphthalenide or sodium anthracenide, followed by exfoliation in water. The k_{obs}^0 value of bare glassy carbon (GC) is also shown for reference.

k^{0}_{obs} (cm s ⁻¹)	Materials					
	MoS ₂	MoSe ₂	WS ₂	WSe ₂	Bare GC	
Bulk	2.94×10 ⁻⁵	2.96×10 ⁻⁴	4.37×10 ⁻⁵	1.10×10 ⁻⁴	1.24×10 ⁻³	
PhLi	2.84×10 ⁻⁵	1.21×10 ⁻³	1.12×10 ⁻⁴	1.06×10 ⁻⁴	-	
Naph	2.18×10 ⁻⁴	7.01×10 ⁻⁴	6.25×10 ⁻⁴	1.14×10 ⁻³	-	
Anth	2.71×10 ⁻⁵	1.23×10 ⁻³	1.03×10 ⁻⁴	6.15×10 ⁻⁴	-	

Figure S6 Cyclic voltammograms of $\text{Ru}(\text{NH}_3)_6^{2+/3+}$ on MoS₂, MoSe₂, WS₂ and WSe₂, as indicated, untreated and after treatment with phenyllithium, sodium naphthalenide or sodium anthracenide, followed by exfoliation in water, as well as that of bare GC. Conditions: 10 mM Ru(NH₃)₆^{2+/3+}, scan rate of 100 mV s⁻¹, 50 mM phosphate buffer solution (pH 7.2) as supporting electrolyte, purged with N₂.

Table S4 Calculated heterogeneous electron transfer rate constant (k^0_{obs}) for Ru(NH₃)₆^{2+/3+} on MoS₂, MoSe₂, WS₂ and WSe₂ in the bulk state and after treatment with phenyllithium, sodium naphthalenide or sodium anthracenide, followed by exfoliation in water. The k^0_{obs} value of bare glassy carbon (GC) is also shown for reference.

k^{0}_{obs} (cm s ⁻¹)	Materials					
	MoS ₂	MoSe ₂	WS ₂	WSe ₂	Bare GC	
Bulk	4.38×10 ⁻³	4.28×10 ⁻³	3.90×10 ⁻³	3.97×10 ⁻³	5.16×10 ⁻³	
PhLi	4.18×10 ⁻³	4.05×10 ⁻³	4.19×10 ⁻³	4.12×10 ⁻³	-	
Naph	4.82×10 ⁻³	5.10×10 ⁻³	4.99×10 ⁻³	4.83×10 ⁻³	-	
Anth	3.91×10 ⁻³	5.76×10 ⁻³	5.69×10 ⁻³	5.45×10 ⁻³	-	