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A. General Information 

The NMR spectra were recorded at 400 MHz or 500 MHz for 
1
H and at 100 MHz or 125 MHz for 

13
C, 

respectively. The chemical shifts (δ) for 
1
H and 

13
C are given in ppm and are internally referenced to 

residual protio solvent signals (for CDCl3 @ 7.26 ppm and 77.0 ppm, respectively; for CD3CN @ 1.96 

ppm 
1
H NMR, 118.26 ppm and 1.79 ppm 

13
C NMR). Coupling constants are given in Hz. When 

necessary, 
1
H and 

13
C signals were assigned by means of g-COSY 2D-NMR sequence. The following 

abbreviations are used to indicate the multiplicity: s, singlet; d, doublet; t, triplet; q, quartet; qn, quintet; 

m, multiplet; bs, broad signal. Optical rotations are reported as follws: [α]
rt

D (c in g per 100 mL, solvent). 

Mass spectra (high and low resolution) were obtained from the ICIQ High Resolution Mass Spectrometry 

Unit on a Bruker Maxis Impact (QTOF) or Waters Micromass LCT-Premier (TOF) in Electrospray 

Ionization (ESI) by direct infusion. UV-vis measurements were carried out on a Shimadzu UV-2401PC 

spectrophotometer equipped with photomultiplier detector, double beam optics and D2 and W light 

sources. Cyclic voltammetry studies was carried out on a Princeton Applied Research PARSTAT 2273 

potentiostat offering compliance voltage up to ± 100 V (available at the counter electrode), ± 10 V scan 

range and ± 2 A current range.  

Cut off and band-pass photochemical experiments have been performed using a 300 W xenon lamp 

(commercialized under the name of Max-303, Asashi Spectra Co., Ltd.) to irradiate the reaction mixture. 

In situ irradiation inside the NMR spectrometer was performed using a 150 W xenon lamp coupled to a 

monochromator. Commercialized under the name of Polychrome V, it was purchased from Till Photonics. 

It is a monochromatizing device with an integrated light source. The wavelength (320-680 nm) delivered 

by the Polychrome V is controlled from a computer and the monochromatic light is conducted directly 

into the NMR tube by an Optic Fiber probe. The bandwidth and intensity of the light can be adjusted.  
 

 

General Procedures. All reactions were set up under an argon atmosphere in oven-dried glassware using 

standard Schlenk techniques, unless otherwise stated. Synthesis grade solvents were used as purchased 

and the reaction mixtures were deoxygenated by three cycles of freeze-pump-thaw. Chromatographic 

purification of products was accomplished using flash chromatography (FC) on silica gel (35-70 mesh). 

For thin layer chromatography (TLC) analysis throughout this work, Merck precoated TLC plates (silica 

gel 60 GF254, 0.25 mm) were employed, using UV light as the visualizing agent and an acidic mixture of 

para-anisaldehyde or basic aqueous potassium permangante (KMnO4) stain solutions, and heat as 

developing agents. Organic solutions were concentrated under reduced pressure on a Büchi rotatory 

evaporator. 

 

Determination of Enantiomeric Purity: HPLC analysis on chiral stationary phase was performed on an 

Agilent 1200-series instrument. Daicel Chiralpak IA or IC columns with hexane:iPrOH or 

hexane:iPrOH:DCM as the eluents were used. HPLC traces were compared to racemic samples of 

products 3a-c prepared using a catalytic amount of morpholine (30 mol%). 

 

Materials. Reagents were purchased at the highest commercial quality from Sigma Aldrich, Fluka, and 

Alfa Aesar and used as received, without further purification, unless otherwise stated.  

The chiral secondary amine catalyst (S)-A is commercially available; catalyst (S)-A was purified by 

column chromatography (from pure hexane to hexane:Et2O 1:1) prior to use and stored at 4 °C under 

argon to avoid desilylation of the tertiary alcohol. Both phenacyl bromide (2b) and diethyl 

bromomalonate (2c) are commercially available as well as butanal (1a). They were vacuum distilled prior 

to use. 2,4-Dinitrobenzyl bromide (2a) was prepared upon bromination of the commercially available 2,4-

dinitrotoluene 5, according to literature (1). Enamine 4 was synthesized by condensation of the chiral 

amine A and the commercially available 2-phenylacetaldehyde according to literature (2).  
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B. General Procedures for the Photochemical Organocatalytic Enantioselective Alkylation  

A 10 mL Schlenk tube was charged with the aminocatalyst (S)-A (20 mol%), MTBE (0.5 M referring to 

the alkyl bromide 2), butanal 1a (3 equiv), 2,6-lutidine (1 equiv) and the alkylating agents 2a-c (1 equiv). 

The reaction mixture was degassed via freeze pump thaw (x3), and the vessel back-filled with argon. The 

vial was then sealed and positioned approximately 5 cm away from a light source. After stirring for the 

indicated time, the crude mixture was purified by flash column chromatography to afford the title 

compounds 3a-c in the stated yield and optical purity. 

Purification by flash column chromatography on silica gel:  

Compound 3a: gradient eluent from pure hexane to 9:1 hexane:AcOEt. 

Compound 3b: gradient eluent from pure hexane to 95:5 hexane:AcOEt. 

Compound 3c: 10:1 hexane:AcOEt.  
 

The enantiomeric excess was determined by HPLC analysis using the following conditions:  

Compound 3a: Daicel Chiralpak IC column, 70:30 hexane:
i
PrOH, flow rate 1.00 mL/min, λ = 254 nm: 

τminor = 16.7 min, τmajor = 19.9 min.  
 

Compound 3b: Daicel Chiralpak IA column, 98:2 hexane:
i
PrOH, flow rate 1.00 mL/min, λ = 254 nm: 

τminor = 12.0 min, τmajor = 13.4 min.  
 

Compound 3c: Daicel Chiralpak IA column, eluent 97:3 hexane:
i
PrOH, flow rate 1.00 mL/min, λ = 215 

nm:, τminor = 8.6 min, τmajor = 9.3 min. 
 

Products 3a, 3b, and 3c were fully characterized and the data corresponds with literature (2, 3). 

Light Sources used in these studies: 

- CFL light: A set of two household full spectrum 23 W compact fluorescent light (CFL) bulbs were used 

for irradiating the reaction mixture (see Figure S1 for the emission). 

- Blue LED (λmax = 450 nm): Commercialized under the name of blue LED Emitter LZ4-00B208. It was 

purchase from LED Engin. The LZ4-00B208 Blue LED emitter is a set of 4 single LEDs which provides 

10W power centered at 450 nm. The irradiance at 2 cm of distance was 90.6 mW/cm
2
. 

 

 

Figure S1: Emission spectra of the 23 W CFL lamp used in our experiments 
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C. Optical Absorption Spectra  

 

All the spectra were recorded in MTBE, using the same concentration as in the reaction conditions, in a 1 

mm Hellma Quartz SUPRASIL
®
 cuvette. Due to the high concentration of the solutions, short path 

cuvettes were employed in order to avoid signal saturation. 

 

C1. Reaction Mixture in MTBE 
 

 

 

Figure S2. Optical absorption spectra, recorded in MTBE, of the alkylation of butanal 1a with 2,4-dinitrobenzylbromide 2a. [1a] 

= 1.5 M: 27.0 μL dissolved in 200 μL of MTBE; [2a] = 0.5 M: 26 mg dissolved in 200 μL of MTBE; [(R)-A] = 0.1 M: 11.9 mg 

dissolved in 200 μL of MTBE. 1a + A: solution of 27.0 μL of 1a and 11.9 mg of A in 200 μL of MTBE. Mixture of all the 

reagents: solution of 27.0 μL of 1a, 11.9 mg of A and 26 mg of 2a in 200 μL of MTBE. 

Upon mixing the aldehyde 1a and the aminocatalyst A, a new absorption band is observed (green line in 

Figure S2), indicating the formation of a transient species: the enamine. The absorption spectrum is 

analogous to the ones recorded for similar tertiary enamines derived from aliphatic aldehydes, as reported 

in the literature (4).
 
The absorption spectrum of the mixture of all the reagents (red line in Figure S2) does 

not overlap with the absorption of the enamine (green line). Indeed, a new absorption band is observed. 

The new absorption band corroborates the formation of an electron donor acceptor (EDA) complex (5). 
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Figure S3. Optical absorption spectra, recorded in MTBE, of the alkylation of butanal 1a with phenacyl bromide 2b. [1a] = 1.5 

M: 27.0 μL dissolved in 200 μL of MTBE; [2b] = 0.5 M: 20 mg dissolved in 200 μL of MTBE; [A] = 0.2 M: 23.8 mg dissolved 

in 200 μL of MTBE. 1a + A: solution of 27.0 μL of 1a and 23.8 mg of A in 200 μL of MTBE. Mixture of all the reagents: 

solution of 27.0 μL of 1a, 23.8 mg of A and 20 mg of 2b in 200 μL of MTBE. 

When recording the optical absorption spectrum in the presence of 2b, the mixture of all the reagents (red 

line Figure in S3) does not overlie the absorption of the enamine (green line in Figure S3), and a new 

absorption band is observed. This new absorption band is diagnostic of an EDA complex formed in the 

ground state. 

 

 

 

Figure S4. Optical absorption spectra, recorded in MTBE, of the alkylation of butanal 1a with bromomalonate 2c driven by the 

direct excitation of enamines. [1a] = 1.5 M: 27.0 μL dissolved in 200 μL of MTBE; [2c] = 0.5 M: 17 μL dissolved in 200 μL of 

MTBE; [A] = 0.1 M: 11.9 mg dissolved in 200 μL of MTBE. 1a + A: solution of 27.0 μL of 1a and 23.8 mg of A in 200 μL of 

MTBE. Mixture of all the reagents: solution of 27.0 μL of 1a, 11.9 mg of A and 17 μL of 2c in 200 μL of MTBE. 
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Upon mixing the aldehyde 1a and the aminocatalyst A, a new absorption band is observed (in situ 

generated enamine, green line in Figure S4). The optical absorption spectrum of the reaction mixture (red 

line in Figure S4) perfectly overlays the absorption of the enamine (green line), excluding any EDA 

association in the ground state.  

 

 

 
 

 

Figure S5. Absorption spectra of the 2,4-dinitrotoluene 5 (blue line) and comparison of the mixture aldehyde 1a + catalyst A 

(green line, in situ generated enamine) and the mixture of all the reagents (red line). [1a] = 1.5 M: 27.0 μL dissolved in 200 μL of 

MTBE; [5] = 0.5 M: 16.2 mg dissolved in 200 μL of MTBE; [(R)-A] = 0.1 M: 11.9 mg dissolved in 200 μL of MTBE. 1a + A: 

solution of 27.0 μL of 1a and 11.9 mg of A in 200 μL of MTBE. Mixture of all the reagents: solution of 27.0 μL of 1a, 11.9 mg 

of A and 18.2 mg of 5 in 200 μL of MTBE. 

 

 

When mixing together the enamine, generated in situ upon condensation of catalyst A and 1a (green line 

in Figure S5), with 2,4-dinitrotoluene 5, the optical absorption spectra showed a bathochromic 

displacement in the visible spectral region, where none of the substrates absorbs (red lines, Figure S5). 

The new absorption band indicates the formation of an EDA complex. 
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C2. EDA Complex Formation with the Preformed Enamine 4  

 

The preformed enamine 4, prepared according to the literature (2), was mixed with the EDA acceptors 2a, 

2b and 5. The absorption spectra of the resulting mixtures showed the formation of new absorption bands 

diagnostic of EDA complex formation (red lines in Figure S6). 

 

 

 

 

 

 

 

 
 

 

           

 

 

 

 

 

 

 

Figure S6. Absorption spectra of the mixtures of enamine 4 (green line) with (a) 2,4-dinitrobenzylbromide 2a, (b) 

phenacyl bromide 2b, and (c) 2,4-dinitrotoluene 5. [4] = 0.04 M in MTBE, prepared by diluting 1 mL of a 0.4 M solution 

of 4 in MTBE into 10 mL. [2a] = 0.5 M: 26 mg dissolved in 200 μL of MTBE; [2b] = 0.5 M: 20 mg dissolved in 200 μL 

of MTBE; [5] = 0.5 M: 18.2 mg dissolved in 200 μL of MTBE; 4 + 2a: 26 mg of 2a dissolved in 200 μL of a 0.04 M 

solution of 4; 4 + 2b: 20 mg of 2b dissolved in 200 μL of a 0.04 M solution of 4; 4 + 5: 18.2 mg of 5 dissolved in 200 μL 

of a 0.04 M solution of 4. 
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D. Characterization of EDA Complexes  

 

D1. Stoichiometry of the EDA Complex in Solution 

A Job’s plot was constructed to evaluate the stoichiometry of the EDA complex (6) between 2,4-

dinitrobenzylbromide (2a) and the preformed enamine 4. We measured the absorption at 470 nm of 

MTBE solutions with different donor/acceptor ratios but constant concentration (0.1 M) of the two 

components. All the absorption spectra were recorded in 1 mm path quartz cuvettes using a 

Shimadzu 2401PC UV-visible spectrophotometer. The absorbance values are plotted against the 

molar fraction (%) of 2,4-dinitrobenzyl bromide. The maximum absorbance is obtained with a 1:1 

mixture, indicating that this is the stoichiometry of the EDA complex in solution. The same 

procedure was repeated to evaluate the stoichiometry in solution of the EDA complex between 

enamine 4 and bromoacetophenone (2b), obtaining identical results. 

 

        
 

          
Figure S7. Job’s plots of the EDA complexes IIa and IIb in MTBE. 

 

 

D2. Determination of the Association Constant (KEDA) 

The association constant of the EDA complex formed between 2,4-dinitrobenzylbromide (2a) and 

enamine 4 was determined spectrophotometrically in MTBE, employing the Hildebrand-Benesi 

methodology (7). We measured the absorption at 470 nm of solutions with constant concentration 

of the enamine 4 (0.04 M) but increased donor/acceptor ratio, adding an excess of the benzyl 

bromide 2a. All the absorption spectra were recorded in 1 mm path quartz cuvettes using a 

Shimadzu 2401PC UV-visible spectrophotometer. According to the methodology, a straight line is 

obtained when the reciprocal of the absorbance (A) is plotted against the reciprocal of the 

concentration of the partner in excess. The procedure was repeated to determine the association 

constants of the EDA complexes formed by mixing the enamine 4 with the acceptors 2b, and 5. The 

plots, obtained for the calculation of the association constants of 2a, 2b and 5 with the preformed 

enamine 4, are displayed below. The following association constants (KEDA), calculated dividing the 

intercept by the slope, were determined: 11.56 ± 0.02 M
-1

 for the 2a/4 complex; 4.9 ± 0.1 M
-1

 for 

the for the 2b/4 complex; and 4.6 ± 0.1 M
-1

 for the for the 5/4 complex. 

 

 

 

 

 

Molar Fraction of 2a (%) Molar Fraction of 2a (%) 
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Figure S8. Hildebrand-Benesi plots for the EDA complexes generated in MTBE upon association of the enamine 4 and 

(a) 2,4-dinitrobenzylbromide 2a, (b) phenacyl bromide 2b, and (c) 2,4-dinitrotoluene 5. 
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E. Mechanistic Studies on the Direct Photoexcitation of Enamines  

 

E1. Absorption and Emission Spectrum of the Preformed Enamine 4 

 

E1a. UV-vis
 
absorption spectrum of the enamine 4 

Procedure for the acquisition of absorption spectra: Solutions at different concentrations of the 

enamine 4 (obtained by opportunely diluting the original stock solution with dry toluene) were 

introduced to a 1 cm path length quartz cuvette equipped with a Teflon
®
 septum under an argon 

atmosphere and analyzed using a spectrophotometer.  

The absorbance shows a typical Lambert-Beer linear correlation with the concentration at different 

wavelengths. 

 

 

 

Figure S9. Absorption spectra of the enamine 4 at different concentrations in toluene. 
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E1b. Emission Spectrum of the Preformed Enamine 4 

The emission spectra were recorded in a Fluorolog Horiba Jobin Yvon spectrofluorimeter equipped 

with photomultiplier detector, double monochromator and 350 W xenon light source. A 2 mL of a 

5·10
-5

 M solution (dry toluene) of the enamine 4 was placed in a 10 x 10 mm light path quartz 

fluorescence cuvette equipped with Silicone/PTFE 3.2 mm septum under an argon atmosphere. The 

excitation wavelength was fixed at 365 nm (incident light slit regulated to 1 mm), while the 

emission light was acquired from 400 nm to 750 nm (emission light slit regulated to 15 mm). A 

solvent blank was subtracted from the measurement. 

The regulation of the excitation light slit width was crucial for the experiment in order to avoid the 

occurrence of an undesired photochemical process (double bond isomerization) of the enamine, 

resulting in detectable spectral variations (both emission and absorption). Under the conditions 

described above, the undesired isomerization process was not detected. 

 

 

 

 

Figure S10. Emission spectrum of the enamine 4 (excitation wavelength 365 nm). 
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E2. Stern-Volmer Quenching Studies with Bromomalonate 2c 

 

 

Figure S11. Quenching of the enamine 4 emission (5·10-5 M in toluene) in the presence of increasing amounts of 

bromomalonate 2c. 
 

The samples were prepared mixing the enamine 4 ([4] = 5·10
-5

 M) with the required amount of 2c 

in a total volume of 2 mL of dry toluene in a 10x10 mm light path quartz fluorescence cuvette 

equipped with Silicone/PTFE 3.2 mm septum under an argon atmosphere. The samples were 

vigorously bubbled with dry argon for 5 minutes prior to the measurement. The excitation 

wavelength was fixed at 365 nm (incident light slit regulated to 1 mm), the emission light was 

acquired from 400 nm to 750 nm (emission light slit regulated to 15 mm). A solvent blank was 

subtracted from all the measurements. 

The excitation wavelength was chosen in order to avoid inner-filter effect due to the absorption of 

2c. 
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Figure S12. Stern-Volmer quenching plot. 
 

The Stern-Volmer plot shows a linear correlation between the amounts of 2c and the ratio I0/I. On 

the basis of the following Equation S1, it is possible to calculate the Stern-Volmer constant KSV (8). 

 

I0/I = 1 + KSV[Q]        Eq. S1 

 

We calculated a Stern-Volmer quenching constant of 12.9 M
-1

. 

 

A static quenching can occur if a complex is formed in the ground state between the enamine 4 and 

2c. In order to rule out this possibility, a careful analysis of the absorption spectra of the enamine 4 

in the presence of increasing amounts of 2c (the same amount and concentrations have been used as 

in the emission quenching studies) has been carried out. The sample for the analysis was prepared 

in the same way as for the emission quenching experiments. 

 
Figure S13. Absorption spectra of the enamine 4 in the presence of increasing amounts of 2c. 

 

No spectral variations were observed in the area between 330 nm – 450 nm, further excluding any 

EDA association in the ground state. 
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In order to verify that the spectral variations observed at lower wavelength (< 320 nm) are due to 

the additive absorbance of 2c, spectroscopic analysis were carried out on 2c at the concentration 

employed for the quenching study. These studies, detailed in Figure S14, confirmed the additive 

absorbance of 2c at lower wavelength.  

 

 

Figure S14. Absorption spectra of 2c at different concentrations. 

Collectively, our investigations, including the linear Stern-Volmer plot and the absorption spectra 

studies, are indicative of a dynamic quenching and of an interaction between the enamine 4 in the 

excited state and the ground state of bromomalonate 2c. 

 

Effect of the oxygen on the enamine 4 emission: 

 
Figure S15. Effect of oxygen on the emission spectra of 4. 
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Procedure for the control experiment of emission quenching by oxygen: 

The samples were prepared mixing the enamine 4 (conc. 5·10
-5

 M) in a total volume of 2 mL of dry 

toluene. The samples were vigorously bubbled with dry argon (or dry oxygen) for 5 minutes prior to 

the measurement. For the experiment, a Silicone/PTFE 3.2 mm septum equipped fluorescence 

quartz cuvette was employed. A solvent blank was subtracted from all the measurements. 
 

This study confirms that oxygen is an active quencher for the excited state of enamine 4, which is 

consonant with the sensitivity of the photoorganocatalytic reactions with bromomalonate 2c to the 

presence of oxygen. 

 
E3. Electrochemical Analysis of the Preformed Enamine 4 

 

 
Figure S16. Cyclic voltammetry carried out on preformed enamine 4. 

 
Electrochemical grade tetrabutylammonium hexafluorophosphate (116 mg, 0.300 mmol) was added 

to a 0.01 M solution of enamine 4 in 3 mL of dry acetonitrile and the solution was vigorously 

bubbled with N2 for 5 minutes prior to the measurement. The oxidation potential was measured 

using a glassy carbon working electrode, a platinum wire counter electrode, and a NaCl saturated 

Ag/AgCl reference electrode at 5 mV/s scan rate. 

A completely irreversible oxidation wave was observed with EP
A 

= 0.60 V. 

The cyclic voltammetry of the individual catalyst A and phenylacetaldehyde was also carried out, 

using the same experimental conditions and concentrations. As expected, no oxidation waves were 
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detected for phenylacetaldehyde in the range 0 – 1.5 V, while the cyclic voltammetry curve of the 

catalyst is reported below. 

 

 
Figure S17. Cyclic voltammetry of the catalyst A. 

 
Using this data, we estimated the redox potential of the excited enamine 4 employing the following 

Equation S2 (Ref. 9):
 

 
E(4

.+
/4*)  = E(4

.+
/4) – E0-0(*4/4)      Eq. S2 

 
(note that 4.+ is the the α-iminyl radical cation V in the main manuscript) 

 

Since the electrochemical oxidation of the enamine 4 was totally irreversible, the irreversible peak 

potential EP
A
 was used for E(4

.+
/4). E0-0(*4/4), the excited state energy of the enamine 4, was 

estimated spectroscopically from the position of the long wavelength tail of the absorption spectrum 

(Figure S18) recorded in the acetonitrile, the solvent used for the electrochemical analysis, 

according to (10). This corresponds to 420 nm, which translates into an E0-0(*4/4) of 2.95 eV for the 

enamine.  
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Figure S18. Absorption spectrum of a 2·10-5 M solution of enamine 4 in dry acetonitrile, the tail wavelength was 

considered to be at about 420 nm. 
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F. Studies on the Catalyst Degradation 

 

F1. Evolution of the catalyst concentration over time  

The evolution of the catalyst A concentration under the optimal reaction conditions, depicted in 

Scheme S1, has been studied.  

 

 
Scheme S1. The model reactions. 

 

A GC-FID was calibrated to correlate the signal of the catalyst A versus the signal obtained for 

1,3,5-trimethoxybenzene, which was used as the internal standard (IS). The calibration curve is 

depicted in Figure S19. 

 

 
Figure S19. GC-FID calibration curve for different catalyst (A) to 1,3,5-trimethoxybenzene (IS) ratios. 

 

For the two different photochemical alkylations in Scheme S1, three identical reactions were set up 

in Schlenk tubes after careful de-oxygenation of the reaction medium, and quenched after 2, 4, and 

6 hours. The reactions were performed according to the general procedure describe in page S4.  

For the EDA-based system (Scheme S1a), a stock solution containing 47.6 mg of A (0.08 mmol) 

and 13.6 mg of 1,3,5-trimethoxybenzene (0.08 mmol) in 800L of MTBE was prepared. Each 

Schlenk tube was filled with 200L of the stock solution, 27 L of 1a (0.3 mmol, 3 eq), 12L of 

2,6-lutidine (0.1 mmol, 1 eq) and 26 mg of 2a (0.1 mmol, 1 eq). The solutions were thoroughly 

degassed with three cycles of freeze-pump-thaw and then placed 4 cm away from a 23 W CFL bulb.  

For the alkylation with bromomalonate 2c (Scheme S1b), the same procedure was carried out. An 

equivalent stock solution was prepared, each Schlenk tube was filled with 200L of the stock 

solution, 27 L of 1a (0.3 mmol, 3 eq), 12L of 2,6-lutidine (0.1 mmol, 1 eq) and 17 L of 2c (0.1 

mmol, 1 eq). The solutions were thoroughly degassed with three cycles of freeze-pump-thaw and 

then placed 4 cm away from a 23 W CFL bulb. 

The reactions were stopped after irradiating for 2, 4 or 6 hours and the amount of catalyst present 

was monitored by GC-FID. As shown in Table S1, the catalyst A degradation is more pronounced 

in the EDA complex-mediated alkylation with 2a. For the -alkylation of aldehydes with 

bromomalonate 2c, a much slower degradation is observed. 
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Table S1. Evolution of the catalyst A concentration and the product 3 formation over time.  

 
Entry Alkyl halide time (h) Yield of 3

a
 Catalyst A remaining

b
 

1 2a 2 3a, 36% 76% 
2 2a 4 3a, 75% 40% 
3 2a 6 3a, >95% 31% 
4 2c 2 3c, 45% 85% 
5 2c 4 3c, >95% 79% 
6 2c 6 3c, >95% 78% 

 
a NMR yield of 3 determined by 1H NMR spectroscopic analysis of the crude reaction mixture. b Yield of the remaining 

catalyst A measured by GC-FID.  

 

F2. Evolution of the catalyst concentration in solution irradiating with monochromatic light  

A more thorough investigation of the evolution of the catalyst A over time was carried out 

measuring the catalyst degradation irradiating with a more stable light source. We used a 300 W 

xenon lamp coupled with a band pass filter at 450 nm. A series of experiments were performed in 

identical Schlenk tubes quenched at different conversions (all below 20% of conversion). These 

experiments were carried out with different initial concentrations of 2a or 2c and using NMR 

analysis to monitor the amount of catalyst in solution.  
 

EDA-based system using 2a (Figure S20): 

Sets of three reactions with equivalent concentrations of every reactant except for 2a were carried 

out in three identical Schlenk tubes. The Schlenk tubes containing the degassed reaction mixtures 

were positioned 10 cm away from the light source. They were irradiated with 300 W Xenon Lamp 

operating at 100% of light intensity with a bandpass filter of 450 ± 5 nm without stirring 

(irradiance: 4.7 mW/cm
2
). This procedure was repeated 4 times, quenching the reactions after 

different time intervals. 

The model reaction was set up utilizing a stock solution containing 360 mg of the aminocatalyst A 

(0.6 mmol) and 15 mg of 1,3,5-trimethoxybenzene (employed as internal standard to measure the 

conversion of the enamine in solution) dissolved in 6 mL of CD3CN. Butyraldehyde 1a (54 μL, 0.6 

mmol, 3 equiv.) was added to 400 L of this solution, followed by the addition of 24 μL of 2,6-

lutidine (0.2 mmol, 1 equiv.) and 54 mg of 2,4-dinitrobenzyl bromide 2a (0.2 mmol, 1 equiv.). The 

reaction mixtures were degassed via freeze pump thaw (x 3 cycles), and the vessel refilled with 

argon. After irradiating for the indicated time, the conversion of 2,4-dinitrobenzyl bromide 2a was 

checked by 
1
H NMR and the remaining catalyst in solution was calculated employing 1,3,5-

trimethoxybenzene as internal standard by integration of the enamine peaks (under the reaction 

conditions, no free catalyst A could be detected). For this reaction, the concentrations are: [A] = 0.1 

M, [1a] = 1.5 M, [2a] = [2,6-lutidine] = 0.5 M. Alongside with this reaction, other two identical 

solutions were prepared varying the concentration of the reagent 2a: [2a]0 = 0.25 M and 1 M. 

The experiments, performed irradiating with a Xenon lamp with a band-pass filter at 450 nm, 

confirmed that the catalyst concentration in solution decreases as the reaction proceeds. 

Furthermore, the decrease in [A] correlates with 2a concentration (Figure S20). 
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Figure S20. Reaction profiles for different [2a] (left panel) irradiating at 450 nm (irradiance 4.7 mW/cm2): [2a]0 = 0.25 M 

(blue line), [2a]0 = 0.5 M (red line) and [2a]0 = 1 M (green line). Evolution of the catalyst concentration in solution for the 

same reactions (right panel). Since there is zero-order dependence in [1a] and due to the fact that we could not detect any 

trace of catalyst A in its free state by NMR analysis, we monitored the evolution of A in our experiments by determining 

the enamine concentration in solution. 

 

-alkylation of aldehydes with bromomalonate 2c: 

Equivalent experiments were carried out to study the evolution of the concentration of catalyst A in 

the alkylation of 1a with 2c. A 300 W Xenon lamp operating at 100% of light intensity and 

equipped with a cut-off filter at 385 nm (λ ≥ 385 nm; irradiance = 300 mW/cm
2
) was used to 

irradiate the reactions. In these experiments, conducted upon thorough de-oxygenation of the 

reaction medium, no significant degradation of catalyst A was observed below 20 % conversion.  
 

F3. Evolution of the catalyst concentration in solution using in situ NMR monitoring 

The reaction progress and the catalyst degradation were also followed using in situ monitoring by 

direct irradiation of non-degassed solutions. The reactions were run directly in the NMR tube, 

which precluded a thorough de-oxygenation of the reaction medium. For these experiments, we 

used a xenon lamp coupled with a monochromator which, by bringing the light in close contact with 

the NMR tube through an optical fiber,
 
allowed for the in situ illumination of the samples. A larger 

rate of catalyst degradation was observed when the reaction was conducted in the presence of 

oxygen (degassing the reaction mixtures via freeze pump thaw was unviable). 

The reactions were carried out employing a regular NMR tube as the reaction vessel. They were 

irradiated at 470 nm with a 150 W xenon high stability light lamp Tilluxe P45 coupled to a 

monochromator for exact wavelength definition. This polychromator is connected to an optical fiber 

that can be directly introduced into the NMR tube. This allowed us to monitor the reactions in real 

time with in situ irradiation inside the NMR spectrometer. The conversion of 2a was checked by 
1
H 

NMR and the concentration of the remaining catalyst A in solution was calculated employing 1,3,5-

trimethoxybenzene as internal standard. Since there is zero-order dependence in [1a] and due to the 

fact that we could not detect any trace of catalyst A in its free state by NMR analysis, we monitored 

the evolution of A in our experiments by determining the enamine concentration.  

The model reaction (Figure S21) was set up utilizing a stock solution containing 72 mg of the 

aminocatalyst A (0.12 mmol) and 3 mg of 1,3,5-trimethoxybenzene (employed as internal standard 

to measure the concentration of the enamine in solution) dissolved in 6 mL of CD3CN, previously 

dried over 4 Å molecular sieves. Butyraldehyde 1a (13.5 μL, 0.15 mmol, 3 equiv) was added to 500 

L of this solution, followed by the addition of 2,6-lutidine (6 μL, 0.05 mmol, 1 equiv), and 2,4-

dinitrobenzyl bromide 2a (13 mg, 0.05 mmol, 1 equiv). Resultantly, the concentrations utilized for 

the model reaction were: [A] = 0.02 M, [1a] = 0.3 M and [2a] = [2,6-lutidine] = 0.1 M. Alongside 
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with this reaction, other two identical solutions were prepared with a different concentration of 2a: 

[2a]0 =  0.05 M and 0.2 M.  

 

 
 

   
Figure S21. Reaction profiles for different [2a] (left panel) irradiating in situ at 470 nm (irradiance 28.8 mW/cm2): [2a]0 = 

0.05 M (blue line), [2a]0 = 0.1 M (red line) and [2a]0 = 0.2 M (green line). Evolution of the catalyst concentration in 

solution for the same reactions (right panel). Since there is zero-order dependence in [1a] and due to the fact that we could 

not detect any trace of catalyst A in its free state by NMR analysis, we monitored the evolution of A in our experiments by 

determining the enamine concentration in solution. 

 

Using the in situ monitoring of the processes, we confirmed that the catalyst concentration in 

solution decreases as the reaction proceeds. Furthermore, the decrease in [A] correlates with 2a 

concentration.  
 

The same experiments as in Figure S21 were repeated using a different intensity of irradiation (λ = 

470 nm, but irradiance = 3.0 instead of 28.8 mW/cm
2
). In the latter set of experiments, detailed in 

Figure S22, a lower absolute rate of catalyst disappearance was determined, in consonance with a 

less effective initiation regime. This observation establishes a direct correlation between the 

disappearance of catalyst A and the number of photochemical initiation events, since both the 

concentration of 2a and the intensity of light influence the rate of degradation for catalyst A. 

  

 
 

 
Figure S22. Reaction profiles for different [2a] (left panel) irradiating in situ at 470 nm (irradiance 3.0 mW/cm2): [2a]0 = 

0.1 M (red line) and [2a]0 = 0.2 M (green line). Evolution of the catalyst concentration in solution for the same reactions 

(right panel).  
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-alkylation of aldehydes with bromomalonate 2c: 

Equivalent experiments, using in situ irradiation, were carried out to study the evolution of the 

concentration of catalyst A in the reaction with 2c. When irradiating at λ = 400 nm (irradiance = 

20.4 mW/cm
2
), we did observe catalyst degradation (after 150 seconds of reaction, 5% yield of 

product 3c and 97% of catalyst A remaining; after 350 seconds of reaction, 10% yield of product 3c 

and 45% of catalyst A remaining).  

This is presumably because of decomposition pathways triggered by the presence of oxygen in the 

system, as in situ monitoring did not allow for complete de-oxygenation of the reaction medium. 

 

 

G. Quantum Yield Measurements 

G1. Quantum Yield Measurement for the EDA complex-mediated reactions 

A ferrioxalate actinometer solution was prepared by following the Hammond variation of the 

Hatchard and Parker procedure outlined in Handbook of Photochemistry (11). The ferrioxalate 

actinometer solution measures the decomposition of ferric ions to ferrous ions, which are 

complexed by 1,10-phenanthroline and monitored by UV/Vis absorbance at 510 nm. The moles of 

iron-phenanthroline complex formed are related to moles of photons absorbed. 
 

The solutions were prepared and stored in a dark laboratory (red light): 

1. Potassium ferrioxalate solution: 589.5 mg of potassium ferrioxalate (commercially 

available from Alfa Aesar) and 278 μL of sulfuric acid (96%) were added to a 100 mL 

volumetric flask, and filled to the mark with water (HPLC grade). 

2. Phenantroline solution: 0.2% by weight of 1,10-phenanthroline in water (200 mg in 100 mL 

volumetric flask). 

3. Buffer solution: to a 100 mL volumetric flask, 4.94 g of NaOAc and 1 mL of sulfuric acid 

(96%) were added and filled to the mark with water (HPLC grade). 

4. Model reaction solution: a stock solution containing 300 mg of the aminocatalyst A (0.5 

mmol), and 300 μL of 2,6-lutidine (2.5 mmol) were added to a 5 mL volumetric flask and 

filled to the mark with acetonitrile (HPLC grade). To 1 mL of this solution, butyraldehyde 

1a (135 μL, 1.5 mmol, 3 equiv.) and 2,4-dinitrobenzyl bromide 2a (130 mg, 0.5 mmol, 1 

equiv.) were sequentially added. The mixture was kept in the dark for 20 minutes (1 hour in 

the case of the bromoacetophenone 2b) in order to reach a constant amount of EDA in 

solution. Concomitantly, 1 mL of this mixture was degassed and used to run the 

experiment. 
 

Procedure: 1 mL of the actinometer solution and 1 mL of the degassed model reaction (alkylation of 

1a with 2a or 2b), whose quantum yield is being measured, were added to two identical quartz 

cuvettes (l = 10 mm). The cuvettes were placed 10 cm away from the light source. They were 

irradiated together with a 300 W Xenon Lamp operating at 50% of light intensity with a bandpass 

filter of 450 ± 5 nm without stirring. This procedure was repeated 4 times, quenching the reactions 

after different time intervals: 10, 12.5, 15, and 17.5 minutes. 
 

The actinometer measurements were done as follows: 

1. After irradiation, the actinometer solution was removed and placed in a 10 mL volumetric 

flask containing 0.5 mL of 1,10-phenanthroline solution and 2 mL of buffer solution. This 

flask was filled to the mark with water (HPLC grade). 

2. The UV-Vis spectra of the complexed actinometer samples were recorded for each time 

interval. The absorbance of the complexed actinometer solution was monitored at 510 nm. 

 

The moles of Fe
2+

 formed for each sample are determined according to the Beer’s Law (Eq. S3): 

 

(1) 𝑚𝑜𝑙𝑒𝑠 𝐹𝑒+2 =
𝑉1·𝑉3·∆𝐴(510 𝑛𝑚)

103·𝑉2·𝑙·𝜀(510 𝑛𝑚)
 (Eq. S3) 
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where V1 is the irradiated volume (1 mL), V2 is the aliquot of the irradiated solution taken for the 

determination of the ferrous ions (1 mL), V3 is the final volume after complexation with 

phenanthroline (10 mL), l is the optical path-length of the irradiation cell (1 cm), ΔA(510 nm) the 

optical difference in absorbance between the irradiated solution and the one stored in the dark, 

ε(510 nm) is that of the complex Fe(phen)3
2+

 (11100 L mol
-1

 cm
1
). 

The moles of Fe
2+

 formed (x) are plotted as a function of time (t). The slope of this line was 

correlated to the moles of incident photons by unit of time (q
0

n,p) by the use of the following 

Equation S4 (12):  

(2) Φ(𝜆) =
𝑑𝑥 𝑑𝑡⁄

𝑞𝑛,𝑝
0 [1−10−𝐴(𝜆)]

 (Eq. S4) 

where dx/dt is the rate of change of a measurable quantity (spectral or any other property), the 

quantum yield (Φ) for Fe
2+

 at 450 nm is 0.9 (13), and A(λ) is the absorbance of the actinometer at 

the wavelength used to carry out the experiments (450 nm). The absorbance at 450 nm A(450) was 

measure using a Shimadzu 2401PC UV-Vis spectrophotometer in 1 mm path quartz cuvettes in the 

presence of the bandpass filter of 450 nm employed to run the measurements, obtaining an 

absorbance of 0.156.  

q
0
n,p, which is the photon flux, was determined to be 1.18·10

-9
 einstein s

-1
. 

 

The measurements for the reaction under study were done as follows:  

The moles of product 3 formed were determined by GC measurement (FID detector) using 2,4-

dinitrotoluene as internal standard when using 2a as the substrate. 1,3,5-trimethoxybenzene was 

used instead when the alkylation was performed with bromoacetophenone 2b. The moles of product 

per unit of time are related to the number of photons absorbed. The photons absorbed are correlated 

to the number of incident photons by the use of the equation displayed in the previous point. 

According to Equation S4, if we plot the moles of product (x) versus the moles of incident photons 

(q
0
n,p·dt), the slope is equal to: Φ·(1-10

-A(450 nm)
), where Φ is the quantum yield to be determined and 

A(450 nm) is the absorption of the reaction under study. A(450 nm) was measured using a 

Shimadzu 2401PC UV-Vis spectrophotometer in 1 mm path quartz in the presence of the bandpass 

filter of 450 nm employed to carry out the measurements. An absorbance of 1.05 was determined 

for the reaction with 2a.  
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The quantum yield (Φ) of the photochemical alkylation of butanal 1a with 2,4-

dinitrobenzylbromide 2a catalyzed by A was calculated to be 26. The procedure was repeated a 

second time to provide a similar value: quantum yield (Φ) at 450 nm of 24. 
 

Using the same procedure, we calculated the quantum yield of the photochemical alkylation of 

butanal 1a with bromoacetophenone 2b. In this case, quantum yields of 19 and 20 were obtained in 

two independent experiments.  

G2. Quantum Yield of the Initiation Step for the EDA complex-mediated reactions. 

Using the procedure described in the previous section, the quantum yield of the initiation step was 

measured to better estimate the effective chain length. This has been done by monitoring the 

decomposition of the catalyst A. The analysis is based on the observation that the enamine I, 

generated upon condensation of catalyst A and butanal 1a, serves as a sacrificial initiator of the 

chain mechanism since, for any photoinduced SET event, a propagating radical IV is generated 

while a molecule of the chiral catalyst A is destroyed via decomposition of the intermediate V (see 

Section F). Thus, any photo-induced initiation consumes a molecule of the catalyst A, and the rate 

of decomposition correlates with the efficiency of the chain initiation. Our analysis requires that the 

decomposition of the catalyst A is triggered by productive photochemical initiation only and not by 

other secondary reactions (which have been never detected during these studies).  
 

The experiments were carried out in identical Schlenk tubes, as they allow a thorough degassing 

process. The photon flux was calculated utilizing potassium ferrioxalate as actinometer. Two 

identical Schlenk tubes, containing the actinometer solution and the degassed model reaction 

(alkylation of 1a with 2a catalyzed by A), were placed 10 cm away from the light source. They 

were irradiated together with a 300 W Xenon Lamp operating at 50% of light intensity with a 

bandpass filter of 450 ± 5 nm. The moles of Fe (II) generated per second (dx/dt = 1.49 ·10
-9 

moles·s
-

1
) were measured, and a photon flux (q

0
n,p) of 3.75·10

-9
 einstein s

-1 
was determined using Equation 

S4.  
 

The measurements for the reaction under study were done as follows:  

The moles of remaining catalyst A were determined by GC measurement (FID detector) using 

1,3,5-trimethoxybenzene as internal standard (see Section F1 for details). The moles of catalyst 

degraded per unit of time were related to the number of photons absorbed and the photons absorbed 

correlated to the number of incident photons by the use of Equation S4. According to Equation S4, 

if the moles of catalyst A decomposed (x) are plotted versus the moles of incident photons (q
0

n,p·dt), 

the slope is equal to: Φ·(1-10
-A(450 nm)

), where Φ is the quantum yield to be determined and A(450 

nm) is the absorption of the reaction under study. As previously described, A(450 nm) was 

measured using a Shimadzu 2401PC UV-Vis spectrophotometer in 1 mm path quartz in the 

presence of the bandpass filter of 450 nm employed to carry out the measurements. An absorbance 

of 1.05 was determined for the reaction with 2a.  
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The quantum yield of initiation (Φinitiation) for the photochemical alkylation of butanal 1a with 2,4-

dinitrobenzylbromide 2a catalyzed by A was calculated to be 0.77, meaning that the actual chain 

length of the model reaction (Φestimated = Φmeasured / Φinitiation) is considerably longer, with a lower limit 

of 32.  
 

The same procedure was repeated for the photochemical alkylation of 1a with bromoacetophenone 

2b, affording a quantum yield of initiation (Φinitiation) of 0.68 (λ = 450 nm). As a result, the actual 

chain length (Φestimated = Φmeasured / Φinitiation) can be approximated to 29. 
 

 

G3. Quantum Yield Measurement for the Alkylation with Bromomalonate 

The quantum yield measurement was performed following the procedure described in the previous 

section. Instead of using cuvettes, two identical Schlenk tubes were employed to run the 

experiments under complete absence of oxygen. The reaction mixtures, containing the actinometer 

and the model reaction, were placed alongside 10 cm away from a 300 W Xenon lamp operating at 

100% of light intensity with a bandpass filter of 400 ± 5 nm. The reaction mixtures were not stirred. 

The model reaction was prepared as follows: a stock solution was prepared adding 75 mg of the 

aminocatalyst A (0.125 mmol) and 146 μL of 2,6-lutidine (1.25 mmol) to a 5 mL volumetric flask 

while filling to the mark with acetonitrile (HPLC grade). To 1 mL of this solution, butyraldehyde 1a 

(70 μL, 0.75 mmol, 3 equiv.) and ethyl bromomalonate 2c (43 μL, 0.25 mmol, 1 equiv.) were 

added. Concomitantly, one 1 mL of this reaction mixture was degassed and used to run the 

experiment. 
 

Measurements of the actinometer: At 400 nm, the quantum yield (Φ) for Fe
2+

 is 1.13 (11). The 

absorbance of the actinometer solution at 400 nm was measured using a Shimadzu 2401PC UV-Vis 

spectrophotometer in 1 mm path quartz cuvettes in the presence of the bandpass filter of 400 nm 

employed to carry out the measurements. An absorbance of 0.288 was obtained. The photon flux 

q
0
n,p was determined to be 3,75·10

-9
 einstein s

-1
. 

 

Measurements for the alkylation with 2c: The moles of products formed were determined by 
1
H 

NMR spectroscopy. The moles of product per unit of time are related to the number of photons 

absorbed. The photons absorbed are correlated to the number of incident photons by the use of the 

Equation S4. According to Equation S4, if we plot the moles of product (x) versus the moles of 

incident photons (q
0
n,p·dt), the slope is equal to: Φ·(1-10

-A(400 nm)
) were Φ is the quantum yield and 

A(400 nm) is the absorption of the reaction mixture under study. The absorption was measured 

using a Shimadzu 2401PC UV-Vis spectrophotometer in 1 mm path quartz in the presence of the 

bandpass filter of 400 nm employed to carry out the measurements. An absorbance of 0.69 was 

determined.  

The quantum yield (Φ) determined for the photochemical reaction of 1a with 2c was 20. 
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G4. Quantum Yield of the Initiation Step for the Alkylation with Bromomalonate 
 

The quantum yield of the initiation step was measured to better estimate the effective chain length 

for the reaction of 1a and diethyl bromomalonate 2c. The same procedure described in Section G2 

was repeated to monitore the decomposition of catalyst A.  

The photon flux q
0

n,p was determined to be 3,83·10
-9

 einstein s
-1

. 
 

The measurements for the reaction under study were done as follows:  

The moles of remaining catalyst A were determined by GC measurement (FID detector) using 

1,3,5-trimethoxybenzene as internal standard (see Section F1 for details). The moles of catalyst 

degraded per unit of time are related to the number of photons absorbed. The photons absorbed are 

correlated to the number of incident photons by the use of the Equation S4. According to Equation 

S4, if the moles of catalyst A decomposed (x) are plotted versus the moles of incident photons 

(q
0
n,p·dt), the slope is equal to: Φ·(1-10

-A(400 nm)
) were Φ is the quantum yield and A(400 nm) is the 

absorption of the reaction mixture under study. The absorption was measured using a Shimadzu 

2401PC UV-Vis spectrophotometer in 1 mm path quartz in the presence of the bandpass filter of 

400 nm employed to carry out the measurements. An absorbance of 0.69 was determined.  
 

 
 

The quantum yield of initiation (Φinitiation) for the photochemical alkylation of butanal 1a with 

diethyl bromomalonate 2c catalyzed by A was calculated to be 0.11. As a result, the actual chain 

length (Φestimated = Φmeasured / Φinitiation) can be approximated to 182.  
 

 

H. Investigating the Equilibrium of Enamine Formation 
 

H1. Calculation of the Equilibrium Constant (Kenamine) 

The equilibrium constant for the formation of the enamine, generated upon condensation of the 

aminocatalyst A and butyraldehyde 1a, was determine by 
1
H NMR spectroscopy. For this 

measurements, three solutions containing 0.02 mmol of the catalyst A and of 0.02 mmol of 1,3,5-

trimethoxybenzene (used as internal standard) and different amounts of 1a (0.1 mmol, 0.25 mmol 

and 0.7 mmol) dissolved in 500 μL of dry CD3CN (previously stored over 4 Å molecular sieves) 

were prepared. After mixing the components, all the solutions were kept in the dark for 30 minutes 

to secure equilibration. The relative amount of enamine I in solution with respect to the free catalyst 

A was determined by the average of the integration of the following diagnostic peaks: a doublet of 

doublets at 4.55 ppm (J = 9.3, 2.0 Hz, 1H) and a doublet of triplets at 4.09 ppm (J = 13.6, 6.8 Hz, 

1H) for the enamine I; integration of a triplet at 4.40 ppm (J = 7.2 Hz, 1H) for catalyst A (Figure 

S23). The amount of water present in solution was calculated by integration of the singlet at 2.13 

ppm. The water in solution arises from the condensation process, which generates the enamine, plus 

the amount of adventitious water originally present in CD3CN. This is why, as detailed below, the 

same stock solution of catalyst A in dry CD3CN was used for all the experiments. The total amount 

of catalyst A in solution was compared to the internal standard to ensure that there was no 

degradation. 
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Figure S23. 1H NMR spectra showing the 1.01:1 ratio of enamine I:free catalyst A for a solution containing: 0.02 mmol 

of A (0.04 M), 0.1 mmol of 1a (0.2 M) in 0.5 mL of CD3CN (dried over 4 Å molecular sieves). The 1H NMR spectral 

window between 4.60 and 4.00 ppm has been enlarged to show diagnostic signals for the enamine I and the catalyst A. 

 

For these measurements, a stock solution containing 60 mg (0.1 mmol) of A and 16.8 mg (0.1 

mmol) of 1,3,5-trimethoxybenzene as internal standard in 2.5 mL of CD3CN (previously dried over 

4 Å molecular sieves) was prepared. To 500 L of this solution (0.04 M in A), 10.5 L of 1a (0.1 

mmol, 0.2 M solution in 1a) were added. The NMR analysis inferred an enamine I/free catalyst A 

ratio of 1.01:1 and a concentration of H2O of 0.03 M (see Figure S23). 
 

Another solution was prepared from 500 L of the stock solution 0.04 M in A and adding 30 L of 

1a (0.26 mmol). A 2.32:1 ratio of I:A was observed and a concentration of H2O of 0.036 M. 
 

An additional solution was prepared from 500 L of the stock solution 0.04 M in A and adding 80 

L (0.72 mmol of 1a) of 1a. A ratio of I:A of 5.47:1 was observed and a concentration of H2O of 

0.04 M. 

 

With these data and using Equation S5, an equilibrium constants of Kenamine = 0.155 ± 0.002 was 

determined.  

 

𝐾𝑒𝑛𝑎𝑚𝑖𝑛𝑒 =
[𝑒𝑛𝑎𝑚𝑖𝑛𝑒]·[𝐻2𝑂]

[𝑓𝑟𝑒𝑒 𝑐𝑎𝑡𝑎𝑙𝑦𝑠𝑡]·[𝑓𝑟𝑒𝑒 𝑎𝑙𝑑𝑒ℎ𝑦𝑑𝑒]
      (Eq. S5) 

 

 
 

A second, independent set of experiments afforded an equilibrium constant of Kenamine = 0.16 ± 0.02.  

HaHb Hc
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 H2. Effect of the EDA Complex Formation on the Enamine Equilibrium 

A series of 
1
H NMR spectroscopic experiments were carried out to study the effect of the EDA 

complex formation on the enamine formation and its concentration in solution.  

Scheme S2 details the system under study: 

 

 
Scheme S2. 

 

The 
1
H NMR analysis was made on a solution containing 11.9 mg of the aminocatalyst A (0.02 

mmol), 27 L of butanal (1a) (0.3 mmol) and 12 L of 2,6-lutidine (0.1 mmol) in 0.5 mL of 

CD3CN. Under these conditions (solvent not carefully dried over 4 Å molecular sieves), both 

enamine I and free catalyst A were detected in a ratio of 1.2:1 (red spectrum in Figure S24). The 

free catalyst:enamine ratios were measured by comparing the integrals of the free catalyst peak 

(triplet at 4.40 ppm, J = 7.2 Hz, 1H) and the diagnostic peaks of the enamine I (doublet of doublets 

at 4.55 ppm (J = 9.3, 2.0 Hz, 1H) and doublet of triplets at 4.09 ppm (J = 13.6, 6.8 Hz, 1H).  

Successively, another solution containing 11.9 mg of the aminocatalyst A (0.02 mmol), 27 L of 

butanal 1a (0.3 mmol), 12 L of 2,6-lutidine (0.1 mmol) and 26 mg of 2a (0.1 mmol) in 0.5 mL of 

CD3CN was prepared. This solution was degassed by three cycles of freeze-pump-thaw and its 
1
H 

NMR spectrum was recorded (green spectrum in Figure S24). The addition of 2a induced a shift in 

the position of the equilibrium toward the enamine I, as demonstrated by the 1.8:1 ratio of I and 

free catalyst A.  

We then used a xenon lamp coupled with a monochromator which, by bringing the light in close 

contact with the NMR tube through an optical fiber,
 
allowed for the in situ illumination of the same 

sample. When the EDA complex mixture was irradiated in situ in the NMR spectrometer (λ = 

470±5 nm, irradiance = 28.8 mW/cm
2
), a large shift in the position of the enamine equilibrium was 

immediately observed (3.8:1 ratio of I:A after 30 seconds of irradiation, blue line in Figure S24). 

After 60 seconds of irradiation, the signals of the free catalyst A could no longer be detected, 

meaning that the system dramatically shifted towards the enamine Ib (purple spectrum in Figure 

S24).  
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Figure S24. 1H NMR spectra showing different ratios of enamine I:free catalyst A. (a) Selected region of the 1H NMR 

spectral window between 4.62 and 4.04 ppm showing diagnostic signals for the enamine I and the free catalyst A. Red 

spectrum: 0.02 mmol of A, 0.3 mmol of 1a, 0.1 mmol of 2,6-lutidine and 0.5 mL of CD3CN; green spectrum: 0.02 mmol 

of A, 0.3 mmol of 1a, 0.1 mmol of 2,6-lutidine, 0.1 mmol of 2a and 0.5 mL of CD3CN without illumination; blue 

spectrum: same mixture as green spectrum while in situ irradiating for 30 seconds; purple spectrum: same mixture as 

green spectrum after 60 seconds of irradiation (λ = 470±5 nm, irradiance = 28.8 mW/cm2). (b) Full 1H NMR spectra. 1H 

NMR spectroscopic analysis did not allow us to discriminate between the free enamine I and the enamine which engages 

in EDA complex formation with 2a. 

 

 

 

 

 

HaHb Hc

1a + A

1a + A + 2a (dark)

1a + A + 2a (irradiation time: 30 s)

1a + A + 2a (irradiation time: 60 s)

I:A = 1.2:1

I:A = 1.8:1

I:A = 3.8:1

I >> A

(a) 

(b) 
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The same experiments were performed replacing 2a with 2,4-dinitrotoluene 5 (Scheme S3). 

 

 
Scheme S3. 

 

5 can act as an acceptor partner in EDA complex formation with the enamine I, but it cannot 

undergo an irreversible fragmentation, since it lacks a suitable leaving group (e.g. the bromine 

within 2a). In the dark, the addition of 1 equiv of 5 to a solution of catalyst A and butanal 1a 

induced a displacement in the equilibrium of the enamine formation, changing the I:A ratio from 

1.2:1 to 1.6:1 (red and green spectra in Figure S25). This is because an EDA complex II can be 

generated, which perturbs the equilibrium of enamine formation. Illumination (λ = 470±5 nm, 

irradiance = 28.8 mW/cm
2
) did not change the concentration of the enamine I to any extent (blue 

spectrum in Figure S25). 

 

 
 

Figure S25. 1H NMR spectra showing different ratios of enamine I:free catalyst A ratio. Selected region of the 1H NMR 

spectral window between 4.62 and 4.04 ppm showing diagnostic signals for the enamine I and the free catalyst A. Red 

spectrum: 0.02 mmol of A, 0.3 mmol of 1a in 0.5 mL of CD3CN; green spectrum: 0.02 mmol of A, 0.3 mmol of 1a, 0.1 

mmol of 2,4-dinitrotoluene 5 in 0.5 mL of CD3CN without illumination; blue spectrum: same mixture as green spectrum 

while in situ irradiating for 30 seconds (λ = 470±5 nm, irradiance = 28.8 mW/cm2).  

 

 

 

 

Ha
Hb

Hc

1a + A

1a + A + 5 (dark)

1a + A + 5 (irradiation time: 30 s)

I:A = 1.2:1

I:A = 1.6:1

I:A = 1.6:1
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I. Kinetic Studies 

 

I1. Kinetic Studies for the EDA Complex-mediated Alkylation of Butanal with 2a 

 
Scheme S4: The EDA complex-mediate alkylation of butanal 1a with 2,4-dinitrobenzyl bromide 2a. 

Two different procedures, detailed below as Methods A and B, have been used for the initial-rate 

kinetic measurements.  

 

 Method A - Independent experiments 

Three sets of reactions with identical concentrations of each reactant, except for the reagent whose 

order is being measured, were carried out in three identical Schlenk tubes. The Schlenk tubes 

containing the reaction mixtures were positioned laterally, 10 cm away from the light source. They 

were irradiated with 300 W Xenon Lamp operating at 100% of light intensity (irradiance: 4.7 

mW/cm
2
) with a bandpass filter at 450 ± 5 nm without stirring. This procedure was repeated 4 times 

quenching the reactions at different time intervals (this set-up required an independent reaction to 

be performed for every data-point at different times). 

The model reaction was set up utilizing a stock solution containing 360 mg of the aminocatalyst A 

(0.6 mmol) and 15 mg of 1,3,5-trimethoxybenzene (employed as internal standard to measure the 

conversion of the enamine in solution) dissolved in 6 mL of CD3CN. To 400 L of this solution (0.1 

M in A), 54 μL of butyraldehyde 1a (0.6 mmol, 3 equiv.), 24 μL of 2,6-lutidine (0.2 mmol, 1 

equiv.) and 52 mg of 2,4-dinitrobenzyl bromide 2a (0.2 mmol, 1 equiv.) were sequentially added. 

The reaction mixture was thoroughly degassed via freeze pump thaw (x 3 cycles), and the vessel 

refilled with argon. After irradiating for the indicated time, the conversion of 2,4-dinitrobenzyl 

bromide 2a into the final product 3a was determined by 
1
H NMR analysis. 

These conditions account for the following concentrations: [A] = 0.1 M, [1a] = 1.5 M and [2a] = 

0.5 M and [2,6-lutidine] = 0.5 M.  
 

To measure the order with respect to each reactant, we varied the concentration of the reagent under 

study in the following ranges: 

 [A] from 0.05 M to 0.2 M. 

 [1a] from 0.75 M to 3 M. 

 [2a] from 0.25 M to 1 M. 

 

 Method B - In situ monitoring of the reaction progress 

The reactions were carried out utilizing the same stoichiometry as described in Method A. 

However, no degassing process was carried out and the reaction vessel was a regular NMR tube. 

The reactions were irradiated at 470 nm with a 150 W high-stability light xenon lamp Tilluxe P45 

coupled to a monochromator for exact wavelength definition (irradiance: 28.8 mW/cm
2
 at 2 mm). 

The monochromator was connected to an optical fiber which was directly introduced into the NMR 

tube inside the instrument (Bruker, 500 MHz). The conversion of 2,4-dinitrobenzyl bromide 2a into 

the final product 3a was determined by 
1
H NMR spectroscopy. This process was repeated changing 

the stoichiometry of the reactants as explained above.  

The model reaction was set up utilizing a stock solution containing 72 mg of the aminocatalyst A 

(0.12 mmol) and 3 mg of 1,3,5-trimethoxybenzene (employed as internal standard to measure the 

conversion of the enamine in solution) dissolved in 6 mL of deuterated acetonitrile. To 500 L of 
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this solution (0.02 M in A), butyraldehyde 1a (13.5 μL, 0.15 mmol, 3 equiv.), 2,6-lutidine (6 μL, 

0.05 mmol, 1 equiv.) and 2,4-dinitrobenzyl bromide 2a (13 mg, 0.05 mmol, 1 equiv.) were 

sequentially added. These conditions account for the following concentrations: [A] = 0.02 M, [1a] = 

0.3 M, [2a] = 0.1 M and [2,6-lutidine] = 0.1 M.  
 

To measure the order with respect to each reactant, we used the conditions described above while 

varying the concentration of the reagent under study in the following ranges: 

 [A] from 0.01 M to 0.04 M. 

 [1a] from 0.15 M to 0.6 M. 

 [2a] from 0.05 M to 0.2 M. 

 

Generally, a faster reaction rate was observed when using method B, a likely consequence of the 

greater light exposure of the reaction system. 

 

 Order dependence in catalyst A 

 

 
 

 

 
Figure S26. Reaction profiles at different initial concentrations of A showing a first-order dependence in [A]. Rate 

constants calculated from the slope of the plots. Reaction profiles using independent measurements (Method A, left panel, 

λ = 450 nm, irradiance = 4.7 mW/cm
2): [1a] = 1.5 M; [2a] = 0.5 M; [2,6-lutidine] = 0.5 M and [A]0 = 0.05 M (blue line), 

[A]0 = 0.1 M (red line) and [A]0 = 0.2 M (green line). Reaction profiles using in situ measurements (Method B, right 

panel, λ = 470 nm, irradiance = 28.8 mW/cm
2): [1a] = 0.3 M; [2a] = 0.1 M; [2,6-lutidine] = 0.1 M and [A]0 = 0.01 M (blue 

line), [A]0 = 0.02 M (red line) and [A]0 = 0.04 M (green line). 

 

As shown in Figure S26, a first-order dependence in [A] was determined. 
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 Order dependence in 1a 

 

 
 

  

  
Figure S27. Reaction profiles of initial-rate measurements at different initial concentrations of 1a showing a zero-order 

dependence. Rate constants calculated from the slope of the plots. Reaction profiles using independent measurements 

(Method A, left panel, λ = 450 nm, irradiance = 4.7 mW/cm
2): [A] = 0.1 M; [2a] = 0.5 M; [2,6-lutidine] = 0.5 M and [1a]0 = 

0.75 M (blue line), [1a]0 = 1.5 M (red line) and [1a]0 = 3 M (green line). Reaction profiles using in situ measurements 

(Method B, right panel, λ = 470 nm, irradiance = 28.8 mW/cm
2): [A] = 0.02 M; [2a] = 0.1 M; [2,6-lutidine] = 0.1 M and 

[1a]0 = 0.15 M (blue line), [1a]0 = 0.3 M (red line) and [1a]0 = 0.6 M (green line). 

 

As shown in Figure S27, a zero order dependence in [1a] was determined. 
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 Order dependence in 2a 

 
 

  

  
Figure S28. Reaction profiles of initial-rate measurements at different initial concentrations of 2a showing a negative-

order dependence. Rate constants calculated from the slope of the plots. Reaction profiles using independent 

measurements (Method A, left panel, λ = 450 nm, irradiance = 4.7 mW/cm
2): [A] = 0.1 M; [1a] = 1.5 M; [2,6-lutidine] = 0.5 

M and [2a]0 = 0.25 M (blue line), [2a]0 = 0.5 M (red line) and [2a]0 = 1 M (green line). Reaction profiles using in situ 

measurements (Method B, right panel, λ = 470 nm, irradiance = 28.8 mW/cm
2): [A] = 0.02 M; [1a] = 0.3 M; [2,6-lutidine] = 

0.1 M and [2a]0 = 0.05 M (blue line), [2a]0 = 0.1 M (red line) and [2a]0 = 0.2 M. 

 

As shown in Figure S28, a negative fractional order dependence in [2a] was determined. 

The negative dependence was also observed when performing the same in situ NMR monitoring of 

the reaction progress as in Figure S28, right panel, but using a different intensity of irradiation (λ = 

470 nm, but irradiance = 3.0 vs 28.8 mW/cm
2
), see Figure S29. 

 

 
Figure S29. Reaction profiles of initial-rate measurements at different initial concentrations of 2a showing a fractional 

negative-order dependence. Rate constants calculated from the slope of the plots. Reaction profiles using in situ 

measurements (λ = 470 nm, irradiance = 3.0 mW/cm2): [A] = 0.02 M; [1a] = 0.3 M; [2,6-lutidine] = 0.1 M; [2a]0 = 0.1 M 

(red line) and [2a]0 = 0.2 M (green line). 
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Figure 30 shows that the kinetic data obtained with the different methods overlay when [A] is 

plotted against [2a]
1
·t. The overlay found for plots of [A] versus [2a]

1
·t establishes a first-order 

dependence on [2a] for the catalyst’s disappearance. For more details on the evolution of the 

catalyst concentration in solution using in situ NMR monitoring, see Section F3. 

 

 

 
Figure S30. Overlay of plots according to equation 2 in the manuscript for n=1 for reactions containing 

different initial concentrations of 2a: [2a]0 = 0.25 M (blue line), [2a]0 = 0.5 M (red line) and [2a]0 = 1 M 

(green line) (up left) and [2a]0 = 0.05 M (blue line), [2a]0 = 0.1 M (red line) and [2a]0 = 0.2 M (green line) (up 

right). [2a]0 = 0.1 M (red line) and [2a]0 = 0.2 M (green line) (down) for reactions irradiated with 10 % power.  

 

  

 

Order dependence in H2O 

 
 

The effect of water on the reaction rate was measured with both the independent measurement 

approach and in situ 
1
H NMR spectroscopy by adding zero (blue line in Figure S31), one (red line 

in Figure S31), or two (green line in Figure S31) equivalents of water. The reactions were 

performed using dried CD3CN (stored over 4 Å molecular sieves) 
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Figure S31. Reaction profiles at different initial concentrations of H2O. Rate constants calculated from the slope of the 

plots. Reaction profiles using independent measurements (Method A, left panel, λ = 450 nm, irradiance = 4.7 mW/cm2): 

[A] = 0.1 M; [1a] = 1.5 M; [2,6-lutidine] = 0.5 M; [2a]0 = 0.5 M and [H2O]0 ≈ 0 M (blue line), [H2O]0 = 0.5 M (red line) 

and [H2O]0 = 1.0 M (green line). Reaction profiles using in situ measurements (Method B, right panel, λ = 470 nm, 

irradiance = 28.8 mW/cm2): [A] = 0.02 M; [1a] = 0.3 M; [2,6-lutidine] = 0.1 M; [2b]0 = 0.1 M and [H2O]0 ≈ 0 M (blue 

line), [H2O]0 = 0.1 M (red line) and [H2O]0 = 0.2 M (green line). Rates determined while varying [H2O]0 using 

independent measurements at two different irradiation intensities (down left) and using in situ measurements (down right). 

 

As shown in Figure S31, a zeroth-order dependence in [H2O] was determined. 

 

I2. Kinetic Studies for the EDA Complex-mediated Alkylation of Butanal with 2b 

 
Scheme S5: the EDA complex-mediate alkylation of butanal 1a with phenacly bromide 2b. 

In order to measure the initial rates of the reaction with 2b, a series of experiments were carried out 

in a regular NMR tubes without degassing. The reactions were irradiated at 450 nm with a 150 W 

high-stability light xenon lamp Tilluxe P45 coupled to a monochromator for exact wavelength 

definition (irradiance: 23.5 mW/cm
2
). This polychromator is connected to an optical fiber which 

was directly introduced into the NMR tube. This allowed us to monitor the conversion of phenacyl 

bromide 2b into the final product 3b in real time as we can irradiate in situ inside an NMR 

spectrometer (Bruker, 500 MHz). This process was repeated changing the stoichiometry of the 

reactants.  

The model reaction was set up utilizing a stock solution containing 144 mg of the aminocatalyst A 

(0.24 mmol) and 6 mg of 1,3,5-trimethoxybenzene (employed as internal standard to measure the 

conversion of the enamine in solution) dissolved in 6 mL of CD3CN. To 500 L of this solution 

(0.04 M in A), butyraldehyde 1a (27 μL, 0.3 mmol, 3 equiv.), 2,6-lutidine (12 μL, 0.1 mmol, 1 

equiv.) and phenacyl bromide 2b (20 mg, 0.1 mmol, 1 equiv.) were sequentially added. These 

conditions account for the following concentrations: [A] = 0.04 M, [1a] = 0.6 M and [2b] = 0.2 M 

and [2,6-lutidine] = 0.2 M.  
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To measure the order with respect to each reactant, we varied the concentration of the reagent under 

study in the following ranges: 

 [A] from 0.02 M to 0.08 M. 

 [1a] from 0.3 M to 1.2 M. 

 [2b] from 0.1 M to 0.4 M. 

 

 Order dependence in catalyst A 

 

 
 

 
 

Figure S32. Reaction profiles of initial-rate measurements at different initial concentrations of A showing a first-order 

dependence: [A]0 = 0.02 M (blue line), [A]0 = 0.04 M (red line) and [A]0 = 0.08 M (green line) (left). Rates determined 

while varying [A]0 (right). 

 

As shown in Figure S32, a first-order dependence in [A] was determined. 

 

 Order dependence in 1a 

 
 

  
  

Figure S33. Reaction profiles at different initial concentrations of 1a: [1a]0 = 0.3 M (blue line), [1a]0 = 0.6 M (red line) 

and [1a]0 = 1.2 M (green line) (left). Rates determined while varying [1a]0 (right). 
 

As shown in Figure S33, a zero-order dependence in [1a] was determined. 
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Order dependence in 2b 

 

    

  
Figure S34. Experiments performed at different initial concentrations of 2b: [2b]0 = 0.4 M (red line), [2b]0 = 0.2 M (blue 

line) and [2b]0 = 0.1 M (green line). Reaction profiles used for initial rate calculations (up left). Logarithmic plot of the 

rates determined while varying [2b]0 (up right). Evolution of the catalyst A concentration for the same reactions (down 

left), measured from the concentration of enamine I in solution. Overlay of plots according to Equation 2 in the main 

manuscript for n=1 for reactions containing different initial concentrations of 2b. 

 

As shown in Figure S34, a negative order in 2b was determined. Furthermore, catalyst degradation 

was observed over time. The overlay found for plots of [A] versus [2b]
1
·t (n = 1 in Equation 2 of 

the main manuscript) establishes a first-order dependence on [2b] for the catalyst’s disappearance 

(Figure S34, right bottom panel). 

 

We then wanted to measure the real effect of [2b] on the rate of alkylation leading to product 3b, 

discounting the effects of catalyst A degradation in the initiation regime. The plotting of the kinetic 

data (Figure S35) according to Equation 4 of the main manuscript shows a good fit for [3b]·[A]
-1 

vs 

[2b]
0.5

·t (n = 0.5 in Equation 4). This indicates a positive half-order dependence on [2b].  

 
Figure S35. Overlay of plots, according to Equation 4 in the main manuscript, for n=0.5 ([3b]·[A]

-1 
vs [2b]

n
·t) 

for reactions containing different initial concentrations of 2b: [2b]0 = 0.4 M (red line), 0.2 M (blue line) and 

[2b]0 = 0.1 M (green line).  
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I3. Kinetic Studies for the Alkylation of Butanal with Bromomalonate 2c 

 

 
Scheme S6: alkylation of butanal 1a with bromomalonate 2c. 

 

Two different procedures, detailed below as Methods A and B, have been used for the initial-rate 

kinetic measurements.  

 

 Method A - Independent experiments 

Sets of three reactions with identical concentrations of every reactant except for the specie whose 

order is being measured were carried out in three identical Schlenk tubes. The Schlenk tubes 

containing the reaction mixtures were positioned alongside, 10 cm away from the light source. They 

were irradiated with a 300 W Xenon lamp operating at 100% of light intensity (irradiance: 300 

mW/cm
2
; 150 mW/cm

2
 when 50% power was applied) with a cut-off filter at 385 nm (λ ≥ 385 nm) 

without stirring. This procedure was repeated 4 times quenching the reactions at different time 

intervals (this set-up required an independent reaction to be performed for every data-point at 

different times). 

The reaction was set up utilizing a stock solution containing 360 mg of the aminocatalyst A (0.6 

mmol) and 15 mg of 1,3,5-trimethoxybenzene (employed as internal standard to measure the 

conversion of the enamine in solution), dissolved in 6 mL of CD3CN. To 100 L of this solution 

(0.1 M in A), butyraldehyde 1a (13.5 μL, 0.15 mmol, 3 equiv.), 2,6-lutidine (6 μL, 0.05 mmol, 1 

equiv.) and ethyl bromomalonate 2c (8.5 μL, 0.05 mmol, 1 equiv.) were sequentially added. The 

reaction mixture was thoroughly degassed via freeze pump thaw (x 3 cycles), and the vessel refilled 

with argon. After irradiating for the indicated time, the conversion of ethyl bromomalonate 2c was 

measured by 
1
H NMR analysis. These conditions account for the following concentrations: [A] = 

0.1 M, [1a] = 1.5 M, [2c] = 0.5 M and [2,6-lutidine] = 0.5 M.  
 

To measure the order with respect to each reactant, we used the conditions described above while 

varying the concentration of the reagent under study in the following ranges: 

 [A] from 0.05 M to 0.15 M. 

 [1a] from 0.75 M to 3 M. 

 [2c] from 0.25 M to 1 M. 

 

 Method B - In situ monitoring of the reaction progress 

The reactions were carried out using the same stoichiometry as described in Method A. However, 

no degassing process was carried out and the reaction vessel was a regular NMR tube. The reactions 

were irradiated at 400 nm with a 150 W high-stability light xenon lamp Tilluxe P45 coupled to a 

monochromator for exact wavelength definition (irradiance: 20.4 mW/cm
2
 at 2 mm). The 

monochromator was connected to an optical fiber which was directly introduced into the NMR tube 

inside the instrument (Bruker, 500 MHz). The conversion of bromomalonate 2c into the final 

product 3c was determined by 
1
H NMR spectroscopy. This process was repeated changing the 

stoichiometry of the reactants.  

The model reaction was set up utilizing a stock solution containing 72 mg of the aminocatalyst A 

(0.12 mmol) and 3 mg of 1,3,5-trimethoxybenzene (employed as internal standard to measure the 

conversion of the enamine in solution) dissolved in 6 mL of CD3CN. To 500 L of this solution 
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(0.02 M in A), butyraldehyde 1a (13.5 μL, 0.15 mmol, 3 equiv.), 2,6-lutidine (6 μL, 0.05 mmol, 1 

equiv.) and ethyl bromomalonate 2c (8.5 μL, 0.05 mmol, 1 equiv.) were sequentially added. These 

conditions account for the following concentrations: [A] = 0.02 M, [1a] = 0.3 M, [2c] = 0.1 M and 

[2,6-lutidine] = 0.1 M.  
 

To measure the order with respect to each reactant, we used the conditions described above while 

varying the concentration of the reagent under study in the following ranges:  

 [A] from 0.01 M to 0.04 M. 

 [1a] from 0.15 M to 0.6 M. 

 [2c] from 0.05 M to 0.2 M. 

 

Generally, a faster reaction rate was observed when using method B, a likely consequence of the 

greater light exposure of the reaction system. 

 

 Order dependence in catalyst A 

 

 
 

 

 
Figure S36. Reaction profiles at different initial concentrations of A showing a first-order dependence in [A]. Rate constants 

calculated from the slope of the plots. Reaction profiles using independent measurements (Method A, left panel, λ ≥ 385 nm (cut-

off), irradiance = 300 mW/cm
2): [1a] = 1.5 M; [2c] = 0.5 M; [2,6-lutidine] = 0.5 M and [A]0 = 0.05 M (blue line), [A]0 = 0.1 M (red 

line) and [A]0 = 0.15 M (green line). Reaction profiles using in situ measurements (Method B, right panel, λ = 400 nm, irradiance 

= 20.4 mW/cm
2): [1a] = 0.3 M; [2c] = 0.1 M; [2,6-lutidine] = 0.1 M and [A]0 = 0.01 M (blue line), [A]0 = 0.02 M (red line) and 

[A]0 = 0.04 M (green line). 

 

As shown in Figure S36, a first-order dependence in [A] was determined. 
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Order dependence in 1a 

 
 

   

   
Figure S37. Reaction profiles at different initial concentrations of 1a. Rate constants calculated from the slope of the plots. 

Reaction profiles using independent measurements (Method A, left panel, λ ≥ 385 nm (cut-off), irradiance = 300 mW/cm
2): [A] = 

0.1 M; [2c] = 0.5 M; [2,6-lutidine] = 0.5 M and [1a]0 = 0.75 M (blue line), [1a]0 = 2.25 M (red line) and [1a]0 = 3.0 M (green 

line). Reaction profiles using in situ measurements (Method B, right panel, λ = 400 nm, irradiance = 20.4 mW/cm
2): [A] = 0.02 M; 

[2c] = 0.1 M; [2,6-lutidine] = 0.1 M and [1a]0 = 0.15 M (blue line), [A]0 = 0.3 M (red line) and [A]0 = 0.6 M (green line). 

Logarithmic plot of the rates determined while varying [1a]0 using independent measurements (down left). Lineweaver Burk plot 

for the rates determined while varying [1a]0 using in situ measurements (down right). 

 

As shown in Figure S37, a half-order dependence in [1a] was determined using the method of 

independent measurements. A saturation kinetic profile was observed instead when using the in situ 

monitoring. This is presumably because of catalyst decomposition pathways triggered by the presence of 

oxygen in the system, as in situ monitoring did not allow for complete de-oxygenation of the reaction 

medium (see Section F for further details on the catalyst decomposition). When using the independent 

measurement approach, instead, we did not observe any catalyst degradation before than 20% 

conversion.  
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 Order dependence in 2c 

 
 

  

   
Figure S38. Reaction profiles at different initial concentrations of 2c. Rate constants calculated from the slope of the plots. 

Reaction profiles using independent measurements (Method A, left panel, λ ≥ 385 nm (cut-off)): we performed two sets of 

experiments under the same conditions, but using a different intensity of irradiation: *reaction irradiated with 100% power, 

irradiance = 300 mW/cm
2
: [A] = 0.1 M; [1a] = 1.5 M; [2,6-lutidine] = 0.5 M and [2c]0 = 0.25 M (blue line), [2c]0 = 0.5 M (red line) 

and [2c]0 = 1.0 M (green line). †Reaction irradiated with 50% power, irradiance = 150 mW/cm
2
: [A] = 0.1 M; [1a] = 1.5 M; [2,6-

lutidine] = 0.5 M and [2c]0 = 0.25 M (orange line), [2c]0 = 0.5 M (light blue line) and [2c]0 = 1.0 M (purple line).  

Reaction profiles using in situ measurements (Method B, right panel, λ = 400 nm, irradiance = 20.4 mW/cm
2): [A] = 0.02 M; [1a] 

= 0.3 M; [2,6-lutidine] = 0.1 M and [2c]0 = 0.05 M (blue line), [2c]0 = 0.1 M (red line) and [2c]0 = 0.2 M (green line). Logarithmic 

plot of the rates determined while varying [2c]0 using independent measurements at two different irradiation intensities (down 

left) and using in situ measurements (down right). 

 

As shown in Figure S38, a half-order dependence with respect to 2c was observed. 
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 Order dependence in H2O 

 

 
Figure S39. Reaction profiles at different initial concentrations of H2O. Rate constants calculated from the slope of the plots. 

Reaction profiles using independent measurements (Method A, left panel, λ ≥ 385 nm (cut-off), irradiance = 300 mW/cm2): [A] = 

0.1 M; [1a] = 1.5 M; [2,6-lutidine] = 0.5 M; [2c]0 = 0.5 M and [H2O]0 ≈ 0 M (blue line), [H2O]0 = 0.5 M (red line) and [H2O]0 = 

1.0 M (green line). Reaction profiles using in situ measurements (Method B, right panel, λ = 400 nm, irradiance = 20.4 mW/cm
2): 

[A] = 0.02 M; [1a] = 0.3 M; [2,6-lutidine] = 0.1 M; [2c]0 = 0.1 M and [H2O]0 ≈ 0 M (blue line), [H2O]0 = 0.1 M (red line) and 

[H2O]0 = 0.2 M (green line). Rates determined while varying [H2O]0 using independent measurements at two different irradiation 

intensities (down left) and using in situ measurements (down right). 

 

 

As shown in Figure S39, a zeroth-order dependence in [H2O] was determined. 
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J. Cyclic Voltammetry  

 

 
Figure S40. Cyclic voltammogram of 2,4-dinitrobenzyl bromide 2a [0.02 M] in [0.1 M] TBAPF6 in CH3CN. Sweep 

rate: 50 mV/s. Pt electrode working electrode, Ag/AgCl (NaCl saturated) reference electrode, Pt wire auxiliary 

electrode. Ep
red

 = -0.66 V.  

 

 

 

 
Figure S41. Cyclic voltammogram of phenacyl bromide 2b [0.02 M] in [0.2 M] TBAPF6 in CH3CN. Sweep rate: 10 

mV/s. Pt electrode working electrode, Ag/AgCl (NaCl saturated) reference electrode, Pt wire auxiliary electrode. 

Irreversible reduction. Ep
red

 = -1.35 V.  

 

 

 
Figure S42. Cyclic voltammogram of diethyl bromomalonate 2c [0.05 M] in [0.1 M] TBAPF6 in CH3CN. Sweep 

rate: 50 mV/s. Pt electrode working electrode, Ag/AgCl (NaCl saturated) reference electrode, Pt wire auxiliary 

electrode. Irreversible reduction. Ep
red

= -1.69 V.  
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Figure S43. Cyclic voltammogram of 2,4-dinitrotoluene 5 [0.02 M] in [0.1 M] TBAPF6 in CH3CN. Sweep rate: 20 

mV/s. Pt electrode working electrode, Ag/AgCl (NaCl saturated) reference electrode, Pt wire auxiliary electrode. 

Ep
red

 = -1.10 V, quasi-reversible reduction potential. 

K. Characterization of the Iminium Ion IX 

 

 
Figure S44. Cyclic voltammogram of the iminium ion IX [0.02 M] in [0.1 M] TBAPF6 in CH3CN. Sweep rate: 10 

mV/s. Pt electrode working electrode, Ag/AgCl (NaCl saturated) reference electrode, Pt wire auxiliary electrode. 

Irreversible reduction. Ep
red

= -0.95 V. The sample measured contained trace amounts of isobutyraldehyde and 

pyrrolidine perchlorate. Cyclic voltammograms of both compounds did not show any reduction till -2.0 V, thus 

unambiguously assigning the observed pick in Figure S44 to the reduction of IX. 

 

Compound IX was synthesized from pyrrolidine, perchloric acid and isobutyraldehyde according to (14). 

The pyrrolidine perchlorate salt was prepared by adding 3 mmol of pyrrolidine (0.025 mL) to a solution 

of 3 mmol of perchloric acid (0.026 mL of a 70% solution) in 1 mL of ether. A slightly yellow precipitate 

formed, which was filtered and washed with dry ether. The pyrrolidinium perchlorate salt was used for 

the following step without further purification. Pyrrolidinium perchlorate (0.23 mmol, 40 mg) was 

suspended in 2 mL of dry ether and freshly distilled isobutryladehyde (1 mmol, 0.91 mL) was added. 

After the addition, the precipitate dissolved while the slow precipitation of a white solid was observed. 

The reaction was stirred overnight at room temperature. The precipitate was washed with dry hexane (10 

mL) under argon and then dried using high vacuum pump. The iminium ion IX was obtained in a 23% 

yield (12 mg) as a white solid.  
1
H NMR (400 MHz, CD3CN): δ 8.16 (d, J = 9.2 Hz, 1H), 4.07 (t, J = 7.0 Hz, 2H), 3.94 (t, J = 7.0 Hz, 

2H), 2.93 (dh, J = 9.2, 6.6 Hz, 1H), 2.13 (m, 4H), 1.24 (d, J = 6.6 Hz, 6H). 
 

13
C NMR (101 MHz, CD3CN) δ 180.90, 58.62, 52.25, 32.33, 23.98, 23.63, 17.10.  
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Figure S45: 

1
H NMR spectrum of the iminium IX in acetonitrile-d3. Residual signals of isobutyraldehyde, 

pyrrolidin-1-ium perchlorate and the acetonitrile-d3 are observed. 

 

 

 
Figure S46: 

13
C-NMR spectrum of iminium XX in acetonitrile-d3. Residual signals of isobutyraldehyde, pyrrolidin-

1-ium perchlorate and the acetonitrile-d3 are observed. 
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