SUPPORTING INFORMATION

Helical foldamers incorporating photoswitchable residues for light-mediated modulation of conformational preference

Daniela Mazzier, ${ }^{a}$ Marco Crisma, ${ }^{b}$ Matteo De Poli, ${ }^{c}$ Giulia Marafon, ${ }^{a}$ Cristina Peggion, ${ }^{a}$ Jonathan Clayden, ${ }^{d d}$ Alessandro Moretto* ${ }^{a, b}$
${ }^{a}$ Department of Chemical Sciences, University of Padova, Via Marzolo 1, 35131 Padova, Italy
${ }^{b}$ Institute of Biomolecular Chemistry, Padova Unit, CNR, Via Marzolo 1, 35131 Padova, Italy
${ }^{c}$ School of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
${ }^{d}$ School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, United Kingdom

Table of Contents

Fig. S1-S3 Part of NOESY spectra of peptides 2a and 3a pp. S3-S4
Fig. S4 Model of peptide 2a S5
Fig. S5-S6 ${ }^{1}$ H NMR spectra of peptides $\mathbf{2 a}$ and $\mathbf{2 b}$ before and after irradiation S6
Fig. $\mathbf{S 7}{ }^{1} \mathrm{H}$ NMR spectra of $\mathbf{2 c} / \mathbf{3 c}$ before and after irradiation S7
Fig. S8 UV-Vis absorption spectra of $\mathbf{2 c} / \mathbf{3 c}$ S8
Fig. S9 CD spectra of $\mathbf{2 f}$ before and after irradiation S8
Fig. S10-S11 Part of NOESY spectra of peptides $\mathbf{2 c} / \mathbf{3 c}$ and $\mathbf{2 d} / \mathbf{3 d}$ S9
Fig. S12 Part of NOESY spectra of peptides 2d/3d S10
General Methods S11
X-Ray diffraction S12
Synthesis and characterization of compounds S21
NMR spectra S35
Supporting References S58

Figure S1. ${\beta C H_{3}} \rightarrow \alpha \mathrm{NH}$ region of the NOESY spectra ($500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$) of peptides $\mathbf{2 a}(\mathbf{A})$ and 3a (B). Sequential $(i \rightarrow i+1)$ and medium-range $(i \rightarrow i+2)$, diagnostic of the presence of a $3_{10^{-}}$ helical structure are visible in both spectra.

Figure S2. Amide region of the NOESY spectrum ($500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$) of 2a. Sequential $\alpha \mathrm{NH}(i) \rightarrow \alpha \mathrm{NH}(i+1)$ are assigned in the spectrum.

Figure S3. Amide region of the NOESY spectrum ($500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$) of 3a. Sequential $\alpha \mathrm{NH}(i) \rightarrow \alpha \mathrm{NH}(i+1)$ are assigned in the spectrum.

Figure S4. Model of $\mathbf{2 a}$ with the -(Aib$)_{4}$ - helical segment in the left-handed screw sense.

Figure S5. ${ }^{1} \mathrm{H}$ NMR spectra (500 MHz in $\mathrm{CD}_{3} \mathrm{OD}$) of 2a before irradiation (blue line) and after irradiation at 254 nm for different times (30 min , green line and 1 h , red line).

Figure S6. ${ }^{1} \mathrm{H}$ NMR spectra (500 MHz in $\mathrm{CD}_{3} \mathrm{OD}$) of 2b before irradiation (blue line) and after irradiation at 254 nm for different times (30 min , green line and 1 h , red line) (A). Details of the ${ }^{1} \mathrm{H}$ NMR spectra showing the glycinamide signals (B) and the olefininic protons (C).

A

B

Figure S7. (A) ${ }^{1} \mathrm{H}$ NMR spectra (500 MHz in $\mathrm{CD}_{3} \mathrm{CN}$) of $\mathbf{2 c}$ before irradiation (blue line) and after irradiation at 254 nm for 2 h . (B) ${ }^{1} \mathrm{H}$ NMR spectra (500 MHz in CDCl_{3}) of 3c before irradiation (blue line) and after irradiation at 312 nm for 2 h .

Figure S8. UV-Vis absorption spectra of 2c (blue line) and 3c (red line) in MeOH solution.

Figure S9. CD spectra of $\mathbf{2 f}$ in MeOH before irradiation (blue line) and after irradiation (red line) at $254 \mathrm{~nm}(0.2 \mathrm{mM})$.

Figure S10. ${\beta C H_{3}} \rightarrow \alpha \mathrm{NH}$ region of the NOESY spectra ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$) of peptides $\mathbf{2 c}(\mathbf{A})$ and 3c (B).

Figure S11. $\beta \mathrm{CH}_{3} \rightarrow \alpha \mathrm{NH}$ region of the NOESY spectra ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$) of peptides $\mathbf{2 d}$ (A) and $\mathbf{3 d}$ (B).

Figure S12. ${\beta C H_{3} \rightarrow \alpha N H}$ region of the NOESY spectra ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$) of peptides $\mathbf{2 e}$ (A) and $\mathbf{3 e}(\mathbf{B})$. $\mathrm{NH} \rightarrow \mathrm{NH}$ region of the NOESY spectra $\left(400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}\right)$ of peptides $\mathbf{2 e}(\mathbf{C})$ and $\mathbf{3 e}$ (D,E).

General Methods

High-Performance Liquid Chromatography. The HPLC measurements were performed using an Agilent 1200 apparatus (Palo Alto, CA), equipped with a UV detector at 226 nm and a column Agilent Extend-C C_{18} (stationary phase). Eluants: $\mathrm{A}=9: 1 \mathrm{H}_{2} \mathrm{O} / \mathrm{CH}_{3} \mathrm{CN}, 0.05 \%$ TFA; B= 1:9 $\mathrm{H}_{2} \mathrm{O} / \mathrm{CH}_{3} \mathrm{CN}, 0.05 \%$ TFA.

Nuclear Magnetic Resonance. ${ }^{1} \mathrm{H}$ NMR and 2D-NMR spectra (DQF-COSY, TOCSY and NOESY experiments) were recorded at 25,45 and $65{ }^{\circ} \mathrm{C}$ on a Bruker Avance 400,500 or 600 MHz instruments. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ spectra were referenced relative to the solvent residual peaks and chemical shifts (δ) reported in ppm downfield of tetramethylsilane $\left(\mathrm{CDCl}_{3} \delta \mathrm{H}: 7.26 \mathrm{ppm}, \delta \mathrm{C}: 77.16 \mathrm{ppm}\right.$; $\left.\mathrm{CD}_{3} \mathrm{OD} \delta \mathrm{H}: 3.31 \mathrm{ppm}, \delta \mathrm{C} 49.05 \mathrm{ppm}, \mathrm{CD}_{3} \mathrm{CN} \delta \mathrm{H}: 1.94 \mathrm{ppm}, \delta \mathrm{C}: 118.26 \mathrm{ppm}\right)$. The multiplicity of a signal is indicated as br, broad; s, singlet; d, doublet; t, triplet; m, multiplet. Where ${ }^{1} H$ NMR spectra were run in MeOD exchangeable protons $(\mathrm{NH}, \mathrm{OH})$ are reported only where observed.

Mass Spectrometry. High-resolution (HR) mass spectra by electrospray ionization (ESI), collected in the positive mode, were performed on two different instruments:
i) Perseptive Biosystem Mariner ESI-ToF5220 spectrometer (Foster City, CA);
ii) Thermo Finnigan MAT95XP (data were recorded by staff at the University of Manchester and are accurate to $\pm 0.001 \mathrm{Da}$).

Circular Dichroism. CD measurements were carried using a Jasco J-715 spectropolarimeter at different temperatures $\left(20,40\right.$ and $\left.60^{\circ} \mathrm{C}\right)$ and a thermostatic system to control the temperature of the sample. Fused quartz cells of $0.2-\mathrm{mm}$ and $1-\mathrm{mm}$ path length (Hellma, Müllheim, Germany) were used. The value are expressed in terms of $[\theta]_{\mathrm{T}}$, the total molar ellipticity ($\operatorname{deg} \mathrm{x} \mathrm{cm}^{2} \mathrm{x} \mathrm{dmol}^{-1}$).

Fourier Transform-Infrared Spectroscopy. FT-IR absorption spectra were recorded with a ATi Perkin Elmer Spectrum RX1 FT-IR spectrometer. The \bar{v} maxima for the main absorption bands are given.

Melting point. Mps were determined on a GallenKamp apparatus and are uncorrected.
UV lamp. A handheld UV Lamp (mineralight lamp, Model UVG-54) with wavelength of 254 nm (6W) was used in the photoisomerization experiments.

UV-Vis Absorption. The UV-Vis absorption spectra were recorded using a Shimadzu model UV2501 PC spectrophotometer. A $1-\mathrm{cm}$ path length quartz cell was used.

Photoisomerization experiments

The sample was dissolved in deuterated solvent $\left(\mathrm{CD}_{3} \mathrm{CN}\right)$ and placed in a quartz NMR tube (Norrell S-500-QTZ). The sealed NMR tube was directly irradiated under the UV lamp without protective filter at a distance of about 4 cm from the light bulb. The NMR spectra were recorded before and after different irradiation times. Typically, 1-2 h of irradiation were sufficient to achieve E to Z conversion in $80-95 \%$ yield (without decomposition according to NMR and HPLC analyses). Formation of byproducts ($<5 \%$) was detected by NMR only after long irradiation times ($>18 \mathrm{~h}$).

Diastereoselection experiments

Reactions of $5(4 H)$ oxazolones with $\mathrm{H}-\mathrm{D}, \mathrm{L}-\mathrm{Val-OMe}$ were performed in $\mathrm{CH}_{3} \mathrm{CN}$ or $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at controlled temperature using a thermostatic oil bath (20, 35,45 and $70^{\circ} \mathrm{C}$).

The carboxylic acid (10a-b or 11a-b) (0.05 mmol) was suspended in 5 mL of the appropriate solvent and $\mathrm{EDC} \cdot \mathrm{HCl}(0.06 \mathrm{mmol})$ was added, and the solution stirred for 10 min at r.t. The quantitative formation of the oxazolone (12a-b or 13a-b) was controlled by HPLC.

Separately H-D,L-Val-OMe $\cdot \mathrm{HCl}(0.31 \mathrm{mmol})$ and DIPEA (0.31 mmol) were suspended in 1 mL of the appropriate solvent.

In a typical experiment, the oxazolone solution ($500 \mu \mathrm{~L}, 1$ equiv.) and the racemate solution (125 $\mu \mathrm{L}, 8$ equiv.) were mixed and the resulting solution was maintained under stirring in a thermostatic oil bath. The reaction was monitored by HPLC, by following the disappearance of the oxazolone accompanied by the formation of the two diastereomeric products. The formation of the two resulting peptides 15a-d (Z isomer) can be quantified directly by HPLC. Whereas in the case of 14a-d (E isomer), after the disappearance of the oxazolone reactant, the product mixture was irradiated at 254 nm and successively analyzed by HPLC. The independent preparation of each diastereomer was performed by reaction of the oxazolone with either D or L H-Val-OMe.

X-Ray diffraction

Crystals of 2a and 3c were grown by slow evaporation from $\mathrm{CH}_{3} \mathrm{CN}$ and MeOH solutions, respectively. X-Ray diffraction data were collected with a Gemini E four-circle kappa diffractometer (Agilent Technologies) equipped with a 92 mm EOS CCD detector, using graphite monochromated $\mathrm{Cu} \mathrm{K} \alpha$ radiation $(\lambda=1.54178 \AA$). Data collection and reduction were performed with the CrysAlisPro software (version 1.171.36.28, Agilent Technologies). A semi-empirical absorption correction based on the multi-scan technique using spherical harmonics, implemented in the SCALE3 ABSPACK scaling algorithm, was applied. For 3c, diffraction data were collected up
to theta $=51.48^{\circ}$, as the crystal did not diffract significantly beyond $1.0 \AA$ resolution, in all probability as a result of the combination of the small crystal size (minimum dimension 0.05 mm) with the relatively large asymmetric unit (five independent molecules, shown in Figure S13, for a total of 135 non-H atoms).
Both structures were solved by ab initio procedures of the SIR 2014 program, ${ }^{1}$ and refined by fullmatrix least-squares on F^{2}, using all data, by application of the SHELXL-2014 program, ${ }^{2}$ with anisotropic displacement parameters for all of the non-H atoms. H-Atoms were calculated at idealized positions and refined using a riding model. In the refinement of $\mathbf{3 c}$, restraints were applied to the anisotropic displacement parameters of the non-H atoms (RIGU command in SHELX-2014). Relevant crystal data and structure refinement parameters, selected torsion angles, and intra-and intermolecular H-bond parameters are listed in Tables S1-S3 for 2a, and in Tables S4-S6 for 3c. CCDC 1473792-1473793 contain the supplementary crystallographic data for this paper. These data can be obtained from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif

Figure S13. Perspective view of the five independent molecules (A-E) composing the asymmetric unit in the X-ray diffraction structure of $\mathbf{3 c}$. In each molecule, the intramolecular H-bond between the L-($\alpha \mathrm{Me}) \mathrm{Val} \mathrm{N}-\mathrm{H}$ and the maleamide carbonyl oxygen next to the Aib residue is represented by a dashed line.

Table S1. Crystal data and structure refinement for 2a.

Identification code	mc262b
Empirical formula	$\mathrm{C}_{32} \mathrm{H}_{55} \mathrm{~N}_{7} \mathrm{O}_{9}$
Formula weight	681.83
Temperature	293(2) K
Wavelength	1.54178 Å
Crystal system	Orthorhombic
Space group	P $2122_{1}{ }_{1}$
Unit cell dimensions	$a=9.01420(14) \AA \quad \alpha=90^{\circ}$.
	$\mathrm{b}=10.94112(14) \AA \quad \beta=90^{\circ}$.
	$\mathrm{c}=38.4416(6) \AA \quad \gamma=90^{\circ}$.
Volume	3791.32(10) \AA^{3}
Z	4
Density (calculated)	$1.195 \mathrm{Mg} / \mathrm{m}^{3}$
Absorption coefficient	$0.724 \mathrm{~mm}^{-1}$
F(000)	1472
Crystal size	$0.25 \times 0.20 \times 0.05 \mathrm{~mm}^{3}$
Theta range for data collection	2.299 to 70.959°.
Index ranges	$-11 \leq \mathrm{h} \leq 10,-13 \leq \mathrm{k} \leq 12,-47 \leq 1 \leq 41$
Reflections collected	33257
Independent reflections	$7272[\mathrm{R}(\mathrm{int})=0.0326]$
Completeness to theta $=67.679^{\circ}$	100.0 \%
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	1.00000 and 0.22453
Refinement method	Full-matrix least-squares on F^{2}
Data / restraints / parameters	7272 / 0 / 433
Goodness-of-fit on F^{2}	1.031
Final R indices [$\mathrm{I}>2 \operatorname{sigma}(\mathrm{I})$]	$\mathrm{R}_{1}=0.0406, \mathrm{wR}_{2}=0.1098$
R indices (all data)	$\mathrm{R}_{1}=0.0438, \mathrm{wR}_{2}=0.1126$
Absolute structure parameter	0.01(6)
Largest diff. peak and hole	0.269 and -0.225 e. \AA^{-3}

Table S2. Selected torsion angles [${ }^{\circ}$] for 2a.

C1F-N6-C6A-C6	$-58.4(3)$
N6-C6A-C6B1-C6G1	$174.5(2)$
N6-C6A-C6B1-C6G2	$-61.3(3)$
CT1-OT-C6-C6A	$178.9(2)$
N6-C6A-C6-OT	$-47.9(3)$
C6A-N6-C1F-C2F	$-171.0(2)$
N6-C1F-C2F-C3F	$159.6(3)$
C1F-C2F-C3F-C4F	$-174.6(3)$
C2F-C3F-C4F-N1	$169.1(3)$
C3F-C4F-N1-C1A	$-176.2(2)$
C4F-N1-C1A-C1	$-54.3(3)$
N1-C1A-C1-N2	$-31.4(3)$
C1A-C1-N2-C2A	$-172.9(2)$
C1-N2-C2A-C2	$-48.6(3)$
N2-C2A-C2-N3	$-33.5(3)$
C2A-C2-N3-C3A	$-176.9(2)$
C2-N3-C3A-C3	$-51.1(3)$
N3-C3A-C3-N4	$-40.4(3)$
C3A-C3-N4-C4A	$-172.8(2)$
C3-N4-C4A-C4	$-66.1(3)$
C4-C4A-C4-N5	$-23.3(3)$
C4-N5-C5A-C5	$178.2(2)$
N5-C5A-C5-NT	$66.2(4)$

Table S3. Hydrogen bonds for 2 aa [\AA and $\left.{ }^{\circ}\right]$.

D-H...A	d(D-H)	d(H...A)	$d(D \ldots A)$	$<$ (DHA)
N3-H3...O2F	0.86	2.45	$3.292(3)$	168
N4-H4...O1	0.86	2.15	$2.947(3)$	155
N5-H5...O2	0.86	2.29	$3.069(3)$	151
N6-H6...O6\#1	0.86	2.15	$2.989(3)$	164
N1-H1...O3\#2	0.86	2.32	$3.142(2)$	161
N2-H2...O5\#3	0.86	2.29	$2.906(3)$	128
NT-HT1...O3\#4	0.86	2.37	$3.197(4)$	160
NT-HT2...O2\#4	0.86	2.50	$3.061(4)$	124

Symmetry transformations used to generate equivalent atoms:
$\# 1-x+2, y-1 / 2,-z+1 / 2 ; \quad \# 2 x, y+1, z ; \quad \# 3 x+1 / 2,-y+1 / 2,-z ; \# 4 x-1 / 2,-y-1 / 2,-z$

Table S4. Crystal data and structure refinement for 3c.

Identification code
Empirical formula
Formula weight
Temperature
Wavelength
Crystal system
Space group
Unit cell dimensions

Volume
Z
Density (calculated)
Absorption coefficient
F(000)
Crystal size
Theta range for data collection
Index ranges
Reflections collected
Independent reflections
Completeness to theta $=51.482^{\circ}$
Absorption correction
Max. and min. transmission
Refinement method
Data / restraints / parameters
Goodness-of-fit on F^{2}
Final R indices [$1>2$ sigma(I$)$]
R indices (all data)
Absolute structure parameter
Extinction coefficient
Largest diff. peak and hole
mc265f
$\mathrm{C}_{19} \mathrm{H}_{32} \mathrm{~N}_{2} \mathrm{O}_{6}$
384.46

293(2) K
$1.54178 \AA$
Orthorhombic
P $2_{1} 2_{1} 2_{1}$
$a=12.78876(14) \AA \quad \alpha=90^{\circ}$.
$\mathrm{b}=21.3074(2) \AA \quad \beta=90^{\circ}$.
$\mathrm{c}=42.2055(6) \AA \quad \gamma=90^{\circ}$.
$11500.8(2) \AA^{3}$
20
$1.110 \mathrm{Mg} / \mathrm{m}^{3}$
$0.678 \mathrm{~mm}^{-1}$
4160
$0.40 \times 0.20 \times 0.05 \mathrm{~mm}^{3}$
2.323 to 51.482°.
$-12 \leq \mathrm{h} \leq 12,-21 \leq \mathrm{k} \leq 21,-42 \leq 1 \leq 42$
50259
$12491[\mathrm{R}($ int $)=0.0263]$
99.5%
Semi-empirical from equivalents
1.00000 and 0.77746

Full-matrix least-squares on F^{2}
12491 / 975 / 1216
1.044
$\mathrm{R}_{1}=0.0525, \mathrm{wR}_{2}=0.1481$
$\mathrm{R}_{1}=0.0601, \mathrm{wR}_{2}=0.1558$
0.04(5)
n/a
0.683 and -0.276 e. \AA^{-3}

Table S5. Selected torsion angles [${ }^{\circ}$] for $\mathbf{3 c}$.

C1M-N1-C1A-C1	-51.7(6)
N1-C1A-C1B1-C1G1	59.8(6)
N1-C1A-C1B1-C1G2	-173.3(6)
N1-C1A-C1-OTA	-37.7(6)
C1A-C1-OTA-CT1A	-176.6(7)
C1-OTA-CT1A-CT4A	180.0(9)
C1-OTA-CT1A-CT3A	61.5(11)
C1-OTA-CT1A-CT2A	-62.4(11)
C1A-N1-C1M-C2M	-179.1(5)
O1M-C1M-C2M-C3M	168.4(7)
N1-C1M-C2M-C3M	-12.3(11)
C1M-C2M-C3M-C4M	1.8(13)
C2M-C3M-C4M-O2M	15.1(11)
C2M-C3M-C4M-N2	-166.5(7)
C3M-C4M-N2-C2A	-176.6(6)
C4M-N2-C2A-C2	-55.0(8)
N2-C2A-C2-OTB	-34.5(9)
C2A-C2-OTB-CTB	166.0(13)
C11M-N3-C3A-C3	-46.2(7)
N3-C3A-C3B1-C3G2	-65.3(7)
N3-C3A-C3B1-C3G1	168.1(6)
N3-C3A-C3-OTC	-43.8(6)
C3A-C3-OTC-CT1C	176.3(5)
C3-OTC-CT1C-CT2C	-59.7(11)
C3-OTC-CT1C-CT3C	67.6(10)
C3-OTC-CT1C-CT4C	-177.4(7)
C3A-N3-C11M-C12M	171.3(5)
O11M-C11M-C12M-C13M	165.8(6)
N3-C11M-C12M-C13M	-12.5(10)
C11M-C12M-C13M-C14M	3.7(12)
C12M-C13M-C14M-O12M	22.4(11)
C12M-C13M-C14M-N4	-159.3(7)
C13M-C14M-N4-C4A	-179.8(7)
C14M-N4-C4A-C4	-46.7(10)
N4-C4A-C4-OTD	-40.4(9)
C4A-C4-OTD-CTD	177.0(8)
C21M-N5-C5A-C5	-48.9(6)

N5-C5A-C5B1-C5G2	-60.7(7)
N5-C5A-C5B1-C5G1	172.8(6)
N5-C5A-C5-OTE	-43.3(6)
C5A-C5-OTE-CT1E	179.6(5)
C5-OTE-CT1E-CT3E	-177.0(6)
C5-OTE-CT1E-CT2E	-58.2(8)
C5-OTE-CT1E-CT4E	63.0(8)
C5A-N5-C21M-C22M	179.0(5)
O21M-C21M-C22M-C23M	166.8(7)
N5-C21M-C22M-C23M	-13.6(11)
C21M-C22M-C23M-C24M	4.8(12)
C22M-C23M-C24M-O22M	21.8(11)
C22M-C23M-C24M-N6	-158.0(7)
C23M-C24M-N6-C6A	-179.6(5)
C24M-N6-C6A-C6	-44.4(8)
N6-C6A-C6-OTF	-41.8(7)
C6A-C6-OTF-CTF	173.0(6)
C31M-N7-C7A-C7	-47.3(7)
N7-C7A-C7B1-C7G2	-61.8(7)
N7-C7A-C7B1-C7G1	174.5(6)
N7-C7A-C7-OTG	-47.1(6)
C7A-C7-OTG-CT1G	176.5(5)
C7-OTG-CT1G-CT3G	-173.1(7)
C7-OTG-CT1G-CT4G	64.7(9)
C7-OTG-CT1G-CT2G	-57.4(9)
C7A-N7-C31M-C32M	179.2(5)
O31M-C31M-C32M-C33M	163.7(6)
N7-C31M-C32M-C33M	-16.5(10)
C31M-C32M-C33M-C34M	3.3(12)
C32M-C33M-C34M-O32M	22.5(11)
C32M-C33M-C34M-N8	-161.7(7)
C33M-C34M-N8-C8A	179.9(7)
C34M-N8-C8A-C8	-43.8(11)
N8-C8A-C8-OTH	-44.3(10)
C8A-C8-OTH-CTH	177.5(8)
C41M-N9-C9A-C9	-46.3(7)
N9-C9A-C9B1-C9G1	41.0(9)
N9-C9A-C9B1-C9G2	167.1(8)
N9-C9A-C9-OTI	-45.0(6)

C9A-C9-OTI-CT1I	$-177.6(5)$
C9-OTI-CT1I-CT4I	$63.8(8)$
C9-OTI-CT1I-CT3I	$-60.4(8)$
C9-OTI-CT1I-CT2I	$-177.6(6)$
C9A-N9-C41M-C42M	$179.9(5)$
O41M-C41M-C42M-C43M	$173.9(6)$
N9-C41M-C42M-C43M	$-5.2(10)$
C41M-C42M-C43M-C44M	$5.0(12)$
C42M-C43M-C44M-O42M	$12.9(10)$
C42M-C43M-C44M-N10	$-168.8(6)$
C43M-C44M-N10-C10A	$-176.0(5)$
C44M-N10-C10A-C10	$-52.9(7)$
N10-C10A-C10-OTL	$140.6(5)$
C10A-C10-OTL-CTL	$-180.0(7)$

Table S6. Hydrogen bonds for $\mathbf{3 c}\left[\AA\right.$ and $\left.{ }^{\circ}\right]$.

D-H...A	$\mathrm{d}(\mathrm{D}-\mathrm{H})$	$\mathrm{d}(\mathrm{H} \ldots \mathrm{A})$	$\mathrm{d}(\mathrm{D} \ldots \mathrm{A})$	$<$ (DHA)
N1-H1...O2M	0.86	1.89	$2.708(5)$	157.5
N3-H3...O12M	0.86	1.91	$2.715(6)$	155.2
N5-H5...O22M	0.86	1.93	$2.746(6)$	157.8
N7-H7...O32M	0.86	1.91	$2.723(6)$	156.0
N9-H9...O42M	0.86	1.89	$2.706(5)$	158.8
N2-H2...O31M\#1	0.86	2.06	$2.911(6)$	168.8
N4-H4...O21M\#2	0.86	2.04	$2.875(6)$	163.6
N6-H6...O11M\#1	0.86	2.13	$2.970(6)$	166.6
N8-H8...O1M\#2	0.86	2.04	$2.883(6)$	165.6
N10-H10...O41M\#3	0.86	2.04	$2.877(5)$	164.0

Symmetry transformations used to generate equivalent atoms:
$\# 1-x, y+1 / 2,-z+1 / 2 \quad \# 2-x+1, y-1 / 2,-z+1 / 2 \quad \# 3 x-1 / 2,-y+1 / 2,-z$

Synthesis and characterization of compounds

Materials

N,N-diisopropylethylamine (DIPEA), trifluoroacetic acid (TFA), monoethyl fumarate, LiOH, triethylamine (TEA), H-L-Val-OtBu•HCl, tert-butyl α-bromoisobutyrate, α-bromoisobutyric acid, Pd / C catalyst ($10 \% \mathrm{wt}$. loading), 1-Ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride $(\mathrm{EDC} \cdot \mathrm{HCl})$ were obtained from Sigma-Aldrich. 1-hydroxy-7-aza-1,2,3-benzotriazole (HOAt) was purchased from GL Biochem (Shanghai).

H-L-($\alpha \mathrm{Me}$)Val-OH, H-Aib-OMe•HCl, H-L-Val-OMe and H-D,L-Val-OMe were obtained from Bachem.The deuterated solvents DMSO- $d_{6}, \mathrm{CDCl}_{3}, \mathrm{MeOH}-d_{3}$ and MeOD- d_{4} were purchased from Euriso-Top (France).

Methods for the synthesis of $\mathrm{H}-\mathrm{L}-(\alpha \mathrm{Me}) \mathrm{Val}-\mathrm{O}^{\mathrm{t}} \mathrm{Bu}^{3}{ }^{3}{ }^{\mathrm{H}}-\mathrm{Aib}_{4}-\mathrm{Gly}^{2}-\mathrm{NH}_{2},{ }^{4} \mathrm{~N}_{3}-\mathrm{Aib}_{4}-\mathrm{OMe}^{5}$ and $\mathrm{N}_{3}-\mathrm{Aib}_{8}-$ OMe^{6} have been reported previously.

a) Synthesis of fumaric acid derivative 1

Synthesis of 14

Monoethyl fumarate ($390 \mathrm{mg}, 2.7 \mathrm{mmol}$) and HOAt ($365 \mathrm{mg}, 2.7 \mathrm{mmol}$) were dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The suspension was cooled to $0^{\circ} \mathrm{C}$ and $\mathrm{EDC} \cdot \mathrm{HCl}(500 \mathrm{mg}, 2.7 \mathrm{mmol})$ was added. After complete dissolution $\mathrm{H}-(\alpha \mathrm{Me})$ Val-OtBu ($350 \mathrm{mg}, 1.87 \mathrm{mmol}$) and TEA ($400 \mu \mathrm{~L}, 2.9 \mathrm{mmol}$) were added and the reaction mixture stirred overnight at r.t. The solvent was removed under reduced pressure and the residue dissolved in EtOAc. The organic phase was washed with $\mathrm{KHSO}_{4(\mathrm{aq})} 5 \%, \mathrm{NaHCO}_{3(\text { aq })}$ 5%, brine, dried over MgSO_{4}, filtered and concentrated. The crude was purified via flash chromatography (eluant: petroleum ether/EtOAc increasing the solvent mixture polarity from 9:1 to $8: 2$). The product was obtained as a colorless oil ($500 \mathrm{mg}, 85 \%$ yield). HRMS ($\left.\mathrm{ES}^{+}, \mathrm{MeOH}\right) m / z$ calcd. for $\mathrm{C}_{16} \mathrm{H}_{27} \mathrm{NO}_{5} \mathrm{Na}\left([\mathrm{M}+\mathrm{Na}]^{+}\right) 336.1787$, found 336.1783. $[\alpha]_{D}^{20}=-$ 36.3 (c 1, MeOH). FT-IR $\bar{v}_{\max } 3351,2977,1727,1682,1259,1368,1296,1272,1150 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.91$ (d, $J=15.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}$ Fum), 6.75 (d, $J=15.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}$ Fum), $6.60(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}), 4.24\left(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Et}\right), 2.42$ (hept, $J=6.9 \mathrm{~Hz}, 1 \mathrm{H}, \beta \mathrm{CH}$), 1.63 (s, 3H, $\beta \mathrm{CH}_{3}$), 1.47 (s, $9 \mathrm{H}, \mathrm{OtBu}$), 1.31 (t, $\left.J=7.1 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{Et}\right), 1.01\left(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}, \gamma \mathrm{CH}_{3}\right), 0.90(\mathrm{~d}$,
$\left.J=6.9 \mathrm{~Hz}, 3 \mathrm{H}, \gamma \mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 172.57, 165.74, 162.55, 137.31, 130.19, 82.56, 64.33, 61.29, 34.17, 28.08, 19.28, 17.75, 17.67, 14.29.

Synthesis of 1

$14(500 \mathrm{mg}, 1.6 \mathrm{mmol})$ was dissolved in 30 mL of THF and a solution of LiOH ($260 \mathrm{mg}, 10.8$ mmol) in 10 mL of $\mathrm{H}_{2} \mathrm{O}$ was added. The solution was stirred at r.t. until TLC indicated complete consumption of the starting material. The organic solvent was removed under reduced pressure and the aqueous residue was diluted with 10 mL of $\mathrm{H}_{2} \mathrm{O}$. The aqueous solution was acidified with HCl 1 M and extracted with EtOAc (3v). The combined organic phases were washed with $\mathrm{KHSO}_{4(\mathrm{aq})} 5 \%$, brine, dried over MgSO_{4}, filtered and concentrated under reduced pressure. The compound was recovered as a white solid ($400 \mathrm{mg}, 88 \%$ yield).

HRMS ($\left.\mathrm{ES}^{+}, \mathrm{MeOH}\right) m / z$ calcd. for $\mathrm{C}_{14} \mathrm{H}_{23} \mathrm{NO}_{5} \mathrm{Na}\left([\mathrm{M}+\mathrm{Na}]^{+}\right) 308.1474$, found 308.1477. $[\alpha]_{D}^{20}=-$ 38.4 (c 1, MeOH). Mp 213-215 ${ }^{\circ} \mathrm{C}$. FT-IR $\overline{\mathrm{v}}_{\max } 3297,2975,1727,1640,1534,1368,1276,1147$ $\mathrm{cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{MeOD}$) $\delta 8.42(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}), 7.11(\mathrm{~d}, J=15.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}$ Fum), $6.64(\mathrm{~d}$, $J=15.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}$ Fum $), 2.13-2.03(\mathrm{~m}, 1 \mathrm{H}, \beta \mathrm{CH}), 1.44(\mathrm{~s}, 9 \mathrm{H}, \mathrm{O} t \mathrm{Bu}), 1.42\left(\mathrm{~s}, 3 \mathrm{H}, \beta \mathrm{CH}_{3}\right), 1.01$ (d, $J=6.9 \mathrm{~Hz}, 3 \mathrm{H}, \gamma \mathrm{CH}_{3}$), $0.95\left(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}, \gamma \mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{MeOD}$) $\delta 173.48$, $168.52,165.68,137.85,131.35,82.35,64.55,35.87,28.20,17.71,17.53,17.50$.
b) Synthesis of fumaramides 2a-f

Synthesis of 2a

$\mathbf{1}(140 \mathrm{mg}, 0.49 \mathrm{mmol})$ and HOAt ($70 \mathrm{mg}, 0.51 \mathrm{mmol}$) were dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The suspension was cooled to $0{ }^{\circ} \mathrm{C}$ and $\mathrm{EDC} \cdot \mathrm{HCl}(94 \mathrm{mg}, 0.49 \mathrm{mmol})$ was added. After complete dissolution $\mathrm{H}-$ Aib $_{4}-\mathrm{Gly}-\mathrm{NH}_{2}(150 \mathrm{mg}, 0.36 \mathrm{mmol})$ and DIPEA $(100 \mu \mathrm{~L}, 0.57 \mathrm{mmol})$ were added and the reaction mixture stirred overnight at r.t. The solvent was removed under reduced pressure and the residue
dissolved in EtOAc. The organic phase was washed with $\mathrm{KHSO}_{4(\mathrm{aq})} 5 \%, \mathrm{NaHCO}_{3(\mathrm{aq})} 5 \%$, brine, dried over MgSO_{4}, filtered and concentrated. The crude was purified via flash chromatography (eluant: $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 92: 8$). The product was obtained as a white solid ($190 \mathrm{mg}, 77 \%$ yield). HRMS ($\left.\mathrm{ES}^{+}, \mathrm{MeOH}\right) m / z$ calcd. for $\mathrm{C}_{32} \mathrm{H}_{55} \mathrm{~N}_{7} \mathrm{O}_{9} \mathrm{Na}\left([\mathrm{M}+\mathrm{Na}]^{+}\right) 704.3959$, found 704.3976. $[\alpha]_{D}^{20}=-$ 8.5 (c 1, MeOH). Mp 263-265 ${ }^{\circ} \mathrm{C}$. FT-IR $\bar{v}_{\max } 3293,2930,1654,1537,1468,1383,1364 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$) $\delta 7.80\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH} \mathrm{Aib}^{3}\right), 7.79$ (t, $J=6.5 \mathrm{~Hz}, 1 \mathrm{H}$, NH Gly), 7.64 (s, 1H, NH Aib ${ }^{4}$), $\left.7.43\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH} \mathrm{Aib}^{1}\right), 7.14\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH} \mathrm{Aib}^{2}\right), 7.11(\mathrm{~s} \text { br, 1H, NHa GlyNH})_{2}\right), 6.95(\mathrm{~d}, J=$ 15.0 Hz, 1H, CH Fum), 6.90 (s, 1H, NH α MeVal), 6.85 (d, $J=15.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}$ Fum), 5.65 ($\mathrm{s}, 1 \mathrm{H}$, NHb GlyNH2), 3.67 (d, $J=6.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}$ Gly), 2.10-2.06 (m, $1 \mathrm{H}, \beta \mathrm{CH} \alpha \mathrm{MeVal}$), 1.45 ($\mathrm{s}, 6 \mathrm{H}, 2 \mathrm{x}$ $\beta \mathrm{CH}_{3} \mathrm{Aib}$), 1.44 (s, $6 \mathrm{H}, 2 \mathrm{x} \beta \mathrm{CH}_{3} \mathrm{Aib}$), 1.43 (s, $6 \mathrm{H}, 2 \mathrm{x} \beta \mathrm{CH}_{3} \mathrm{Aib}$), 1.41 (s, $9 \mathrm{H}, \mathrm{O} t \mathrm{Bu}$), $1.40(\mathrm{~s}, 3 \mathrm{H}$, $\beta \mathrm{CH}_{3} \alpha \mathrm{MeVal}$), $1.35\left(\mathrm{~s}, 5 \mathrm{H}, 2 \mathrm{x} \beta \mathrm{CH}_{3} \mathrm{Aib}\right), 0.99\left(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}, \gamma \mathrm{CH}_{3} \alpha \mathrm{MeVal}\right), 0.92(\mathrm{~d}, J=6.9$ $\left.\mathrm{Hz}, 3 \mathrm{H}, \gamma \mathrm{CH}_{3} \alpha \mathrm{MeVal}\right) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$) $\delta 177.07\left(\mathrm{CO} \mathrm{Aib}{ }^{3}\right), 176.60\left(\mathrm{CO} \mathrm{Aib}^{2}\right)$, $176.27\left(\mathrm{CO} \mathrm{Aib}^{4}\right), 175.30\left(\mathrm{CO} \mathrm{Aib}^{1}\right)$, 173.24 (CO Gly), 172.59 (CO $\alpha \mathrm{MeVal}$), 165.62 ($\mathrm{C}^{\mathrm{b}} \mathrm{O}$ Fum), 164.18 (C^{a} O Fum), 134.74 (C^{a} Fum), 132.98 (C^{b} Fum), 81.41 (C OtBu), 64.04 ($\alpha \mathrm{C} \alpha \mathrm{MeVal}$), 57.72 ($\alpha \mathrm{C} \mathrm{Aib}$), 57.54 ($\alpha \mathrm{C} \mathrm{Aib}$), 57.51 ($\alpha \mathrm{C} \mathrm{Aib)}$,57.48 ($\alpha \mathrm{C} \mathrm{Aib)}$,43.60 ($\alpha \mathrm{C} \mathrm{Gly)}$,35.49 ($\beta \mathrm{CH} \alpha \mathrm{MeVal}$), $28.07\left(\mathrm{CH}_{3} \mathrm{O} t \mathrm{Bu}\right), 25.54\left(\beta \mathrm{C} \mathrm{Aib}^{4}\right), 25.21(\beta \mathrm{C} \mathrm{Aib}), 25.10\left(\beta \mathrm{C} \mathrm{Aib}^{2}\right), 24.91\left(\beta \mathrm{C} \mathrm{Aib}{ }^{1}\right), 17.67$ $\left(\mathrm{\beta CH}_{3} \alpha \mathrm{MeVal}\right), 17.55(\gamma \mathrm{C} \alpha \mathrm{MeVal}), 17.44(\gamma \mathrm{C} \alpha \mathrm{MeVal})$.

Synthesis of 2b

OtBu- $(\alpha \mathrm{Me})$ Val-Mal-Aib $-\mathrm{OH}(100 \mathrm{mg}, 0.16 \mathrm{mmol})$ was dissolved in 4 mL of dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and EDC $\cdot \mathrm{HCl}(38 \mathrm{mg}, 0.2 \mathrm{mmol}$) was added. The solution was stirred at r.t. for 1 h . The solvent was removed under reduced pressure and the residue dissolved in EtOAc. The organic solution was washed with KHSO_{4}, brine, dried over MgSO_{4}, filtered and concentrated under reduced pressure The crude oxazolone was then placed under high vacuum before being dissolved in $\mathrm{CH}_{3} \mathrm{CN}$. Then $\mathrm{H}-\mathrm{Aib}_{4}-\mathrm{Gly}-\mathrm{NH}_{2}(100 \mathrm{mg}, 0.24 \mathrm{mmol})$ was added. The reaction was stirred under reflux for 5 d . The solution was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and the precipitate was recovered by filtration. After purification by flash chromatography (eluant: $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 95: 5$), the pure product was recovered as a white solid ($55 \mathrm{mg}, 33 \%$ yield).

HRMS ($\left.\mathrm{ES}^{+} \mathrm{MeOH}\right) m / z$ calcd. for $\mathrm{C}_{48} \mathrm{H}_{83} \mathrm{~N}_{11} \mathrm{O}_{13} \mathrm{Na}\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$1044.6064, found 1044.6060. [$\left.\alpha\right]_{D}^{20}$ $=-5.3(\mathrm{c} 1, \mathrm{MeOH}) . \mathrm{Mp}$ decompose $>270{ }^{\circ} \mathrm{C}$. FT-IR $\bar{v}_{\max } 3289$, 2981, 1657, 1539, 1384, 1363, $1228 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$) $\delta 7.84(\mathrm{~m}, 2 \mathrm{H}, 2 \mathrm{x} \mathrm{NH}), 7.81(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}), 7.79(\mathrm{~m}, 3 \mathrm{H}$, NH), $7.66(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}), 7.51(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}), 7.20(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}), 7.12(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}), 6.96(\mathrm{~d}, J=15.0 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{CH}$ Fum), $6.91(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}), 6.87(\mathrm{~d}, J=15.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}$ Fum), $5.65(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}), 3.67(\mathrm{~d}, J=$ $5.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Gly}$), 2.08 (m, $1 \mathrm{H}, \beta \mathrm{CH} \alpha \mathrm{MeVal}$), 1.48 (s, $6 \mathrm{H}, 2 \mathrm{x} \mathrm{CCH}_{3} \mathrm{Aib}$), 1.45 (s, $6 \mathrm{H}, 2 \mathrm{x}$ $\beta \mathrm{CH}_{3} \mathrm{Aib}$), 1.44 (s, $18 \mathrm{H}, 6 \mathrm{x} \beta \mathrm{CH}_{3} \mathrm{Aib}$), 1.43 (s, $6 \mathrm{H}, 2 \mathrm{x} \beta \mathrm{CH}_{3} \mathrm{Aib}$), 1.42 (s, $6 \mathrm{H}, 2 \mathrm{x} \beta \mathrm{CH}_{3} \mathrm{Aib}$), 1.41 (s, $9 \mathrm{H}, \mathrm{O} t \mathrm{Bu}$), $1.40\left(\mathrm{~s}, 3 \mathrm{H}, \beta \mathrm{CH}_{3} \alpha \mathrm{MeVal}\right), 1.36\left(\mathrm{~s}, 6 \mathrm{H}, 2 \mathrm{x} \beta \mathrm{CH}_{3} \mathrm{Aib}\right), 0.99(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}$, $\gamma \mathrm{CH}_{3} \alpha \mathrm{MeVal}$), 0.92 (d, $\left.J=6.9 \mathrm{~Hz}, 3 \mathrm{H}, \gamma \mathrm{CH}_{3} \alpha \mathrm{MeVal}\right) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$) $\delta 177.32$, $177.09,176.98,176.95,176.94,176.30,175.39,173.22,172.56,165.66,164.18,134.75,132.99$, 81.44, 64.07, 57.72, 57.57, 57.48, 57.43, 57.33, 57.30, 57.27, 43.61, 35.47, 28.06, 25.19, 17.76, 17.53, 17.42.

Synthesis of 2c

$1(35 \mathrm{mg}, 0.12 \mathrm{mmol})$ and $\operatorname{HOAt}(17 \mathrm{mg}, 0.12 \mathrm{mmol})$ were dissolved in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The suspension was cooled to $0{ }^{\circ} \mathrm{C}$ and $\mathrm{EDC} \cdot \mathrm{HCl}(23 \mathrm{mg}, 0.12 \mathrm{mmol})$ was added. After complete dissolution $\mathrm{H}-\mathrm{Aib}-\mathrm{OMe} \cdot \mathrm{HCl}(37 \mathrm{mg}, 0.24 \mathrm{mmol})$ and DIPEA ($65 \mu \mathrm{~L}, 0.37 \mathrm{mmol}$) were added and the reaction mixture stirred overnight at r.t. The solvent was removed under reduced pressure and the residue dissolved in EtOAc. The organic phase was washed with $\mathrm{KHSO}_{4(\mathrm{aq})} 5 \%, \mathrm{NaHCO}_{3(\mathrm{aq})}$ 5%, brine, dried over MgSO_{4}, filtered and concentrated. The product was obtained as a white solid after precipitation from EtOAc/petroleum ether ($40 \mathrm{mg}, 85 \%$ yield).

HRMS ($\left.\mathrm{ES}^{+} \mathrm{MeOH}\right) m / z$ calcd. for $\mathrm{C}_{19} \mathrm{H}_{33} \mathrm{~N}_{2} \mathrm{O}_{6}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$385.2333, found 385.2403. Mp 149-152 ${ }^{\circ}$ C. FT-IR $\bar{v}_{\text {max }} 3351,2978,1730,1649,1533,1367,1335,1283,1152 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$) $\delta 7.09$ ($\mathrm{s}, 1 \mathrm{H}, \mathrm{NH} \mathrm{Aib}$), 6.87 (d, $J=15.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}$ Fum), 6.80 (s, $1 \mathrm{H}, \mathrm{NH} \alpha \mathrm{MeVal}$), 6.75 (d, $J=15.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}$ Fum), 3.62 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{OMe}$), 2.05 (dt, $J=13.8,6.9$ $\mathrm{Hz}, 1 \mathrm{H}, \beta \mathrm{CH} \alpha \mathrm{MeVal}), 1.44$ (s, $6 \mathrm{H}, 2 \mathrm{x} \beta \mathrm{CH}_{3} \mathrm{Aib}$), $1.40(\mathrm{~s}, 9 \mathrm{H}, \mathrm{OtBu}), 1.38\left(\mathrm{~s}, 3 \mathrm{H}, \beta \mathrm{CH}_{3} \alpha \mathrm{MeVal}\right)$, 0.97 (d, $\left.J=6.9 \mathrm{~Hz}, 3 \mathrm{H}, \gamma \mathrm{CH}_{3} \alpha \mathrm{MeVal}\right), 0.90\left(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}, \gamma \mathrm{CH}_{3} \alpha \mathrm{MeVal}\right) .{ }^{13} \mathrm{C}$ NMR (101 $\left.\mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}\right) \delta 175.24,172.67,164.38,134.40,132.99,81.43,64.06,56.93,52.78,35.51,28.15$, 25.21, 17.87, 17.60, 17.47.

Synthesis of 2d

$1(35 \mathrm{mg}, 0.12 \mathrm{mmol})$ and HOAt ($17 \mathrm{mg}, 0.12 \mathrm{mmol}$) were dissolved in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The suspension was cooled to $0{ }^{\circ} \mathrm{C}$ and $\mathrm{EDC} \cdot \mathrm{HCl}(23 \mathrm{mg}, 0.12 \mathrm{mmol})$ was added. After complete dissolution $\mathrm{H}-\mathrm{Aib}_{2}$-OMe ($48 \mathrm{mg}, 0.24 \mathrm{mmol}$) and DIPEA ($22 \mu \mathrm{~L}, 0.12 \mathrm{mmol}$) were added and the reaction mixture stirred overnight at r.t. The solvent was removed under reduced pressure and the residue dissolved in EtOAc. The organic phase was washed with $\mathrm{KHSO}_{4(\mathrm{aq)}} 5 \%, \mathrm{NaHCO}_{3(\mathrm{aq)}} 5 \%$, brine, dried over MgSO_{4}, filtered and concentrated. The product was obtained as a white solid after precipitation from EtOAc/petroleum ether ($45 \mathrm{mg}, 80 \%$ yield).
HRMS (ES $\left.{ }^{+} \mathrm{MeOH}\right) m / z$ calcd. for $\mathrm{C}_{23} \mathrm{H}_{40} \mathrm{~N}_{3} \mathrm{O}_{7}\left([\mathrm{M}+\mathrm{H}]^{+}\right) 470.2871$, found 470.2853. Mp 89-90 ${ }^{\circ} \mathrm{C}$. FT-IR $\bar{v}_{\text {max }} 3356,2980,1733,1652,1532,1367,1277,1151 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}\right) \delta$ $7.02\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH} \mathrm{Aib}^{1}\right), 6.96\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH} \mathrm{Aib}^{2}\right), 6.88(\mathrm{~d}, J=15.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}$ Fum $), 6.81(\mathrm{~d}, J=15.1$ $\mathrm{Hz}, 2 \mathrm{H}, \mathrm{CH}$ Fum and $\mathrm{NH} \alpha \mathrm{MeVal}$), 3.60 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{OMe}$), 2.05 (dt, $J=13.7,6.8 \mathrm{~Hz}, 1 \mathrm{H}, \beta \mathrm{CH}$ $\alpha \mathrm{MeVal}), 1.42\left(\mathrm{~s}, 6 \mathrm{H}, 2 \mathrm{x} \beta \mathrm{CH}_{3} \mathrm{Aib}\right), 1.40(\mathrm{~s}, 9 \mathrm{H}, \mathrm{OtBu}), 1.39\left(\mathrm{~s}, 3 \mathrm{H}, \beta \mathrm{CH}_{3} \alpha \mathrm{MeVal}\right), 1.37$ (s, 6 H , $\left.2 \mathrm{x} \beta \mathrm{CH}_{3} \mathrm{Aib}\right), 0.97$ (d, $\left.J=6.9 \mathrm{~Hz}, 3 \mathrm{H}, \gamma \mathrm{CH}_{3} \alpha \mathrm{MeVal}\right), 0.91$ (d, $\left.J=6.8 \mathrm{~Hz}, 3 \mathrm{H}, \gamma \mathrm{CH}_{3} \alpha \mathrm{MeVal}\right) .{ }^{13} \mathrm{C}$ NMR (101 MHz, $\mathrm{CD}_{3} \mathrm{CN}$) $\delta 175.78,174.25,172.67,164.49,164.46,133.95,133.89,81.45,64.07$, $57.88,56.77,52.59,35.54,28.16,25.23,25.21,17.88,17.60,17.47$.

Synthesis of 2e

$1(230 \mathrm{mg}, 0.81 \mathrm{mmol})$ and HOAt ($110 \mathrm{mg}, 0.81 \mathrm{mmol}$) were dissolved in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The suspension was cooled to $0{ }^{\circ} \mathrm{C}$ and $\mathrm{EDC} \cdot \mathrm{HCl}(155 \mathrm{mg}, 0.81 \mathrm{mmol})$ was added. After complete dissolution $\mathrm{H}-\mathrm{Aib}_{4}-\mathrm{OMe}(200 \mathrm{mg}, 0.54 \mathrm{mmol}$, prepared by the quantitative hydrogenolysis of $\mathrm{N}_{3} \mathrm{Aib}_{4}-\mathrm{OMe}$) and DIPEA ($140 \mu \mathrm{~L}, 0.81 \mathrm{mmol}$) were added and the reaction mixture stirred overnight at r . t . The solvent was removed under reduced pressure and the residue dissolved in EtOAc. The organic phase was washed with $\mathrm{KHSO}_{4(\mathrm{aq})} 5 \%, \mathrm{NaHCO}_{3(\mathrm{aq})} 5 \%$, brine, dried over MgSO_{4}, filtered and concentrated. The crude was purified via flash chromatography using as eluent 94:6 $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}$. The product was obtained as a white solid ($280 \mathrm{mg}, 81 \%$ yield).

HRMS ($\left.\mathrm{ES}^{+}, \mathrm{MeOH}\right) \mathrm{m} / \mathrm{z}$ calcd. for $\mathrm{C}_{31} \mathrm{H}_{54} \mathrm{~N}_{5} \mathrm{O}_{9}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$640.3916, found 640.3922. $[\alpha]_{D}^{20}=-8.1$ (c 1, MeOH). Mp 136-137 ${ }^{\circ} \mathrm{C}$. FT-IR $\bar{v}_{\text {max }} 3309,2983,1728,1645,1530,1457,1385,1365,1273$, 1222, 1151, $732 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$) $\delta 7.42\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH} \mathrm{Aib}{ }^{4}\right), 7.37\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH} \mathrm{Aib}^{1}\right), 7.34(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}$ Aib^{3}), 7.01 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{NH} \mathrm{Aib}{ }^{2}$), 6.93 ($\mathrm{d}, J=15.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}$ Fum), 6.89 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{NH} \alpha \mathrm{MeVal}$), 6.84 (d, $J=15.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}$ Fum), 3.58 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{OMe}$), 2.06 (dq, $J=13.7,6.9 \mathrm{~Hz}, 1 \mathrm{H}, \beta \mathrm{CH} \alpha \mathrm{MeVal}$),
 Aib^{4} and $\beta \mathrm{CH}_{3} \alpha \mathrm{MeVal}$), 1.31 (s, $6 \mathrm{H}, 2 \mathrm{x} \beta \mathrm{CH}_{3} \mathrm{Aib}^{2}$), 0.98 (d, $J=6.9 \mathrm{~Hz}, 3 \mathrm{H}, \gamma \mathrm{CH}_{3} \alpha \mathrm{MeVal}$), 0.92 $\left(\mathrm{d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}, \gamma \mathrm{CH}_{3} \alpha \mathrm{MeVal}\right) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 175.85,174.80,173.66,173.02$, $172.43,164.97,163.10,135.26,131.82,82.14,64.12,57.48,57.03,56.92,55.98,52.32,34.37$, $29.85,28.12,25.65,25.39,25.05,24.98,18.65,17.70,17.67$.

Synthesis of $2 f$

$\mathbf{1}(100 \mathrm{mg}, 0.35 \mathrm{mmol})$ and HOAt ($50 \mathrm{mg}, 0.37 \mathrm{mmol}$) were dissolved in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The suspension was cooled to $0{ }^{\circ} \mathrm{C}$ and $\mathrm{EDC} \cdot \mathrm{HCl}(70 \mathrm{mg}, 0.36 \mathrm{mmol})$ was added. After complete dissolution, $\mathrm{H}_{-} \mathrm{Aib}_{8}-\mathrm{OMe}(140 \mathrm{mg}, 0.2 \mathrm{mmol}$, prepared by the quantitative hydrogenolysis of $\left.\mathrm{N}_{3} \mathrm{Aib}_{8}-\mathrm{OMe}\right)$ and DIPEA ($60 \mu \mathrm{~L}, 0.36 \mathrm{mmol}$) were added and the reaction mixture stirred overnight at r.t. The solvent was removed under reduced pressure and the residue dissolved in EtOAc. The organic phase was washed with $\mathrm{KHSO}_{4(\mathrm{aq)}} 5 \%, \mathrm{NaHCO}_{3(\mathrm{aq)}} 5 \%$, brine, dried over MgSO_{4}, filtered and concentrated. The product was obtained as a white solid after precipitation from EtOAc/petroleum ether ($150 \mathrm{mg}, 77 \%$ yield).
HRMS (ES $\left.{ }^{+} \mathrm{MeOH}\right) ~ m / z$ calcd. for $\mathrm{C}_{47} \mathrm{H}_{82} \mathrm{~N}_{9} \mathrm{O}_{13}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$980.6027, found 980.6179. Mp 172-175 ${ }^{\circ}$ C. FT-IR $\bar{v}_{\max } 3310,2986,2942,1733,1659,1535,1467,1458,1385,1364,1229,1152 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.92(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}), 7.85(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}), 7.80(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}), 7.75(\mathrm{~s}, 2 \mathrm{H}, 2 \mathrm{x}$ NH), $7.72(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}), 7.49(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}), 7.27(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}), 7.08(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}), 6.95-6.73(\mathrm{~m}, 2 \mathrm{H}, \mathrm{AB}$ system CH_{2} Fum), 3.69 (s, $3 \mathrm{H}, \mathrm{OMe}$), 2.34 ($\mathrm{dt}, J=14.1,6.9 \mathrm{~Hz}, 1 \mathrm{H}, \beta \mathrm{CH} \alpha \mathrm{MeVal}$), 1.78 (s, 12 H , $4 \mathrm{x} \beta \mathrm{CH}_{3} \mathrm{Aib}$), 1.57 ($\mathrm{s}, 3 \mathrm{H}, \beta \mathrm{CH}_{3} \alpha \mathrm{MeVal}$), 1.52 ($\mathrm{s}, 12 \mathrm{H}, 4 \mathrm{x} \beta \mathrm{CH}_{3} \mathrm{Aib}$), 1.49 ($\mathrm{s}, 12 \mathrm{H}, 4 \mathrm{x} \beta \mathrm{CH}_{3}$ Aib), $1.47\left(\mathrm{~s}, 15 \mathrm{H}, \mathrm{OtBu}\right.$ and $\left.2 \mathrm{x} \beta \mathrm{CH}_{3} \mathrm{Aib}\right), 1.41\left(\mathrm{~s}, 6 \mathrm{H}, 2 \mathrm{x} \beta \mathrm{CH}_{3} \mathrm{Aib}\right), 1.02(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}$, $\gamma \mathrm{CH}_{3} \alpha \mathrm{MeVal}$), 0.93 (d, $\left.J=6.8 \mathrm{~Hz}, 3 \mathrm{H}, \gamma \mathrm{CH}_{3} \alpha \mathrm{MeVal}\right) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 176.49$,
$176.18,176.09,175.72,175.22,175.19,174.69,172.47,165.44,81.97,64.11,57.41,56.99,56.87$, 56.73, 56.70, 56.26, 52.42, 34.47, 28.16, 25.12, 24.93, 18.83, 17.76.

c) Synthesis of 3a

A solution of $\mathbf{6 a}(30 \mathrm{mg}, 0.044 \mathrm{mmol})$ in 3 mL of MeOH was irradiated in a quartz cuvette at 254 nm for 2 h . The solvent was removed under reduced pressure obtaining the crude product. Pure compound 7a was obtained by semipreparative HPLC, after freeze-drying as a white solid.
FT-IR $\bar{v}_{\text {max }} 3289,2922,1650,1539,1468,1383,1364 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$) $\delta 8.61$ (s, $1 \mathrm{H}, \mathrm{NH} \mathrm{Aib}^{2}$), $7.84\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH} \mathrm{Aib}^{3}\right), 7.82\left(\mathrm{t}, J=6.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NH}\right.$ Gly), $7.70\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH} \mathrm{Aib}^{4}\right), 7.46$ (s, 1H, NH Aib ${ }^{1}$), 7.10 (s br, $1 \mathrm{H}, \mathrm{GlyNH}_{2}$), 7.05 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{NH} \alpha \mathrm{MeVal}$), 6.29 (d, $J=12.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}$ Mal), $6.20(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH} \mathrm{Mal}), 5.64\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{GlyNH}_{2}\right), 2.11-2.06(\mathrm{~m}, 1 \mathrm{H}, \beta \mathrm{CH} \alpha \mathrm{MeVal})$, $1.44\left(\mathrm{~s}, 12 \mathrm{H}, \mathrm{O} t \mathrm{Bu}\right.$ and $\left.\beta \mathrm{CH}_{3} \mathrm{Aib}\right), 1.43\left(\mathrm{~s}, 3 \mathrm{H}, \beta \mathrm{CH}_{3} \mathrm{Aib}\right), 1.42\left(\mathrm{~s}, 3 \mathrm{H}, \beta \mathrm{CH}_{3} \mathrm{Aib}\right), 1.41(\mathrm{~s}, 6 \mathrm{H}, 2 \mathrm{x}$ $\beta \mathrm{CH}_{3} \mathrm{Aib}$), 1.38 (s, $\left.3 \mathrm{H}, \beta \mathrm{CH}_{3} \alpha \mathrm{MeVal}\right), 1.36$ (s, $6 \mathrm{H}, 2 \mathrm{x} \beta \mathrm{CH}_{3} \mathrm{Aib}$), 1.35 (s, $3 \mathrm{H}, \beta \mathrm{CH}_{3} \mathrm{Aib}$), 0.99 (d, $\left.J=6.9 \mathrm{~Hz}, 3 \mathrm{H}, \gamma \mathrm{CH}_{3} \alpha \mathrm{MeVal}\right), 0.92\left(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}, \gamma \mathrm{CH}_{3} \alpha \mathrm{MeVal}\right) .{ }^{13} \mathrm{C}$ NMR (101 MHz , $\mathrm{CD}_{3} \mathrm{CN}$) $\delta 177.35\left(\mathrm{CO} \mathrm{Aib}^{2}\right), 176.93\left(\mathrm{CO} \mathrm{Aib}^{3}\right), 176.30\left(\mathrm{CO} \mathrm{Aib}{ }^{4}\right), 175.88\left(\mathrm{CO} \mathrm{Aib}^{1}\right)$, $173.26(\mathrm{CO}$ Gly), 172.31 ($\mathrm{CO} \alpha \mathrm{MeVal}$), $168.69\left(\mathrm{C}^{\mathrm{b}} \mathrm{O}\right.$ Mal), 164.53 ($\mathrm{C}^{\mathrm{a} O ~ M a l), ~} 136.05$ ($\mathrm{C}^{\mathrm{b}} \mathrm{Mal}$), 126.97 (C^{a} Mal), $81.63(\mathrm{C} \mathrm{O} t \mathrm{Bu}), 64.05(\alpha \mathrm{C} \alpha \mathrm{MeVal})$, $57.71(\alpha \mathrm{C} \mathrm{Aib})$, $57.57(\alpha \mathrm{C} \mathrm{Aib} \times 2)$, $57.33(\alpha \mathrm{C} \mathrm{Aib})$, 43.60 ($\alpha \mathrm{C}$ Gly), 35.46 ($\beta \mathrm{C} \alpha \mathrm{MeVal}$), $28.19\left(\mathrm{CH}_{3} \mathrm{OtBu}\right)$, $26.43\left(\beta \mathrm{C} \mathrm{Aib}^{4}\right), 26.23\left(\beta \mathrm{C} \mathrm{Aib}{ }^{2}\right), 26.17$ $\left(\beta \mathrm{C} \mathrm{Aib}{ }^{3}\right), 26.06\left(\beta \mathrm{C} \mathrm{Aib}^{1}\right), 24.66\left(\beta \mathrm{C} \mathrm{Aib}^{4}\right), 24.46\left(\beta \mathrm{C} \mathrm{Aib}^{1}\right), 24.33\left(\beta \mathrm{C} \mathrm{Aib}^{2}\right), 24.26\left(\beta \mathrm{C} \mathrm{Aib}^{3}\right)$, $17.52\left({ }^{2} \mathrm{CH}_{3} \alpha \mathrm{MeVal}\right), 17.40(\gamma \mathrm{C} \alpha \mathrm{MeVal}), 17.37(\gamma \mathrm{C} \alpha \mathrm{MeVal})$.

d) Synthesis of 3c

Synthesis of 15

$\mathrm{H}-(\alpha \mathrm{Me})$ Val-OtBu ($150 \mathrm{mg}, 0.8 \mathrm{mmol}$) was dissolved in 2 mL of dry $\mathrm{CH}_{3} \mathrm{CN}$ and TEA ($100 \mu \mathrm{~L}$, 0.71 mmol) were added. Maleic anhydride ($70 \mathrm{mg}, 0.71 \mathrm{mmol}$) was dissolved in 1 mL of dry $\mathrm{CH}_{3} \mathrm{CN}$ and added to the solution of the amino acid. The reaction mixture stirred overnight at r.t. The solvent was removed under reduced pressure and the residue dissolved in EtOAc. The organic phase was washed with $\mathrm{KHSO}_{4(\mathrm{aq})} 5 \%$ and brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated. The product was obtained as a white solid ($170 \mathrm{mg}, 74 \%$ yield).

HRMS ($\left.\mathrm{ES}^{+}, \mathrm{MeOH}\right) \mathrm{m} / \mathrm{z}$ calcd. for $\mathrm{C}_{14} \mathrm{H}_{24} \mathrm{NO}_{5}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$286.1649, found 286.1703. Mp 156-159 ${ }^{\circ} \mathrm{C}$. FT-IR $\bar{v}_{\text {max }} 3306,3002,2980,1727,1712,1632,1593,1558,1490,1368,1147,858 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.28(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}), 6.36(\mathrm{~d}, J=12.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH} \mathrm{Mal}), 6.29(\mathrm{~d}, J=12.9$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{CH} \mathrm{Mal}), 2.50-2.37(\mathrm{~m}, 1 \mathrm{H}, \beta \mathrm{CH}), 1.65\left(\mathrm{~s}, 3 \mathrm{H}, \beta \mathrm{CH}_{3}\right), 1.49(\mathrm{~s}, 9 \mathrm{H}, \mathrm{OtBu}), 1.04(\mathrm{~d}, J=7.0$ $\mathrm{Hz}, 3 \mathrm{H}, \gamma \mathrm{CH}_{3}$), $0.92\left(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}, \gamma \mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 171.71, 165.22, $164.68,136.95,131.52,83.40,65.32,33.84,27.88,18.82,17.53$.

Synthesis of 3c

15 ($50 \mathrm{mg}, 0.17 \mathrm{mmol}$) and HOAt ($23 \mathrm{mg}, 0.17 \mathrm{mmol}$) were dissolved in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The suspension was cooled to $0{ }^{\circ} \mathrm{C}$ and $\mathrm{EDC} \cdot \mathrm{HCl}(33 \mathrm{mg}, 0.17 \mathrm{mmol})$ was added. After complete dissolution $\mathrm{H}-\mathrm{Aib}-\mathrm{OMe} \cdot \mathrm{HCl}(54 \mathrm{mg}, 0.35 \mathrm{mmol})$ and DIPEA ($90 \mu \mathrm{~L}, 0.52 \mathrm{mmol}$) were added and the reaction mixture stirred overnight at r.t. The solvent was removed under reduced pressure and the residue dissolved in EtOAc. The organic phase was washed with $\mathrm{KHSO}_{4(\mathrm{aq})} 5 \%, \mathrm{NaHCO}_{3(\text { (aq) }}$ 5%, brine, dried over MgSO_{4}, filtered and concentrated. The product was obtained as an oil (50 mg , 75% yield).
HRMS ($\left.\mathrm{ES}^{+}, \mathrm{MeOH}\right) m / z$ calcd. for $\mathrm{C}_{19} \mathrm{H}_{33} \mathrm{~N}_{2} \mathrm{O}_{6}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$385.2333, found 385.2435. FT-IR $\overline{\mathrm{v}}_{\text {max }}$ $3280,2978,1748,1729,1671,1620,1578,1548,1368,1286,1263,1149,854 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$) $\delta 8.94$ ($\mathrm{s}, 1 \mathrm{H}, \mathrm{NH} \mathrm{Aib}$), $8.70(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH} \alpha \mathrm{MeVal}), 6.12(\mathrm{~d}, J=13.4$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{CH}$ Mal), 6.06 (d, $J=13.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}$ Mal), 3.62 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{OMe}$), 2.02 (dt, $J=13.7,6.9 \mathrm{~Hz}$, $1 \mathrm{H}, \beta \mathrm{CH} \alpha \mathrm{MeVal}), 1.44\left(\mathrm{~s}, 3 \mathrm{H}, \beta \mathrm{CH}_{3} \mathrm{Aib}\right), 1.43$ (s, $3 \mathrm{H}, \beta \mathrm{CH}_{3} \mathrm{Aib}$), 1.40 (s, $9 \mathrm{H}, \mathrm{OtBu}$), 1.36 (s, $3 \mathrm{H}, \mathrm{\beta CH}_{3} \alpha \mathrm{MeVal}$), $0.98\left(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}, \gamma \mathrm{CH}_{3} \alpha \mathrm{MeVal}\right), 0.91\left(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}, \gamma \mathrm{CH}_{3}\right.$ α MeVal). ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$) $\delta 175.15,165.20,134.14,132.84,81.36,64.09,56.86$, 52.76, 35.73, 28.15, 25.16, 25.08, 17.67, 17.61, 17.43.
e) Synthesis of carboxylic acids 4a-b

Synthesis of 4a

$\mathbf{2 e}(320 \mathrm{mg}, 0.54 \mathrm{mmol})$ was dissolved in 15 mL of THF and a solution of $\mathrm{LiOH}(85 \mathrm{mg}, 3.5 \mathrm{mmol})$ in 5 mL of water was added. The solution was stirred at $40^{\circ} \mathrm{C}$ for 24 h . The organic solvent was removed under reduced pressure and the aqueous phase was acidified with HCl 1 M . The compound was extracted using EtOAc (3v). The organic phase was washed with $\mathrm{KHSO}_{4(\mathrm{aq})} 5 \%$ and brine, dried over MgSO_{4}, filtered and concentrated under reduced pressure. The product was obtained as a white solid ($230 \mathrm{mg}, 73 \%$ yield).
HRMS (ES $\left.{ }^{+}, \mathrm{MeOH}\right) m / z$ calcd. for $\mathrm{C}_{30} \mathrm{H}_{51} \mathrm{~N}_{5} \mathrm{O}_{9} \mathrm{Na}\left([\mathrm{M}+\mathrm{Na}]^{+}\right) 648.3579$, found 648.3584. $[\alpha]_{D}^{20}=-$ 8 (c 1, MeOH). Mp 152-154 ${ }^{\circ}$ C. FT-IR $\bar{v}_{\text {max }} 3305,2982,1728,1650,1534,1458,1385,1260,1225$, $1151 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.01(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}), 7.89(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}), 7.87(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH})$, $7.23(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}), 6.97(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}), 6.87\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{AB}\right.$ system CH_{2} Fum), $2.40(\mathrm{~m}, 1 \mathrm{H}, \beta \mathrm{CH}$ $\alpha \mathrm{MeVal}), 1.59$ (s, $3 \mathrm{H}, \beta \mathrm{CH}_{3} \alpha \mathrm{MeVal}$), 1.56 ($\mathrm{s}, 6 \mathrm{H}, 2 \mathrm{x} \beta \mathrm{CH}_{3} \mathrm{Aib}$), 1.52 (s, $6 \mathrm{H}, 2 \mathrm{x} \beta \mathrm{CH}_{3} \mathrm{Aib}$), 1.50 (s, $6 \mathrm{H}, 2 \mathrm{x} \beta \mathrm{CH}_{3} \mathrm{Aib}$), 1.47 ($\mathrm{s}, 9 \mathrm{H}, \mathrm{OtBu}$), 1.43 ($\mathrm{s}, 6 \mathrm{H}, 2 \mathrm{x} \beta \mathrm{CH}_{3} \mathrm{Aib}$), 1.01 (d, $J=6.7 \mathrm{~Hz}, 3 \mathrm{H}, \gamma \mathrm{CH}_{3}$ $\alpha \mathrm{MeVal}), 0.91$ (d, $\left.J=6.7 \mathrm{~Hz}, 3 \mathrm{H}, \gamma \mathrm{CH}_{3} \alpha \mathrm{MeVal}\right) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 176.78,175.75$, $175.56,174.53,172.66,165.39,163.86,133.74,133.07,82.43,64.30,57.33,56.97,56.91,34.21$, 29.85, 28.11, 25.19, 24.85, 18.98, 17.78, 17.73.

Synthesis of 4b

$\mathbf{2 f}(120 \mathrm{mg}, 0.12 \mathrm{mmol})$ was dissolved in 10 mL of THF and a solution of $\mathrm{LiOH}(20 \mathrm{mg}, 0.86$ mmol) in 5 mL of water was added. The solution was stirred at $60^{\circ} \mathrm{C}$ for 48 h , The solution was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and the aqueous phase was acidified with HCl 1 M . The compound was extracted using $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (3v). The organic phase was washed with $\mathrm{KHSO}_{4(\mathrm{aq})} 5 \%$ and brine, dried over MgSO_{4}, filtered and concentrated under reduced pressure. The crude was purified via flash chromatography (eluant: $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}, 93: 7 \rightarrow 8: 2$). The product was obtained as a white solid (80 $\mathrm{mg}, 68 \%$ yield).

HRMS (ES $\left.{ }^{+} \mathrm{MeOH}\right) ~ m / z$ calcd. for $\mathrm{C}_{46} \mathrm{H}_{80} \mathrm{~N}_{9} \mathrm{O}_{13}\left([\mathrm{M}+\mathrm{H}]^{+}\right) 966.5870$, found 966.6056. Mp 190-193 ${ }^{\circ}$ C. FT-IR $\bar{v}_{\text {max }} 3309,2985,2939,1728,1659,1535,1385,1365,1228 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{MeOD}$) $\delta 7.10$ ($\mathrm{d}, J=15.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}$ Fum), 6.92 (d, $J=15.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}$ Fum), 2.09 (dt, $J=13.6,6.7 \mathrm{~Hz}, 1 \mathrm{H}, \beta \mathrm{CH} \alpha \mathrm{MeVal}$), 1.52 ($\mathrm{s}, 6 \mathrm{H}, 2 \mathrm{x} \beta \mathrm{CH}_{3} \mathrm{Aib}$), 1.51 ($\mathrm{s}, 6 \mathrm{H}, 2 \mathrm{x}$ $\beta \mathrm{CH}_{3} \mathrm{Aib}$), 1.49 ($\mathrm{s}, 6 \mathrm{H}, 2 \mathrm{x} \beta \mathrm{CH}_{3} \mathrm{Aib}$), 1.48 ($\mathrm{s} \mathrm{br}, 24 \mathrm{H}, 4 \mathrm{x} \beta \mathrm{CH}_{3} \mathrm{Aib}$), 1.44 ($\mathrm{s}, 9 \mathrm{H}, \mathrm{O} t \mathrm{Bu}$), 1.42 (s, $3 \mathrm{H}, \beta \mathrm{CH}_{3} \alpha \mathrm{MeVal}$), $1.40\left(\mathrm{~s}, 6 \mathrm{H}, 2 \mathrm{x} \beta \mathrm{CH}_{3} \mathrm{Aib}\right), 1.01\left(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}, \gamma \mathrm{CH}_{3} \alpha \mathrm{MeVal}\right), 0.96$ (d, J $\left.=6.7 \mathrm{~Hz}, 3 \mathrm{H}, \gamma \mathrm{CH}_{3} \alpha \mathrm{MeVal}\right) .{ }^{13} \mathrm{C}$ NMR (101 MHz, MeOD) δ 177.63, 177.48, 177.42, 177.15, $177.01,176.74,176.21,173.54,166.31,166.02,134.67,133.75,82.33,64.57,57.95,57.89,57.83$, 57.79, 57.73, 35.86, 28.24, 25.49, 25.14, 17.72, 17.69, 17.56.

f) Synthesis of 12

Synthesis of 16

Monoethyl fumarate ($90 \mathrm{mg}, 0.62 \mathrm{mmol}$) and HOAt ($85 \mathrm{mg}, 0.62 \mathrm{mmol}$) were dissolved in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The suspension was cooled to $0{ }^{\circ} \mathrm{C}$ and $\mathrm{EDC} \cdot \mathrm{HCl}(120 \mathrm{mg}, 0.62 \mathrm{mmol})$ was added. After complete dissolution, $\mathrm{H}-\mathrm{Aib}_{4}-\mathrm{Gly}^{-} \mathrm{NH}_{2}(130 \mathrm{mg}, 0.31 \mathrm{mmol})$ and TEA $(90 \mu \mathrm{~L}, 0.65 \mathrm{mmol})$ were added and the reaction mixture stirred for 48 h at r.t. The precipitate collected and washed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The product was recovered after precipitation from $\mathrm{MeOH} / \mathrm{Et}_{2} \mathrm{O}$ obtaining a white solid ($100 \mathrm{mg}, 60 \%$ yield).
HRMS (ES^{+}, MeOH) m / z calcd. for $\mathrm{C}_{24} \mathrm{H}_{40} \mathrm{~N}_{6} \mathrm{O}_{8} \mathrm{Na}\left([\mathrm{M}+\mathrm{Na}]^{+}\right) 563.2805$, found 563.2794. Mp 274$275{ }^{\circ} \mathrm{C}$. FT-IR $\bar{v}_{\text {max }} 3264,2985,1720,1652,1533,1455,1386,1363,1281,1223,1172 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{MeOD}$) $\delta 7.10(\mathrm{~d}, J=15.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}$ Fum), $6.74(\mathrm{~d}, J=15.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}$ Fum), 4.26 ($\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Et}$), 3.83 ($\mathrm{s}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Gly}$), $1.50\left(\mathrm{~s}, 6 \mathrm{H}, 2 \mathrm{x} \beta \mathrm{CH}_{3} \mathrm{Aib}\right), 1.49(\mathrm{~s}$, $6 \mathrm{H}, 2 \mathrm{x} \beta \mathrm{CH}_{3} \mathrm{Aib}$), $1.47\left(\mathrm{~s}, 6 \mathrm{H}, 2 \mathrm{x} \beta \mathrm{CH}_{3} \mathrm{Aib}\right), 1.39\left(\mathrm{~s}, 6 \mathrm{H}, 2 \mathrm{x} \beta \mathrm{CH}_{3} \mathrm{Aib}\right), 1.31(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}$, $\left.\mathrm{CH}_{3} \mathrm{Et}\right) .{ }^{13} \mathrm{C}$ NMR (101 MHz, MeOD) $\delta 178.09,178.05,177.81,176.09,175.40,166.79,165.65$, $137.58,131.26,62.32,58.14,58.03,57.88,57.79,43.68,25.58,25.27,14.45$.

Synthesis of 10

$\mathbf{1 6}$ ($70 \mathrm{mg}, 0.13 \mathrm{mmol}$) was dissolved in 6 mL of THF and a solution of LiOH ($22 \mathrm{mg}, 0.92 \mathrm{mmol}$) in 4 mL of water was added. The solution was stirred at r.t. for 1 h . The organic solvent was removed under reduced pressure and the aqueous phase was acidified with HCl 1 M . After 24 h , the compound precipitated from the solution was recovered by filtration. The product was obtained as a white solid ($50 \mathrm{mg}, 73 \%$ yield).
HRMS ($\left.\mathrm{ES}^{+}, \mathrm{MeOH}\right) m / z$ calcd. for $\mathrm{C}_{22} \mathrm{H}_{36} \mathrm{~N}_{6} \mathrm{O}_{8} \mathrm{Na}\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$535.2492, found 535.2493. Mp 274$275{ }^{\circ} \mathrm{C}$. FT-IR $\bar{v}_{\text {max }} 3300,2986,1659,1537,1386,1224 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{MeOD}$) $\delta 7.07$ ($\mathrm{d}, J=15.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}$ Fum), 6.71 (d, $J=15.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}$ Fum), 3.83 ($\mathrm{s}, 2 \mathrm{H}, \mathrm{CH}_{2}$ Gly), $1.50\left(\mathrm{~s}, 6 \mathrm{H}, 2 \mathrm{x} \mathrm{CCH}_{3} \mathrm{Aib}\right.$), 1.49 ($\mathrm{s}, 6 \mathrm{H}, 2 \mathrm{x} \mathrm{CCH}_{3} \mathrm{Aib}$), 1.47 ($\mathrm{s}, 6 \mathrm{H}, 2 \mathrm{x}$ $\left.\mathrm{CCH}_{3} \mathrm{Aib}\right), 1.39\left(\mathrm{~s}, 6 \mathrm{H}, 2 \mathrm{x} \beta \mathrm{CH}_{3} \mathrm{Aib}\right) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{MeOD}$) δ 178.17, 178.12, 178.11,
$178.09,177.92,176.14,175.41,168.38,165.86,137.55,131.85,58.23,58.14,57.85,57.81,43.68$, 25.58, 25.30, 25.08.

Synthesis of \mathbf{N}_{3} - Aib $_{4}$-Ala-OtBu (17)

N_{3} - Aib_{4} - $\mathrm{OH}(230 \mathrm{mg}, 0.6 \mathrm{mmol})$ and HOAt ($106 \mathrm{mg}, 0.77 \mathrm{mmol}$) were dissolved in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. After cooling to $0{ }^{\circ} \mathrm{C}$ EDC $\cdot \mathrm{HCl}(120 \mathrm{mg}, 0.6 \mathrm{mmol})$ was added. Then $\mathrm{H}-\mathrm{Ala}-\mathrm{OtBu} \cdot \mathrm{HCl}(217 \mathrm{mg}$, $1.2 \mathrm{mmol})$ and TEA ($250 \mu \mathrm{~L}, 1.8 \mathrm{mmol}$) were added and the reaction mixture stirred for 48 h at r.t. The reaction mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and washed with $\mathrm{KHSO}_{4(\mathrm{aq)}} 5 \%, \mathrm{NaHCO}_{3(\mathrm{aq)}} 5 \%$, brine. The organic phase was dried over MgSO_{4}, filtered and concentrated. The crude was purified via flash chromatography (eluant: $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 93: 7$), yielding the product as a white solid (260 $\mathrm{mg}, 85$ \% yield).
HRMS (ES $\left.{ }^{+}, \mathrm{MeOH}\right) m / z$ calcd. for $\mathrm{C}_{23} \mathrm{H}_{41} \mathrm{~N}_{7} \mathrm{O}_{6} \mathrm{Na}\left([\mathrm{M}+\mathrm{Na}]^{+}\right) 534.3016$, found 534.3008. $[\alpha]_{D}^{20}=-$ 53.1 (c 1, MeOH). Mp 164-166 ${ }^{\circ}$ C. FT-IR $\bar{v}_{\max } 3325,2982$, 2112, 1732, 1655, 1519, 1457, 1382, 1365, 1223, $1152 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{MeOD}$) $\delta 4.19(\mathrm{q}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}, \alpha \mathrm{CH} \mathrm{Ala}), 1.53\left(\mathrm{~s}, 3 \mathrm{H} ; \beta \mathrm{CH}_{3} \mathrm{Aib}\right), 1.52(\mathrm{~s}$, $6 \mathrm{H}, 2 \mathrm{x} \beta \mathrm{CH}_{3} \mathrm{Aib}$), 1.49 ($\mathrm{s}, 3 \mathrm{H}, \beta \mathrm{CH}_{3} \mathrm{Aib}$), 1.44 ($\mathrm{s}, 6 \mathrm{H}, 2 \mathrm{x} \beta \mathrm{CH}_{3} \mathrm{Aib}$), 1.44 ($\mathrm{s}, 9 \mathrm{H}, \mathrm{OtBu}$), $1.42(\mathrm{~d}$, $\left.J=7.4 \mathrm{~Hz}, 3 \mathrm{H}, \beta \mathrm{CH}_{3} \mathrm{Ala}\right), 1.39\left(\mathrm{~s}, 3 \mathrm{H}, \beta \mathrm{CH}_{3} \mathrm{Aib}\right), 1.35\left(\mathrm{~s}, 3 \mathrm{H}, \beta \mathrm{CH}_{3} \mathrm{Aib}\right) .{ }^{13} \mathrm{C}$ NMR (101 MHz , MeOD) $\delta 177.21,176.35,176.25,174.61,173.64,82.13,64.75,57.97,57.94,57.80,50.77,28.22$, 27.41, 26.74, 25.52, 24.53, 24.46, 24.17, 24.12, 23.91, 17.10.

Synthesis of H-Aib ${ }_{4}$-Ala-OtBu (11)

N_{3} - Aib_{4}-Ala-OtBu ($210 \mathrm{mg}, 0.41 \mathrm{mmol}$) was dissolved in 8 mL of EtOH under a nitrogen atmosphere. Pd / C catalyst (30 mg) was carefully added and the reaction mixture stirred under H_{2} atmosphere for 24 h . The catalyst was removed by filtration through a pad of Celite and the filtrate concentrated under reduced pressure to yield the product as a white solid ($170 \mathrm{mg}, 85 \%$ yield). HRMS ($\left.\mathrm{ES}^{+}, \mathrm{MeOH}\right) m / z$ calcd. for $\mathrm{C}_{23} \mathrm{H}_{43} \mathrm{~N}_{5} \mathrm{O}_{6} \mathrm{Na}\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$508.3111, found 508.3114. $[\alpha]_{D}^{20}=-$ 52.3 (c 1, MeOH). Mp 179-181 ${ }^{\circ} \mathrm{C}$. FT-IR $\bar{v}_{\text {max }} 3308,2981,1730,1653,1525,1456,1382,1363$,
$1226,1165 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($\left.400 \mathrm{MHz}, \mathrm{MeOD}\right) \delta 4.20(\mathrm{q}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}, \alpha \mathrm{CH}$ Ala), $1.52(\mathrm{~s}, 3 \mathrm{H}$, $\beta \mathrm{CH}_{3} \mathrm{Aib}$), $1.50\left(\mathrm{~s}, 3 \mathrm{H}, \beta \mathrm{CH}_{3} \mathrm{Aib}\right), 1.44\left(\mathrm{~s}, 15 \mathrm{H}, \mathrm{O} t \mathrm{Bu}\right.$ and $\left.2 \mathrm{x} \beta \mathrm{CH}_{3} \mathrm{Aib}\right), 1.42(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}$, $\beta \mathrm{CH}_{3} \mathrm{Ala}$), $1.40\left(\mathrm{~s}, 3 \mathrm{H}, \beta \mathrm{CH}_{3} \mathrm{Aib}\right), 1.36\left(\mathrm{~s}, 3 \mathrm{H}, \beta \mathrm{CH}_{3} \mathrm{Aib}\right), 1.33\left(\mathrm{~s}, 3 \mathrm{H}, \beta \mathrm{CH}_{3} \mathrm{Aib}\right), 1.32(\mathrm{~s}, 3 \mathrm{H}$, $\mathrm{\beta CH}_{3} \mathrm{Aib}$). ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{MeOD}$) $\delta 179.61,177.26,176.62,176.49,173.66,82.13,57.96$, $57.74,57.40,55.67,50.75,28.54,28.23,28.08,27.43,26.83,25.70,24.20,24.17,24.00,17.12$.

Synthesis of OtBu-Ala-Aib $\mathbf{4}_{4}$-Fum-Aib $\mathbf{4}_{4}$-Gly-NH2 (12)

$10(33 \mathrm{mg}, 0.062 \mathrm{mmol})$ and HOAt ($10 \mathrm{mg}, 0.073 \mathrm{mmol}$) were dissolved in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. After cooling to $0{ }^{\circ} \mathrm{C}$ EDC $\cdot \mathrm{HCl}(12 \mathrm{mg}, 0.062 \mathrm{mmol})$ was added. Then $11(35 \mathrm{mg}, 0.072 \mathrm{mmol})$ and DIPEA ($20 \mu \mathrm{~L}, 0.11 \mathrm{mmol}$) were added and the reaction mixture stirred for 48 h at $\mathrm{r} . \mathrm{t}$. The solid was recovered and washed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The crude product was purified via flash chromatography (eluant: $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 90: 15$). The product was recovered as a white solid ($20 \mathrm{mg}, 33 \%$ yield).
HRMS (ES^{+}, MeOH) m / z calcd. for $\mathrm{C}_{45} \mathrm{H}_{78} \mathrm{~N}_{11} \mathrm{O}_{13}\left([\mathrm{M}+\mathrm{H}]^{+}\right) 980.5781$, found 980.5770. $[\alpha]_{D}^{20}=$ +11 (c 0.1, MeOH). $\mathrm{Mp}>267{ }^{\circ} \mathrm{C}$ decompose. FT-IR $\bar{v}_{\text {max }} 3295,2985,1656,1537,1384,1364,1226$ $\mathrm{cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{MeOD}$) $\delta 7.08$ (s, 2H, CH2 Fum), $4.22(\mathrm{q}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}, \alpha \mathrm{CH}$ Ala), 3.83 (s, $2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Gly}$), 1.53 (s, $3 \mathrm{H}, \beta \mathrm{CH}_{3} \mathrm{Aib}$), 1.52 ($\mathrm{s}, 3 \mathrm{H}, \beta \mathrm{CH}_{3} \mathrm{Aib}$), 1.51 ($\mathrm{s}, 12 \mathrm{H}, 4 \mathrm{x} \beta \mathrm{CH}_{3} \mathrm{Aib}$), 1.50 (s, $3 \mathrm{H}, \beta \mathrm{CH}_{3} \mathrm{Aib}$), 1.47 ($\mathrm{s}, 3 \mathrm{H}, \beta \mathrm{CH}_{3} \mathrm{Aib}$), 1.47 ($\mathrm{s}, 6 \mathrm{H}, 2 \mathrm{x} \beta \mathrm{CH}_{3} \mathrm{Aib}$), 1.46 ($\mathrm{s}, 6 \mathrm{H}, 2 \mathrm{x} \beta \mathrm{CH}_{3} \mathrm{Aib}$), $1.45(\mathrm{~s}, 9 \mathrm{H}, \mathrm{OtBu}), 1.44\left(\mathrm{~s}, 3 \mathrm{H}, \beta \mathrm{CH}_{3} \mathrm{Aib}\right), 1.43\left(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}, \beta \mathrm{CH}_{3} \mathrm{Ala}\right), 1.38\left(\mathrm{~s}, 3 \mathrm{H}, \beta \mathrm{CH}_{3}\right.$ $\mathrm{Aib}), 1.37$ (s, $3 \mathrm{H}, \beta \mathrm{CH}_{3} \mathrm{Aib}$), 1.34 ($\mathrm{s}, 3 \mathrm{H}, \beta \mathrm{CH}_{3} \mathrm{Aib}$).

Figure S14. ${ }^{1} \mathrm{H}$ NMR (400 MHz) spectra of $\mathbf{1 4}$ in CDCl_{3}.

Figure S15. ${ }^{13} \mathrm{C}$ NMR (101 MHz) spectra of $\mathbf{1 4}$ in CDCl_{3}.

Figure S16. ${ }^{1} \mathrm{H}$ NMR (500 MHz) spectra of $\mathbf{1}$ in MeOD.

Figure S17. ${ }^{13} \mathrm{C}$ NMR (101 MHz) spectra of $\mathbf{1}$ in MeOD.

Figure S18. ${ }^{1} \mathrm{H}$ NMR (500 MHz) spectra of $\mathbf{2 a}$ in $\mathrm{CD}_{3} \mathrm{CN}$.

Figure S19. ${ }^{13} \mathrm{C}$ NMR (101 MHz) spectra of 2a in $\mathrm{CD}_{3} \mathrm{CN}$.

Figure S20. ${ }^{1} \mathrm{H}$ NMR (500 MHz) spectra of 2b in $\mathrm{CD}_{3} \mathrm{CN}$.

Figure S21. ${ }^{13} \mathrm{C}$ NMR (101 MHz) spectra of $\mathbf{2 b}$ in $\mathrm{CD}_{3} \mathrm{CN}$.

Figure S22. ${ }^{1} \mathrm{H}$ NMR (500 MHz) spectra of $\mathbf{2 c}$ in $\mathrm{CD}_{3} \mathrm{CN}$.

Figure S23. ${ }^{13} \mathrm{C}$ NMR (101 MHz) spectra of 2c in $\mathrm{CD}_{3} \mathrm{CN}$.

Figure S24. ${ }^{1} \mathrm{H}$ NMR $(500 \mathrm{MHz})$ spectra of $\mathbf{2 d}$ in $\mathrm{CD}_{3} \mathrm{CN}$.

Figure S25. ${ }^{13} \mathrm{C}$ NMR (101 MHz) spectra of $\mathbf{2 d}$ in $\mathrm{CD}_{3} \mathrm{CN}$.

Figure S26. ${ }^{1} \mathrm{H}$ NMR (500 MHz) spectra of $\mathbf{2 e}$ in $\mathrm{CD}_{3} \mathrm{CN}$.

Figure S27. ${ }^{13} \mathrm{C}$ NMR (101 MHz) spectra of 2e in CDCl_{3}.

Figure S28. ${ }^{1} \mathrm{H}$ NMR (400 MHz) spectra of $\mathbf{2 f}$ in CDCl_{3}.

Figure S29. ${ }^{13} \mathrm{C}$ NMR (101 MHz) spectra of $\mathbf{2 f}$ in CDCl_{3}.

Figure S30. ${ }^{1} \mathrm{H}$ NMR $(500 \mathrm{MHz})$ spectra of 3a in $\mathrm{CD}_{3} \mathrm{CN}$.

Figure S31. ${ }^{13} \mathrm{C}$ NMR (101 MHz) spectra of 3a in $\mathrm{CD}_{3} \mathrm{CN}$.

Figure S32. ${ }^{1} \mathrm{H}$ NMR (500 MHz) spectra of $\mathbf{1 5}$ in CDCl_{3}.

Figure S33. ${ }^{13} \mathrm{C}$ NMR (101 MHz) spectra of $\mathbf{1 5}$ in CDCl_{3}.

Figure S34. ${ }^{1} \mathrm{H}$ NMR (500 MHz) spectra of $\mathbf{3 c}$ in $\mathrm{CD}_{3} \mathrm{CN}$.

Figure S35. ${ }^{13} \mathrm{C}$ NMR (101 MHz) spectra of $\mathbf{3 c}$ in $\mathrm{CD}_{3} \mathrm{CN}$.

Figure S36. ${ }^{1} \mathrm{H}$ NMR (500 MHz) spectra of $\mathbf{4 a}$ in CDCl_{3}.

Figure S37. ${ }^{13} \mathrm{C}$ NMR (101 MHz) spectra of $\mathbf{4 a}$ in CDCl_{3}.

Figure S38. ${ }^{1} \mathrm{H}$ NMR (400 MHz) spectra of $\mathbf{4 b}$ in MeOD.

Figure S39. ${ }^{13} \mathrm{C}$ NMR (101 MHz) spectra of $\mathbf{4 b}$ in MeOD.

Figure S40. ${ }^{1} \mathrm{H}$ NMR (400 MHz) spectra of 16 in MeOD.

Figure S41. ${ }^{13} \mathrm{C}$ NMR (101 MHz) spectra of $\mathbf{1 6}$ in MeOD.

Figure S42. ${ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz})$ spectra of $\mathbf{1 0}$ in MeOD.

Figure S43. ${ }^{13} \mathrm{C}$ NMR (101 MHz) spectra of $\mathbf{1 0}$ in MeOD.

Figure S44. ${ }^{1} \mathrm{H}$ NMR (400 MHz) spectra of $\mathbf{1 7}$ in MeOD.

Figure S45. ${ }^{13} \mathrm{C}$ NMR (101 MHz) spectra of $\mathbf{1 7}$ in MeOD.

Figure S46. ${ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz})$ spectra of $\mathbf{1 1}$ in MeOD.

Figure S47. ${ }^{13} \mathrm{C}$ NMR (101 MHz) spectra of $\mathbf{1 1}$ in MeOD.

Figure S48. ${ }^{1} \mathrm{H}$ NMR $(500 \mathrm{MHz})$ spectra of $\mathbf{1 2}$ in MeOD.

Figure S49. 2D NOESY NMR spectrum of $\mathbf{2 a}\left(500 \mathrm{MHz}\right.$ in $\left.\mathrm{CD}_{3} \mathrm{CN}\right)$.

Figure S50. 2D NOESY NMR spectrum of 3a (500 MHz in $\mathrm{CD}_{3} \mathrm{CN}$).

Figure S51. HMBC spectrum of $\mathbf{2 a}$ (600 MHz in $\mathrm{CD}_{3} \mathrm{CN}$).

Figure S52. HMQC spectrum of $\mathbf{2 a}$ (600 MHz in $\mathrm{CD}_{3} \mathrm{CN}$).

Figure S53. HMBC spectrum of $\mathbf{3 a}\left(600 \mathrm{MHz}\right.$ in $\left.\mathrm{CD}_{3} \mathrm{CN}\right)$.

Figure S54. HMQC spectrum of $\mathbf{3 a}$ (600 MHz in $\mathrm{CD}_{3} \mathrm{CN}$).

Figure S55. 2D NOESY NMR spectrum of $\mathbf{2 c}\left(400 \mathrm{MHz}\right.$ in $\left.\mathrm{CD}_{3} \mathrm{CN}\right)$.

Figure S56. 2D NOESY NMR spectrum of 3c (400 MHz in $\mathrm{CD}_{3} \mathrm{CN}$).

Figure S57. 2D NOESY NMR spectrum of $\mathbf{2 d}\left(400 \mathrm{MHz}\right.$ in $\left.\mathrm{CD}_{3} \mathrm{CN}\right)$.

Figure S58. 2D NOESY NMR spectrum of 2d after irradiation (400 MHz in $\mathrm{CD}_{3} \mathrm{CN}$).

Figure S59. 2D NOESY NMR spectrum of $\mathbf{2 e}\left(400 \mathrm{MHz}\right.$ in $\left.\mathrm{CD}_{3} \mathrm{CN}\right)$.

Figure S60. 2D NOESY NMR spectrum of 2e after irradiation (400 MHz in $\mathrm{CD}_{3} \mathrm{CN}$).

Supporting References

[1] M. C. Burla, R. Caliandro, B. Carrozzini, G.L. Cascarano, C. Cuocci, C. Giacovazzo, M. Mallamo, A. Mazzone, G. Polidori, J. Appl. Crystallogr. 2015, 48, 306-309.
[2] G .M. Sheldrick, Acta Crystallogr. C 2015, 71, 3-8.
[3] C. Toniolo, M. Crisma, G. M. Bonora, B. Klajc, F. Lelj, P. Grimaldi, A. Rosa, S. Polinelli, E. M. Meijer, H. E. Schoemaker, J. Kamphuis, Int. J. Pept. Protein Res., 2009, 38, 242-252.
[4] R. A. Brown, T. Marcelli, M. De Poli, J. Solà, and J. Clayden, Angew. Chem. Int. Ed. 2012, 51, 1395-1399.
[5] S. J. Pike, J. Raftery, S. J. Webb, J. Clayden, Org. Biomol. Chem., 2014, 12, 4124-4131.
[6] J. Solà, M. Helliwell, J. Clayden, Biopolymers, 2011, 95, 62-69.

