SUPPORTING INFROMATION

Intramolecular Imidoylative Heck Reaction: Synthesis of Cyclic Ketoimines from Functionalized Isocyanide

Jian Wang, Shi Tang and Qiang Zhu*

Contents

I. General Information	2
II. Preparation of Starting Materials	2
III. Imidoylative Heck Reaction	10
IV. Characterization Data	12
V. References	28
VI. Copies of ¹ H and ¹³ C NMR Spectra	29

I. General Information

¹H NMR (400 MHz) and ¹³C NMR (125 MHz) were registered on 400 M and 500 M spectrometers, respectively. Chemical shifts were reported in units (ppm) by assigning TMS resonance in the ¹H spectrum as 0.00 ppm, CDCl₃ resonance in the ¹³C spectrum as 77.0 ppm. All coupling constants (*J* values) were reported in Hertz (Hz). NMR analysis was carried out at 298 K unless noted otherwise. HRMS was obtained on an ESI-LC-MS/MS spectrometer.

II. Preparation of Starting Materials

ethyl 2-isobutyl-2-isocyanohept-6-enoate (1a): 1,2

- (i) A 250 mL round bottom flask charged with 100 mL of CH(OMe)₃ (solvent) and **A1** (10 mmol, 1.95 g) was heated at 110 °C for 5 h. The solvent was removed under reduced pressure to afford the crude product **B1** for the next step without further purification.
- (ii) To a solution of crude **B1** (10 mmol, 1.0 equiv) and Et_3N (4 equiv) in 100 mL of dry DCM was added POCl₃ (1.2 equiv) dropwise in 30 min at -20 °C. The reaction mixture was stirred for 4 h. Then 10 mL of H_2O was added dropwise to the reaction mixture carefully at -20 °C. The crude reaction mixture was extracted with DCM (100 mL \times 3) and washed with brine (100 mL). The organic phase was concentrated in *vacuo* and the residue was purified by silica gel flash column chromatography (petroleum ether : EtOAc = 8 : 1) to afford the product **C1** as colorless liquid in 85% yield.
- (iii) An oven-dried 100 mL round bottom flask charged with a stir-bar and NaH (60%) (10 mmol, 2 equiv) was vacuumed and refilled with Ar for 3 times. A mixture solution of DMSO (2 mL) and Et_2O (50 mL) was added to the flask using a syringe. Then 5 mmol of C1 (1.0 equiv) was added to the mixture dropwise in 10 min at room temperature and the reaction mixture was stirred for 30 min. Two equivalents of

5-bromopent-1-ene was added with a syringe and the reaction mixture was stirred for 30 min. Then 2 mL of H_2O was added dropwise to the reaction mixture carefully at room temperature. The crude reaction mixture was extracted with DCM (20 mL \times 3) and washed with brine (20 mL). The organic phase was concentrated in *vacuo* and the residue was purified by silica gel flash column chromatography (petroleum ether : EtOAc = 16 : 1) to afford the product $\bf 1a$ as colorless liquid in 91% yield. (new compound)

¹H NMR (400 MHz, CDCl₃): δ 5.78-5.68 (m, 1H), 5.02-4.95 (m, 2H), 4.25-4.20 (m, 2H), 2.07-2.01 (m, 2H), 1.92-1.81 (m, 3H), 1.75-1.65 (m, 3H), 1.30 (t, J = 7.2 Hz, 3H), 0.98 (d, J = 6.8 Hz, 3H), 0.84 (d, J = 6.8 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃): δ 169.3, 159.6, 137.4, 115.4, 67.6, 62.4, 47.1, 40.1, 32.9, 25.0, 23.7, 23.1, 22.3, 14.0; HRMS: calcd for C₁₄H₂₄NO₂ (M⁺+H) 238.1802; found 238.1804.

methyl 2-isocyano-2-isopropylhept-6-enoate (1b):

- (i) A 250 mL round bottom flask charged with 50 mL of CH(OMe)₃ (solvent) and **A2** (5 mmol, 835 mg) was heated at 110 °C for 5 h. The solvent was removed under reduced pressure to afford the crude product **B2** for the next step without further purification.
- (ii) To a solution of crude **B2** (5 mmol, 1.0 equiv) and Et₃N (4 equiv) in 50 mL of dry DCM was added POCl₃ (1.2 equiv) dropwise in 30 min at -20 $^{\circ}$ C. The reaction mixture was stirred for 4 h. Then 10 mL of H₂O was added dropwise to the reaction mixture carefully at -20 $^{\circ}$ C. The crude reaction mixture was extracted with DCM (100 mL \times 3) and washed with brine (100 mL). The organic phase was concentrated in *vacuo* and the residue was purified by silica gel flash column chromatography (petroleum ether : EtOAc = 8 : 1) to afford the product **C2** as colorless liquid in 78% yield.
- (iii) An oven-dried 100 mL round bottom flask charged with a stir-bar and NaH (60%) (4 mmol, 2 equiv) was vacuumed and refilled with Ar for 3 times. A mixture solution of DMSO (1 mL) and Et₂O (20 mL) was added to the flask using a syringe. Then 2 mmol of C2 (1.0 equiv) was added to the mixture dropwise in 10 min at room temperature and the reaction mixture was stirred for 30 min. Two equivalents of

5-bromopent-1-ene was added with a syringe and the reaction mixture was stirred for 30 min. Then 2 mL of H_2O was added dropwise to the reaction mixture carefully at room temperature. The crude reaction mixture was extracted with DCM (20 mL \times 3) and washed with brine (20 mL). The organic phase was concentrated in *vacuo* and the residue was purified by silica gel flash column chromatography (petroleum ether : EtOAc = 16 : 1) to afford the product **1b** as colorless liquid in 87% yield. (new compound)

¹H NMR (400 MHz, CDCl₃): δ 5.74-5.66 (m, 1H), 5.00-4.92 (m, 2H), 3.76 (s, 3H), 2.13-2.01 (m, 3H), 1.81-1.77 (m, 2H), 1.66-1.59 (m, 1H), 1.23-1.16 (m, 1H), 1.01 (d, J = 6.8 Hz, 3H), 0.90 (d, J = 6.8 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃): δ 169.5, 159.5, 137.4, 115.4, 53.0, 36.6, 35.6, 33.0, 23.6, 17.8, 16.3; HRMS: calcd for $C_{12}H_{20}NO_2$ (M⁺+H) 210.1489; found 210.1490.

methyl 2-(sec-butyl)-2-isocyanohept-6-enoate (1c):

- (i) A 250 mL round bottom flask charged with 50 mL of CH(OMe)₃ (solvent) and **A3** (5 mmol, 905 mg) was heated at 110 °C for 5 h. The solvent was removed under reduced pressure to afford the crude product **B3** for the next step without further purification.
- (ii) To a solution of crude **B3** (5 mmol, 1.0 equiv) and Et_3N (4 equiv) in 50 mL of dry DCM was added POCl₃ (1.2 equiv) dropwise in 30 min at -20 °C. The reaction mixture was stirred for 4 h. Then 10 mL of H_2O was added dropwise to the reaction mixture carefully at -20 °C. The crude reaction mixture was extracted with DCM (100 mL \times 3) and washed with brine (100 mL). The organic phase was concentrated in *vacuo* and the residue was purified by silica gel flash column chromatography (petroleum ether : EtOAc = 8 : 1) to afford the product **C3** as colorless liquid in 89% yield.
- (iii) An oven-dried 100 mL round bottom flask charged with a stir-bar and NaH (60%) (4 mmol, 2 equiv) was vacuumed and refilled with Ar for 3 times. A mixture solution of DMSO (1 mL) and Et₂O (20 mL) was added to the flask using a syringe. Then 2 mmol of **C3** (1.0 equiv) was added to the mixture dropwise in 10 min at room temperature and the reaction mixture was stirred for 30 min. Two equivalents of

5-bromopent-1-ene was added with a syringe and the reaction mixture was stirred for 30 min. Then 2 mL of H_2O was added dropwise to the reaction mixture carefully at room temperature. The crude reaction mixture was extracted with DCM (20 mL \times 3) and washed with brine (20 mL). The organic phase was concentrated in *vacuo* and the residue was purified by silica gel flash column chromatography (petroleum ether : EtOAc = 16 : 1) to afford the product $\mathbf{1c}$ as colorless liquid in 76% yield. (new compound)

¹H NMR (400 MHz, CDCl₃): δ 5.77-5.70 (m, 1H), 5.03-4.95 (m, 2H), 3.78 (s, 3H), 2.08-2.03 (m, 2H), 1.89-1.70 (m, 3H), 1.69-1.62 (m, 1H), 1.32-1.17 (m, 1H), 1.01 (d, J = 6.8 Hz, 2H), 0.96-0.88 (m, 4H); ¹³C NMR (125 MHz, CDCl₃): δ 169.8, 159.4, 137.5, 115.4, 73.3, 53.0, 42.1, 36.8, 33.1, 25.0, 23.5, 12.5, 11.8; HRMS: calcd for $C_{13}H_{22}NO_2$ (M⁺+H) 224.1645; found 224.1649.

methyl 2-(tert-butyl)-2-isocyanohept-6-enoate (1d):

- (i) A 250 mL round bottom flask charged with 50 mL of CH(OMe)₃ (solvent) and **A4** (5 mmol, 905 mg) was heated at 110 °C for 5 h. The solvent was removed under reduced pressure to afford the crude product **B4** for the next step without further purification.
- (ii) To a solution of crude **B4** (5 mmol, 1.0 equiv) and Et_3N (4 equiv) in 50 mL of dry DCM was added POCl₃ (1.2 equiv) dropwise in 30 min at -20 °C. The reaction mixture was stirred for 4 h. Then 10 mL of H_2O was added dropwise to the reaction mixture carefully at -20 °C. The crude reaction mixture was extracted with DCM (100 mL \times 3) and washed with brine (100 mL). The organic phase was concentrated in *vacuo* and the residue was purified by silica gel flash column chromatography (petroleum ether : EtOAc = 8 : 1) to afford the product **C4** as colorless liquid in 65% yield.
- (iii) An oven-dried 100 mL round bottom flask charged with a stir-bar and NaH (60%) (4 mmol, 2 equiv) was vacuumed and refilled with Ar for 3 times. A mixture solution of DMSO (1 mL) and Et_2O (20 mL) was added to the flask using a syringe. Then 2 mmol of **C4** (1.0 equiv) was added to the mixture dropwise in 10 min at room temperature and the reaction mixture was stirred for 30 min. Two equivalents of

5-bromopent-1-ene was added with a syringe and the reaction mixture was stirred for 30 min. Then 2 mL of H_2O was added dropwise to the reaction mixture carefully at room temperature. The crude reaction mixture was extracted with DCM (20 mL \times 3) and washed with brine (20 mL). The organic phase was concentrated in *vacuo* and the residue was purified by silica gel flash column chromatography (petroleum ether : EtOAc = 16 : 1) to afford the product **1d** as colorless liquid in 51% yield. (new compound)

 1 H NMR (400 MHz, CDCl₃): δ 5.82-5.72 (m, 1H), 5.05-4.97 (m, 2H), 3.79 (s, 3H), 2.11-1.99 (m, 3H), 1.75-1.64 (m, 2H), 1.28-1.16 (m, 1H), 1.07 (s, 9H); 13 C NMR (125 MHz, CDCl₃): δ 169.1, 159.8, 138.0, 115.6, 76.1, 53.1, 38.3, 33.5, 32.9, 25.9, 24.6; HRMS: calcd for $C_{13}H_{22}NO_{2}$ (M^{+} +H) 224.1645; found 224.1642.

ethyl 2-isobutyl-2-isocyanohex-5-enoate (1e):

(iii) An oven-dried 100 mL round bottom flask charged with a stir-bar and NaH (60%) (4 mmol, 2 equiv) was vacuumed and refilled with Ar for 3 times. A mixture solution of DMSO (1 mL) and Et_2O (20 mL) was added to the flask using a syringe. Then 2 mmol of C1 (1.0 equiv) was added to the mixture dropwise in 10 min at room temperature and the reaction mixture was stirred for 30 min. Two equivalents of 4-bromobut-1-ene was added with a syringe and the reaction mixture was stirred for 30 min. Then 2 mL of H_2O was added dropwise to the reaction mixture carefully at room temperature. The crude reaction mixture was extracted with DCM (20 mL \times 3) and washed with brine (20 mL). The organic phase was concentrated in *vacuo* and the residue was purified by silica gel flash column chromatography (petroleum ether : EtOAc = 16 : 1) to afford the product 1e as colorless liquid in 91% yield. (new compound)

¹H NMR (400 MHz, CDCl₃): δ 5.77-5.70 (m, 1H), 5.07-4.97 (m, 2H), 4.26-4.20 (m, 2H), 2.32-2.30 (m, 1H), 2.02-1.90 (m, 2H), 1.88-1.81 (m, 3H), 1.75-1.67 (m, 1H), 1.31 (t, J = 7.2 Hz, 3H), 1.00 (d, J = 6.4 Hz, 3H), 0.86 (d, J = 6.4 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃): δ 169.1, 159.8, 136.1, 116.0, 67.3, 62.5, 47.3, 39.9, 28.2, 25.0, 23.7, 22.3, 14.0; HRMS: calcd for C₁₃H₂₂NO₂ (M⁺+H) 224.1645; found 224.1647.

(E)-ethyl 2-isobutyl-2-isocyano-5-phenylpent-4-enoate (1f):

(iii) An oven-dried 100 mL round bottom flask charged with a stir-bar and NaH (60%) (4 mmol, 2 equiv) was vacuumed and refilled with Ar for 3 times. A mixture solution of DMSO (1 mL) and Et_2O (20 mL) was added to the flask using a syringe. Then 2 mmol of C1 (1.0 equiv) was added to the mixture dropwise in 10 min at room temperature and the reaction mixture was stirred for 30 min. Two equivalents of (E)-(3-chloroprop-1-en-1-yl)benzene was added with a syringe and the reaction mixture was stirred for 30 min. Then 2 mL of H_2O was added dropwise to the reaction mixture carefully at room temperature. The crude reaction mixture was extracted with DCM (20 mL \times 3) and washed with brine (20 mL). The organic phase was concentrated in *vacuo* and the residue was purified by silica gel flash column chromatography (petroleum ether : EtOAc = 16:1) to afford the product $\mathbf{1f}$ as yellow oil in 57% yield. (new compound)

¹H NMR (400 MHz, CDCl₃): δ 7.37-7.23 (m, 5H), 6.51 (d, J = 16.0 Hz, 1H), 6.21-6.13 (m, 1H), 4.23 (q, J = 6.8 Hz, 2H), 2.80-2.64 (m, 2H), 1.97-1.89 (m, 2H), 1.83-1.79 (m, 1H), 1.28 (t, J = 6.8 Hz, 3H), 1.02 (d, J = 6.0 Hz, 3H), 0.89 (d, J = 6.0 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃): δ 169.2, 160.4, 136.9, 136.0, 128.9, 128.2, 126.8, 121.5, 67.9, 62.9, 46.8, 44.6, 25.4, 24.0, 22.6, 14.4; HRMS: calcd for $C_{18}H_{24}NO_2$ (M⁺+H) 286.1802; found 286.1798.

ethyl 2-isocyano-2-(pent-4-en-1-yl)hept-6-enoate (1g):

(iii) An oven-dried 100 mL round bottom flask charged with a stir-bar and NaH (60%) (6 mmol, 3 equiv) was vacuumed and refilled with Ar for 3 times. A mixture solution of DMSO (1 mL) and Et₂O (20 mL) was added to the flask using a syringe. Then 2 mmol of ethyl 2-isocyanoacetate (1.0 equiv) was added to the mixture dropwise in 10 min at room temperature and the reaction mixture was stirred for 30 min. Three equivalents of 5-bromopent-1-ene was added with a syringe and the reaction mixture was stirred for 30 min. Then 2 mL of H₂O was added dropwise to the

reaction mixture carefully at room temperature. The crude reaction mixture was extracted with DCM ($20 \text{ mL} \times 3$) and washed with brine (20 mL). The organic phase was concentrated in *vacuo* and the residue was purified by silica gel flash column chromatography (petroleum ether : EtOAc = 16 : 1) to afford the product 1g as colorless liquid in 92% yield. (new compound)

¹H NMR (400 MHz, CDCl₃): δ 5.77-5.67 (m, 2H), 5.01-4.94 (m, 4H), 4.23 (q, J = 7.2 Hz, 2H), 2.07-2.02 (m, 4H), 1.92-1.85 (m, 2H), 1.78-1.59 (m, 4H), 1.37-1.27 (m, 5H); ¹³C NMR (125 MHz, CDCl₃): δ 168.8, 159.1, 137.4, 115.4, 68.3, 62.5, 38.5, 33.0, 23.2, 14.1; HRMS: calcd for C₁₅H₂₄NO₂ (M⁺+H) 250.1802; found 250.1802.

diethyl (6-isocyanoundeca-1,10-dien-6-yl)phosphonate (1h)

(iii) An oven-dried 100 mL round bottom flask charged with a stir-bar and NaH (60%) (6 mmol, 3 equiv) was vacuumed and refilled with Ar for 3 times. A mixture solution of DMSO (1 mL) and Et_2O (20 mL) was added to the flask using a syringe. Then 2 mmol of diethyl (isocyanomethyl)phosphonate (1.0 equiv) was added to the mixture dropwise in 10 min at room temperature and the reaction mixture was stirred for 30 min. Three equivalents of 5-bromopent-1-ene was added with a syringe and the reaction mixture was stirred for 30 min. Then 2 mL of H_2O was added dropwise to the reaction mixture carefully at room temperature. The crude reaction mixture was extracted with DCM (20 mL \times 3) and washed with brine (20 mL). The organic phase was concentrated in *vacuo* and the residue was purified by silica gel flash column chromatography (petroleum ether : EtOAc = 8 : 1) to afford the product **1h** as colorless liquid in 33% yield. (new compound)

¹H NMR (400 MHz, CDCl₃): δ 5.82-5.72 (m, 2H), 5.05-4.97 (m, 4H), 4.27-4.19 (m, 4H), 2.10-2.05 (m, 4H), 1.93-1.75 (m, 4H), 1.65-1.54 (m, 4H), 1.36 (t, J = 6.8 Hz, 6H); ¹³C NMR (125 MHz, CDCl₃): δ159.6, 138.0, 115.8, 64.4 (d, J = 7.4 Hz), 62.0 (d, J = 155.4 Hz), 34.6, 33.7, 23.1 (d, J = 5.4 Hz), 16.8 (d, J = 5.6 Hz); HRMS: calcd for C₁₆H₂₉NO₃P (M⁺+H) 314.1880; found 314.1885.

ethyl 2-isobutyl-2-isocyanopent-4-enoate (1i):

Compound **1i** was prepared according to similar route of literature reported methods³: To a solution of **C1** (2 mmol) in acetonitrile (20 mL) were added K_2CO_3 (8 mmol), TBAHS (0.2 mmol), and 3-bromoprop-1-ene (3 mmol). The mixture was heated at 70 °C until the reaction was completed, monitoring with TLC. Then the mixture was cooled and the solvent was removed and reduced pressure. H_2O (10 mL) and ethyl acetate (20 mL) were added into the mixture. The organic phase was seperated and the aqueous phase was extacted with ethyl acetate (20.0 mL × 3). The combined organic phase was concentrated in *vacuo* and the residue was purified by silica gel flash column chromatography (petroleum ether : EtOAc = 8 : 1) to afford **1i** as colorless liquid in 82% yield. (new compound)

¹H NMR (400 MHz, CDCl₃): δ 5.84-5.74 (m, 1H), 5.24-5.17 (m, 2H), 4.27-4.20 (m, 2H), 2.65-2.47 (m, 2H), 1.94-1.72 (m, 3H), 1.31 (t, J = 7.2 Hz, 3H), 1.01 (d, J = 6.4 Hz, 3H), 0.87 (d, J = 6.4 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃): δ 168.9, 159.8, 130.0, 120.9, 67.3, 62.5, 46.5, 44.9, 25.0, 23.6, 22.3, 14.1; HRMS: calcd for C₁₂H₂₀NO₂ (M⁺+H) 210.1489; found 210.1485.

ethyl 2-isocyanopent-4-enoate (1j):

TBAHS,
$$K_2CO_3$$
MeCN, 70 °C

Tmaths, K_2CO_3
MeCN, 70 °C

(based on 3-bromoprop-1-ene)

To a solution of ethyl 2-isocyanoacetate (5 mmol, 2.5 equiv) in acetonitrile (20 mL) were added K_2CO_3 (10 mmol), TBAHS (0.2 mmol), and 3-bromoprop-1-ene (2 mmol). The mixture was heated at 70 °C until the reaction was completed, monitoring with TLC. Then the mixture was cooled and the solvent was removed and reduced pressure. H_2O (10 mL) and ethyl acetate (20 mL) were added into the mixture. The organic phase was seperated and the aqueous phase was extacted with ethyl acetate (20.0 mL × 3). The combined organic phase was concentrated in *vacuo* and the residue was purified by silica gel flash column chromatography (petroleum ether : EtOAc = 8:1) to afford **1i** as colorless liquid in 51% yield. (known compound)⁴ H NMR (400 MHz, CDCl₃): δ 5.81-5.71 (m, 1H), 5.24-5.19 (m, 2H), 4.30-4.20 (m, 3H), 2.69-2.55 (m, 2H), 1.27 (t, J = 7.2 Hz, 3H); ^{13}C NMR (125 MHz, CDCl₃): δ

166.1, 160.4, 130.4, 120.4, 62.7, 56.3, 37.0, 14.0; HRMS: calcd for $C_8H_{12}NO_2$ (M^++H) 154.0863; found 154.0861.

III. Imidoylative Heck Reaction

Table 1. Detailed Information of Conditions Optimization a

entry	solvent	base (1.2 equiv)	ligand (20 mol %)	temp (°C)	yield (%) ^b
1	toluene	Na ₂ CO ₃	PPh ₃	80	nd
2^c	toluene	Na_2CO_3	PPh ₃	80	18
3^c	toluene	K_2CO_3	PPh ₃	80	18
4 ^c	toluene	Cs ₂ CO ₃	PPh ₃	80	30
5 ^c	toluene	CsOPiv	PPh ₃	80	70
6 ^c	toluene	Et_3N	PPh ₃	80	25
7^c	DMSO	CsOPiv	PPh ₃	80	70
8^c	dioxane	CsOPiv	PPh ₃	80	33
9 ^c	CH ₃ CN	CsOPiv	PPh ₃	80	40
$10^{c,e}$	toluene	CsOPiv	PPh ₃	80	81 (79) ^f
$11^{c,e}$	toluene	CsOPiv	dppb (10 mol %)	80	75
$12^{c,e}$	toluene	CsOPiv	BINAP (10 mol %)	80	trace
$13^{c,e,g}$	toluene	CsOPiv	PPh ₃	80	78
$14^{c,e,h}$	toluene	CsOPiv (1.0 equiv)	PPh ₃	80	70
$15^{c,e,i}$	toluene	CsOPiv	PPh ₃	80	85 (change)
$16^{c,j}$	toluene	CsOPiv	PPh ₃	80	56^f
$17^{c,e}$	toluene	CsOPiv	PPh ₃	70	45^f
$18^{c,e,k}$	toluene	CsOPiv	PPh ₃	70	0
$19^{d,e}$	toluene	CsOPiv	PPh ₃	100	85 (82) ^f

^a Reaction conditions: **1a** (0.2 mmol), **2** (0.30 mmol), Pd(OAc)₂ (0.02 mmol, 10 mol %), PPh₃ (0.04 mmol, 20 mol %), base (0.24 mmol), Ar. A solution of **1a** in solvent (1 mL) was added slowly within 1 h. ^b NMR yield with 1-iodo-4-methoxybenzene as an internal standard. ^c X = I. ^d X = Br. ^e A solution of **1a** in toluene (1 mL) was added via a syringe pump within 1 h. ^f Isolated yield. ^g One equivalent of H2O was added in the reaction. ^h One equivalent of base was used. ⁱ The ratio of 1a and 2 was altered. ^j5 mol % of Pd(OAc)₂ and 10 mol % of PPh₃. ^k Uner air atmosphere.

The reaction conditions screened with ethyl were 2-isobutyl-2-isocyanohept-6-enoate **1a** and iodobenzene as model substrates. However, a reaction of premixed reactants under normal Heck conditions (Pd(OAc)₂, PPh₃, Na₂CO₃ in toluene) yielded only a messy mixture (entry 1, Table 1). When a solution of isocyanide 1a in toluene was introduced to the reaction mixture slowly, the desired product, ethyl 2-isobutyl-6-methylene-7-phenyl-3,4,5,6-tetrahydro-2*H*-azepine-2-carboxylate 3a, was formed in 18% NMR yield (entry 2, Table 1). Screening of bases revealed that CsOPiv was the base of choice for this imidoylative Heck reaction, and 3a could be obtained in 70% yield (entries 3-6). The reaction was equally efficient in DMSO, but less efficient in dioxane or CH₃CN (entries 7-9). The yield of 3a was increased to 81% when a solution of 1a in 1 mL of toluene was added via a syringe pump during 1 h (entry 10). Dppb was also an efficient ligand (entry 11). Other phosphine ligands such as BINAP were tested as well, but resulted in trace product (entry 12). Considering that PPh₃ was an easily available and inexpensive ligand, it was chosen in the reaction. When 1.0 equivalent of H₂O was added in the reaction, 78% NMR yield of product was generated, indicating that the reaction was well tolerated in moisture (entry 13). When using 1.0 equivalent of base, the yield was decreased to 70% (entry 14). If the ratio between the isocyanide and the aryl iodide are altered, the yield was similar (entry 15). Considering that aryl halides are less inexpensive than isocyanide, we used it in excess amount. The yield decreased to 45% at 70 °C (entry 16) and 56% with 5 mol % of Pd(OAc)₂ and 10 mol % of PPh₃ (entry 17). No product was generated under air atmosphere (entry 18). When using bromobenzene as the arylating reagent, the same product 3a was generated in 85% yield at elevated temperature (100 °C, entry 19).

General procedure:

An oven-dried 25 mL Schlenk tube charged with Pd(OAc)₂ (0.02 mmol, 4.5 mg), PPh₃ (0.04 mmol, 10.5 mg) and CsOPiv (0.24 mmol, 56.0 mg) was vacuumed and refilled with Ar for 3 times. Then a solution of **2** (0.3 mmol, 38.4 μL) in 1.0 mL of toluene was added via a syringe and the tube was placed in an oil-bath at 80 °C for aryl iodide or 100 °C for aryl bromide. A solution of **1** (0.2 mmol) in 1.0 mL of toluene was introduced with a syringe pump to the reaction mixture during 1 h. The crude reaction mixture was extracted with DCM (20 mL × 3) and washed with brine (20 mL). The organic phase was concentrated in *vacuo* and the residue was purified by silica gel flash column chromatography to afford the corresponding cyclic imines.

IV. Characterization Data

ethyl 2-isobutyl-6-methylene-7-phenyl-3,4,5,6-tetrahydro-2*H*-azepine-2-carboxylate (**3a**)

Prepared from ethyl 2-isobutyl-2-isocyanohept-6-enoate (47.4 mg, 0.2 mmol, 1.0 equiv) and iodobenzene (61 mg, 0.3 mmol, 1.5 equiv) according to the general procedure. Column chromatography purification (EtOAc: petroleum ether 30: 1) furnished the product **3a** as colorless oil (50 mg, 0.16 mmol, 79% yield). (new compound). 1 H NMR (400 MHz, CDCl₃): δ 7.86-7.83 (m, 2H), 7.39-7.33 (m, 3H), 5.40 (d, J = 1.2 Hz, 1H), 4.87 (d, J = 1.2 Hz, 1H), 4.19-4.03 (m, 2H), 2.41-2.36 (m, 1H), 2.20-2.12 (m, 2H), 2.05-1.96 (m, 2H), 1.89-1.81 (m, 3H), 1.74-1.64 (m, 1H), 1.24 (t, J = 7.2 Hz, 3H), 1.02 (d, J = 6.8 Hz, 3H), 0.93 (d, J = 6.8 Hz, 3H); 13 C NMR (125 MHz, CDCl₃): δ 174.4, 170.6, 146.8, 140.6, 129.8, 128.7, 127.9, 118.5, 69.9, 60.5, 51.7, 35.0, 34.0, 25.7, 24.7, 24.7, 23.8, 14.1; HRMS: calcd for $C_{20}H_{28}NO_{2}$

(M⁺+H) 314.2115; found 314.2113.

ethyl 2-isobutyl-7-(4-methoxyphenyl)-6-methylene-3,4,5,6-tetrahydro-2*H*-azepine-2-carboxylate (**3b**)

Prepared from ethyl 2-isobutyl-2-isocyanohept-6-enoate (47.4 mg, 0.2 mmol, 1.0 equiv) and 1-iodo-4-methoxybenzene (70 mg, 0.3 mmol, 1.5 equiv) according to the general procedure. Column chromatography purification (EtOAc : petroleum ether 15 : 1) furnished the product **3b** as colorless oil (54 mg, 0.16 mmol, 79% yield). (new compound). 1 H NMR (500 MHz, CDCl₃): δ 7.82-7.81 (m, 2H), 6.88-6.86 (m, 2H), 5.38 (d, J = 1.0 Hz, 1H), 4.86 (d, J = 1.0 Hz, 1H), 4.18-4.02 (m, 2H), 3.82 (d, J = 6.0 Hz, 3H), 2.37-2.35 (m, 1H), 2.12-2.11 (m, 2H), 2.03-1.94 (m, 2H), 1.86-1.81 (m, 3H), 1.71-1.61 (m, 1H), 1.24 (t, J = 7.5 Hz, 3H), 1.01 (d, J = 6.5 Hz, 3H), 0.92 (d, J = 6.5 Hz, 3H); 13 C NMR (125 MHz, CDCl₃): δ 174.6, 170.1, 161.2, 146.8, 133.2, 130.2, 118.2, 113.2, 69.6, 60.4, 55.3, 51.8, 35.1, 34.0, 25.9, 24.7, 24.7, 23.8, 14.1; HRMS: calcd for $C_{21}H_{30}NO_3$ (M⁺+H) 344.2220; found 344.2221.

ethyl 7-([1,1'-biphenyl]-4-yl)-2-isobutyl-6-methylene-3,4,5,6-tetrahydro-2*H*-azepine-2-carboxylate (**3c**)

Prepared from ethyl 2-isobutyl-2-isocyanohept-6-enoate (47.4 mg, 0.2 mmol, 1.0 equiv) and 4-iodo-1,1'-biphenyl (84 mg, 0.3 mmol, 1.5 equiv) according to the general procedure. Column chromatography purification (EtOAc: petroleum ether 30: 1) furnished the product 3c as colorless oil (60 mg, 0.15 mmol, 77% yield). (new compound). ¹H NMR (400 MHz, CDCl₃): δ 7.94-7.92 (m, 2H), 7.63-7.58 (m, 4H), 7.47-7.43 (m, 2H), 7.38-7.34 (m, 1H), 5.44 (d, J = 0.8 Hz, 1H), 4.93 (d, J = 0.8 Hz,

1H), 4.20-4.05 (m, 2H), 2.43-2.40 (m, 1H), 2.19-2.13 (m, 2H), 2.07-1.98 (m, 2H), 1.90-1.84 (m, 3H), 1.76-1.72 (m, 1H), 1.25 (t, J = 7.2 Hz, 3H), 1.03 (d, J = 6.4 Hz, 3H), 0.95 (d, J = 6.4 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃): δ 174.4, 170.2, 146.7, 142.6, 140.8, 139.5, 129.2, 128.8, 127.5, 127.1, 126.7, 118.5, 70.0, 60.5, 51.8 35.1, 34.1, 25.8, 24.7, 24.7, 23.8, 14.1; HRMS: calcd for $C_{26}H_{32}NO_2$ (M⁺+H) 390.2428; found 390.2430.

ethyl 7-(4-chlorophenyl)-2-isobutyl-6-methylene-3,4,5,6-tetrahydro-2*H*-azepine-2-carboxylate (**3d**)

Prepared from ethyl 2-isobutyl-2-isocyanohept-6-enoate (47.4 mg, 0.2 mmol, 1.0 equiv) and 1-chloro-4-iodobenzene (71 mg, 0.3 mmol, 1.5 equiv) according to the general procedure. Column chromatography purification (EtOAc : petroleum ether 30 : 1) furnished the product **3d** as colorless oil (54 mg, 0.16 mmol, 78% yield). (new compound). 1 H NMR (400 MHz, CDCl₃): δ 7.78 (d, J = 8.4 Hz, 2H), 7.31 (d, J = 8.4 Hz, 2H), 5.41 (s, 1H), 4.85 (d, J = 0.8 Hz, 1H), 4.20-4.02 (m, 2H), 2.40-2.34 (m, 1H), 2.18-2.10 (m, 2H), 2.03-1.93 (m, 2H), 1.88-1.80 (m, 3H), 1.73-1.67 (m, 1H), 1.23 (t, J = 7.2 Hz, 3H), 1.00 (d, J = 6.4 Hz, 3H), 0.92 (d, J = 6.4 Hz, 3H); 13 C NMR (125 MHz, CDCl₃): δ 174.1, 169.4, 146.4, 139.0, 136.0, 130.0, 128.1, 118.8, 70.0, 60.5, 51.5, 35.0, 34.0, 25.7, 24.7, 24.7, 23.7, 14.1; HRMS: calcd for $C_{20}H_{27}CINO_2$ (M $^+$ +H) 348.1725; found 348.1722.

ethyl 7-(3-chlorophenyl)-2-isobutyl-6-methylene-3,4,5,6-tetrahydro-2*H*-azepine-2-carboxylate (**3e**)

Prepared from ethyl 2-isobutyl-2-isocyanohept-6-enoate (47.4 mg, 0.2 mmol, 1.0

equiv) and 1-chloro-3-iodobenzene (71 mg, 0.3 mmol, 1.5 equiv) according to the general procedure. Column chromatography purification (EtOAc : petroleum ether 30 : 1) furnished the product **3e** as colorless oil (69 mg, 0.19 mmol, 99% yield). (new compound). 1 H NMR (400 MHz, CDCl₃): δ 7.82 (t, J = 1.6 Hz, 1H), 7.71 (d, J = 7.6 Hz, 1H), 7.37-7.34 (m, 1H), 7.30-7.26 (m, 1H), 5.42 (d, J = 0.8 Hz, 1H), 4.88 (d, J = 0.8 Hz, 1H), 4.20-4.04 (m, 2H), 2.39-2.35 (m, 1H), 2.17-2.10 (m, 2H), 2.02-1.94 (m, 2H), 1.89-1.80 (m, 3H), 1.73-1.69 (m, 1H), 1.24 (t, J = 6.8 Hz, 3H), 1.00 (d, J = 6.4 Hz, 3H), 0.92 (d, J = 6.4 Hz, 3H); 13 C NMR (125 MHz, CDCl₃): δ 174.1, 169.2, 146.2, 142.4, 134.0, 129.8, 129.1, 128.7, 126.9, 119.0, 70.1, 60.6, 51.5, 35.0, 34.0, 25.6, 24.7, 24.6, 23.7, 14.1; HRMS: calcd for $C_{20}H_{27}$ ClNO₂ (M $^{+}$ +H) 348.1725; found 348.1723.

ethyl 7-(4-bromophenyl)-2-isobutyl-6-methylene-3,4,5,6-tetrahydro-2*H*-azepine-2-carboxylate (**3f**)

Prepared from ethyl 2-isobutyl-2-isocyanohept-6-enoate (47.4 mg, 0.2 mmol, 1.0 equiv) and 1-bromo-4-iodobenzene (84 mg, 0.3 mmol, 1.5 equiv) according to the general procedure. Column chromatography purification (EtOAc : petroleum ether 30 : 1) furnished the product **3f** as colorless oil (69 mg, 0.18 mmol, 90% yield). (new compound). 1 H NMR (400 MHz, CDCl₃): δ 7.71 (d, J = 8.4 Hz, 2H), 7.47 (d, J = 8.4 Hz, 2H), 5.41 (s, 1H), 4.85 (d, J = 0.8 Hz, 1H), 4.20-4.02 (m, 2H), 2.40-2.34 (m, 1H), 2.18-2.10 (m, 2H), 2.03-1.93 (m, 2H), 1.89-1.79 (m, 3H), 1.73-1.67 (m, 1H), 1.23 (t, J = 6.8 Hz, 3H), 1.00 (d, J = 6.4 Hz, 3H), 0.92 (d, J = 6.4 Hz, 3H); 13 C NMR (125 MHz, CDCl₃): δ 174.1, 169.5, 146.3, 139.4, 131.0, 130.3, 124.5, 118.9, 70.0, 60.5, 51.5, 35.0, 34.0, 25.7, 24.7, 24.6, 23.7, 14.1; HRMS: calcd for $C_{20}H_{27}BrNO_{2}$ (M $^{+}$ +H) 392.1220; found 392.1222.

ethyl 7-(4-bromophenyl)-2-isobutyl-6-methylene-3,4,5,6-tetrahydro-2*H*-azepine-2-carboxylate (**3g**)

Prepared from ethyl 2-isobutyl-2-isocyanohept-6-enoate (47.4 mg, 0.2 mmol, 1.0 equiv) and methyl 4-iodobenzoate (78 mg, 0.3 mmol, 1.5 equiv) according to the general procedure. Column chromatography purification (EtOAc : petroleum ether 15 : 1) furnished the product 3g as yellow oil (57 mg, 0.15 mmol, 77% yield). (new compound). 1 H NMR (400 MHz, CDCl₃): δ 8.01 (d, J = 8.4 Hz, 2H), 7.88 (d, J = 8.4 Hz, 2H), 5.42 (s, 1H), 4.85 (s, 1H), 4.19-4.04 (m, 2H), 3.93 (s, 3H), 2.42-2.36 (m, 1H), 2.21-2.11 (m, 2H), 2.03-1.94 (m, 2H), 1.89-1.80 (m, 3H), 1.80-1.72 (m, 1H), 1.23 (t, J = 6.8 Hz, 3H), 1.00 (d, J = 6.4 Hz, 3H), 0.92 (d, J = 6.4 Hz, 3H); 13 C NMR (125 MHz, CDCl₃): δ 174.0, 169.8, 166.9, 146.4, 144.8, 131.1, 129.2, 128.7, 119.1, 70.3, 60.6, 52.1, 51.5, 35.0, 34.0, 25.6, 24.7, 24.6, 23.7, 14.1; HRMS: calcd for $C_{22}H_{30}NO_4$ (M $^+$ +H) 372.2169; found 372.2171.

ethyl 7-(4-acetylphenyl)-2-isobutyl-6-methylene-3,4,5,6-tetrahydro-2*H*-azepine-2-carboxylate (**3h**)

Prepared from ethyl 2-isobutyl-2-isocyanohept-6-enoate (47.4 mg, 0.2 mmol, 1.0 equiv) and 1-(4-iodophenyl)ethanone (74 mg, 0.3 mmol, 1.5 equiv) according to the general procedure. Column chromatography purification (EtOAc : petroleum ether 15 : 1) furnished the product **3h** as yellow oil (70 mg, 0.19 mmol, 99% yield). (new compound). 1 H NMR (400 MHz, CDCl₃): δ 7.94-7.89 (m, 4H), 5.43 (d, J = 1.2 Hz, 1H), 4.85 (d, J = 1.2 Hz, 1H), 4.19-4.04 (m, 2H), 2.60 (s, 3H), 2.41-2.36 (m, 1H), 2.19-2.10 (m, 2H), 2.03-1.94 (m, 2H), 1.90-1.81 (m, 3H), 1.74-1.70 (m, 1H), 1.23 (t, J = 7.2 Hz, 3H), 1.00 (d, J = 6.4 Hz, 3H), 0.92 (d, J = 6.4 Hz, 3H); 13 C NMR (125 MHz,

CDCl₃): δ 197.8, 174.0, 169.7, 146.4, 144.8, 137.8, 128.9, 127.9, 119.0, 70.3, 60.6, 51.5, 35.0, 34.0, 26.7, 25.6, 24.7, 24.6, 23.7, 14.1; HRMS: calcd for $C_{22}H_{30}NO_3$ (M⁺+H) 356.2220; found 356.2220.

ethyl 7-(4-cyanophenyl)-2-isobutyl-6-methylene-3,4,5,6-tetrahydro-2*H*-azepine-2-carboxylate (**3i**)

Prepared from ethyl 2-isobutyl-2-isocyanohept-6-enoate (47.4 mg, 0.2 mmol, 1.0 equiv) and 4-iodobenzonitrile (69 mg, 0.3 mmol, 1.5 equiv) according to the general procedure. Column chromatography purification (EtOAc: petroleum ether 15:1) furnished the product **3i** as yellow oil (67 mg, 0.19 mmol, 99% yield). (new compound). 1 H NMR (400 MHz, CDCl₃): δ 7.92 (d, J = 8.4 Hz, 2H), 6.30 (d, J = 8.4 Hz, 2H), 5.45 (d, J = 0.8 Hz, 1H), 4.85 (d, J = 0.8 Hz, 1H), 4.19-4.05 (m, 2H), 2.40-2.36 (m, 1H), 2.18-2.10 (m, 2H), 2.00-1.78 (m, 5H), 1.74-1.67 (m, 1H), 1.23 (t, J = 7.2 Hz, 3H), 0.99 (d, J = 6.4 Hz, 3H), 0.91 (d, J = 6.4 Hz, 3H); 13 C NMR (125 MHz, CDCl₃): δ 173.7, 168.9, 145.9, 144.6, 131.7, 129.2, 119.4, 118.7, 113.2, 70.5, 60.7, 51.3, 35.0, 34.0, 25.5, 24.7, 24.6, 23.6, 14.1; HRMS: calcd for $C_{21}H_{27}N_2O_2$ (M⁺+H) 339.2067; found 339.2071.

ethyl 2-isobutyl-6-methylene-7-(4-nitrophenyl)-3,4,5,6-tetrahydro-2*H*-azepine-2-carboxylate (**3j**)

Prepared from ethyl 2-isobutyl-2-isocyanohept-6-enoate (47.4 mg, 0.2 mmol, 1.0 equiv) and 1-iodo-4-nitrobenzene (74 mg, 0.3 mmol, 1.5 equiv) according to the general procedure. Column chromatography purification (EtOAc: petroleum ether 15: 1) furnished the product **3j** as yellow oil (69 mg, 0.19 mmol, 97% yield). (new

compound). ¹H NMR (400 MHz, CDCl₃): δ 8.21-8.17 (m, 2H), 8.00-7.96 (m, 2H), 5.47 (d, J = 0.8 Hz, 1H), 4.87 (d, J = 0.8 Hz, 2H), 4.20-4.06 (m, 2H), 2.41-2.38 (m, 1H), 2.18-2.11 (m, 2H), 2.02-1.82 (m, 5H), 1.76-1.71 (m, 1H), 1.24 (t, J = 7.2 Hz, 3H), 1.00 (d, J = 6.4 Hz, 3H), 0.92 (d, J = 6.4 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃): δ 173.6, 168.6, 148.6, 146.3, 146.0, 129.5, 123.1, 119.5, 70.6, 60.7, 51.2, 35.0, 34.0, 25.5, 24.7, 24.6, 23.6, 14.1; HRMS: calcd for C₂₀H₂₇N₂O₄ (M⁺+H) 359.1965; found 359.1963.

ethyl 7-(3-formylphenyl)-2-isobutyl-6-methylene-3,4,5,6-tetrahydro-2*H*-azepine-2-carboxylate (**3k**)

Prepared from ethyl 2-isobutyl-2-isocyanohept-6-enoate (47.4 mg, 0.2 mmol, 1.0 equiv) and 3-iodobenzaldehyde (70 mg, 0.3 mmol, 1.5 equiv) according to the general procedure. Column chromatography purification (EtOAc: petroleum ether 15:1) furnished the product **3k** as colorless oil (68 mg, 0.19 mmol, 99% yield). (new compound). 1 H NMR (400 MHz, CDCl₃): δ 10.0 (s, 1H), 8.29 (t, J = 1.2 Hz, 1H), 8.16 (ddd, J = 8.0, 1.2, 1.2 Hz, 1H), 7.91 (ddd, J = 8.0, 1.2, 1.2 Hz, 1H), 7.51 (t, J = 7.6 Hz, 1H), 5.46 (s, 1H), 4.89 (d, J = 0.8 Hz, 1H), 4.20-4.05 (m, 2H), 2.43-2.38 (m, 1H), 2.21-2.11 (m, 2H), 2.03-1.95 (m, 2H), 1.90-1.81 (m, 3H), 1.75-1.71 (m, 1H), 1.24 (t, J = 7.2 Hz, 3H), 1.00 (d, J = 6.4 Hz, 3H), 0.93 (d, J = 6.4 Hz, 3H); 13 C NMR (125 MHz, CDCl₃): δ 192.2, 174.0, 169.3, 146.1, 141.6, 136.2, 134.5, 130.5, 130.5, 128.7, 119.3, 70.2, 60.6, 51.4, 35.0, 34.0, 25.6, 24.7, 24.6, 23.7, 14.1; HRMS: calcd for $C_{21}H_{28}NO_3$ (M $^+$ +H) 342.2064; found 342.2065.

ethyl 7-(3,5-dibromophenyl)-2-isobutyl-6-methylene-3,4,5,6-tetrahydro-2*H*-azepine-2-carboxylate (**3l**)

Prepared from ethyl 2-isobutyl-2-isocyanohept-6-enoate (47.4 mg, 0.2 mmol, 1.0 equiv) and 1,3-dibromo-5-iodobenzene (108 mg, 0.3 mmol, 1.5 equiv) according to the general procedure. Column chromatography purification (EtOAc : petroleum ether 30 : 1) furnished the product **3l** as yellow oil (79 mg, 0.17 mmol, 84% yield). (new compound). 1 H NMR (400 MHz, CDCl₃): δ 7.89 (d, J = 2.0 Hz, 2H), 7.67 (t, J = 1.6 Hz, 1H), 5.45 (s, 1H), 4.89 (s, 1H), 4.19-4.05 (m, 2H), 2.39-2.33 (m, 1H), 2.16-2.10 (m, 2H), 1.98-1.78 (m, 5H), 1.71-1.65 (m, 1H), 1.24 (t, J = 7.2 Hz, 3H), 0.99 (d, J = 6.4 Hz, 3H), 0.92 (d, J = 6.4 Hz, 3H); 13 C NMR (125 MHz, CDCl₃): δ 173.8, 167.8, 145.6, 143.9, 135.1, 130.5, 122.6, 119.6, 70.3, 60.8, 51.3, 34.9, 33.9, 25.6, 24.7, 24.7, 23.8, 14.2; HRMS: calcd for $C_{20}H_{26}Br_{2}NO_{2}$ (M^{+} +H) 470.0325; found 470.0323.

ethyl 2-isobutyl-6-methylene-7-(naphthalen-1-yl)-3,4,5,6-tetrahydro-2*H*-azepine-2-carboxylate (**3m**)

Prepared from ethyl 2-isobutyl-2-isocyanohept-6-enoate (47.4 mg, 0.2 mmol, 1.0 equiv) and 1-iodonaphthalene (76 mg, 0.3 mmol, 1.5 equiv) according to the general procedure. Column chromatography purification (EtOAc: petroleum ether 30: 1) furnished the product **3m** as colorless oil (43 mg, 0.17 mmol, 59% yield). (new compound). 1 H NMR (400 MHz, CDCl₃): δ 8.33-8.31 (m, 1H), 7.84-7.82 (m, 2H), 7.51-7.42 (m, 4H), 5.27 (s, 1H), 4.83 (s, 1H), 4.26-4.15 (m, 2H), 2.65-2.59 (m, 1H), 2.49-2.42 (m, 1H), 2.34-2.30 (m, 1H), 2.10-2.04 (m, 1H), 2.03-2.00 (m, 2H), 1.97-1.84 (m, 3H), 1.31 (t, J = 7.6 Hz, 3H), 0.95-0.92 (m, 6H); 13 C NMR (125 MHz, CDCl₃): δ 174.2, 171.7, 148.7, 141.4, 133.9, 131.5, 128.8, 128.1, 127.0, 126.6, 125.9, 125.6, 124.8, 120.8, 70.8, 60.8, 52.7, 35.3, 34.2, 24.9, 24.7, 24.4, 23.6, 14.1; HRMS: calcd for $C_{24}H_{30}NO_{2}$ (M $^{+}$ +H) 364.2271; found 364.2273.

ethyl 7-(benzo[d][1,3]dioxol-5-yl)-2-isobutyl-6-methylene-3,4,5,6-tetrahydro-2H-azepine-2-carboxylate ($3\mathbf{n}$)

Prepared from ethyl 2-isobutyl-2-isocyanohept-6-enoate (47.4 mg, 0.2 mmol, 1.0 equiv) and 5-bromobenzo[d][1,3]dioxole (49 mg, 0.3 mmol, 1.5 equiv) according to the procedure A. Column chromatography purification (EtOAc : petroleum ether 15 : 1) furnished the product **3n** as colorless oil (79 mg, 0.13 mmol, 66% yield). (new compound). 1 H NMR (500 MHz, CDCl₃): δ 7.52 (d, J = 1.0 Hz, 1H), 7.35 (dd, J = 6.4, 1.5 Hz, 1H), 6.81 (d, J = 6.4 Hz, 1H), 6.02 (d, J = 1.0 Hz, 2H), 5.42 (s, 1H), 4.91 (s, 1H), 4.23-4.05 (m, 2H), 2.41-2.36 (m, 1H), 2.18-2.15 (m, 2H), 2.06-1.98 (m, 3H), 1.89-1.85 (m, 2H), 1.74-1.70 (m, 1H), 1.27 (t, J = 7.0 Hz, 3H), 1.04 (d, J = 7.0 Hz, 3H), 0.96 (d, J = 7.0 Hz, 3H); 13 C NMR (125 MHz, CDCl₃): δ 174.5, 169.8, 149.3, 147.6, 146.7, 135.1, 123.9, 118.4, 108.6, 107.3, 101.3, 70.0, 60.5, 51.8, 35.1, 34.0, 25.9, 24.7, 24.7, 23.8, 14.1; HRMS: calcd for $C_{21}H_{28}NO_4$ (M⁺+H) 358.2013; found 358.2011

ethyl 2-isobutyl-6-methylene-7-(quinolin-6-yl)-3,4,5,6-tetrahydro-2*H*-azepine-2-carboxylate (**3o**)

Prepared from ethyl 2-isobutyl-2-isocyanohept-6-enoate (47.4 mg, 0.2 mmol, 1.0 equiv) and 6-iodoquinoline (77 mg, 0.3 mmol, 1.5 equiv) according to the general procedure. Column chromatography purification (EtOAc: petroleum ether 15:1) furnished the product **3o** as yellow oil (72 mg, 0.19 mmol, 99% yield). (new compound). 1 H NMR (400 MHz, CDCl₃): δ 8.92 (dd, J = 4.0, 1.6 Hz, 1H), 8.37 (dd, J = 8.4, 1.2 Hz, 1H), 8.20-8.18 (m, 2H), 8.09 (d, J = 8.8 Hz, 1H), 7.41 (dd, J = 4.4, 4.0

Hz, 1H), 5.50 (s, 1H), 4.94 (d, J = 1.2 Hz, 1H), 4.22-4.06 (m, 2H), 2.47-2.42 (m, 1H), 2.25-2.15 (m, 2H), 2.09-2.00 (m, 2H), 1.93-1.86 (m, 3H), 1.78-1.73 (m, 1H), 1.25 (t, J = 7.2 Hz, 3H), 1.05 (d, J = 6.4 Hz, 3H), 0.96 (d, J = 6.4 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃): δ 174.2, 169.8, 151.0, 149.2, 146.4, 138.4, 136.9, 129.4, 129.1, 128.8, 127.6, 121.2, 118.9, 70.2, 60.6, 51.6, 35.0, 34.0, 25.8, 24.7, 24.7, 23.8, 14.1; HRMS: calcd for $C_{23}H_{29}N_2O_2$ (M⁺+H) 365.2224; found 365.2223.

ethyl 2-isobutyl-6-methylene-7-(pyridin-3-yl)-3,4,5,6-tetrahydro-2*H*-azepine-2-carboxylate (**3p**)

Prepared from ethyl 2-isobutyl-2-isocyanohept-6-enoate (47.4 mg, 0.2 mmol, 1.0 equiv) and 3-iodopyridine (62 mg, 0.3 mmol, 1.5 equiv) according to the general procedure. Column chromatography purification (EtOAc: petroleum ether 15: 1) furnished the product $3\mathbf{p}$ as yellow oil (55 mg, 0.17 mmol, 87% yield). (new compound). ^1H NMR (400 MHz, CDCl₃): δ 9.00 (d, J = 1.6 Hz, 1H), 8.62 (dd, J = 4.8, 1.6 Hz, 1H), 8.15 (ddd, J = 8.0, 2.0, 2.0 Hz, 1H), 7.32-7.28 (m, 1H), 5.48 (d, J = 0.8 Hz, 1H), 4.92 (d, J = 0.8 Hz, 1H), 4.21-4.07 (m, 2H), 2.44-2.39 (m, 1H), 2.22-2.13 (m, 2H), 2.05-1.72 (m, 6H), 1.26 (t, J = 7.2 Hz, 3H), 1.01 (d, J = 6.4 Hz, 3H), 0.93 (d, J = 6.4 Hz, 3H); ^{13}C NMR (125 MHz, CDCl₃): δ 173.9, 168.5, 150.6, 150.3, 146.1, 136.2, 135.9, 122.9, 119.5, 70.4, 60.7, 51.5, 35.2, 34.1, 25.6, 24.7, 24.7, 23.6, 14.1; HRMS: calcd for $\text{C}_{19}\text{H}_{27}\text{N}_2\text{O}_2$ (M $^+$ +H) 315.2067; found 315.2067.

ethyl

2-isobutyl-6-methylene-7-(thiophen-2-yl)-3,4,5,6-tetrahydro-2H-azepine-2-carboxylat e (**3q**)

Prepared from ethyl 2-isobutyl-2-isocyanohept-6-enoate (47.4 mg, 0.2 mmol, 1.0 equiv) and 2-iodothiophene (63 mg, 0.3 mmol, 1.5 equiv) according to the general procedure. Column chromatography purification (EtOAc : petroleum ether 15 : 1) furnished the product $\bf 3q$ as colorless oil (35 mg, 0.11 mmol, 55% yield). (new compound). $^1{\rm H}$ NMR (400 MHz, CDCl₃): δ 7.37-7.36 (m, 1H), 7.28-7.26 (m, 1H), 7.00-6.98 (m, 1H), 5.40 (s, 1H), 5.11 (d, J=1.2 Hz, 1H), 4.18-4.05 (m, 2H), 2.35-2.30 (m, 1H), 2.13-2.07 (m, 2H), 2.00-1.91 (m, 1H), 1.90-1.80 (m, 3H), 1.77-1.64 (m, 1H), 1.23 (t, J=7.2 Hz, 3H), 1.01 (d, J=6.4 Hz, 3H), 0.91 (d, J=6.4 Hz, 3H); $^{13}{\rm C}$ NMR (125 MHz, CDCl₃): δ 174.2, 165.2, 148.1, 145.9, 123.0, 129.5, 127.0, 118.3, 70.1, 60.6, 51.6, 35.6, 33.9, 26.0, 24.8, 24.7, 23.8, 14.2; HRMS: calcd for ${\rm C_{18}H_{26}NO_{2}S}$ (M $^+$ +H) 320.1679; found 320.1680.

diethyl 7,7'-(1,4-phenylene)bis(2-isobutyl-6-methylene-3,4,5,6-tetrahydro-2H-azepine-2-carboxylate) ($3\mathbf{r}$)

Procedure: An oven-dried 25 mL Schlenk tube charged with Pd(OAc)₂ (0.02 mmol, 4.5 mg), PPh₃ (0.04 mmol, 10.5 mg), 1,4-diiodobenzene (0.1 mmol, 33 mg) and CsOPiv (0.24 mmol, 56.0 mg) was vacuumed and refilled with Ar for 3 times. Then the tube was placed in an oil-bath at 80 °C. A solution of ethyl 2-isobutyl-2-isocyanohept-6-enoate (47.4 mg, 0.2 mmol) in 1.0 mL of toluene was added dropwise with a syringe pump within 1 h. The crude reaction mixture was extracted with DCM (20 mL × 3) and washed with brine (20 mL). The organic phase was concentrated in *vacuo* and the residue was purified by silica gel flash column chromatography to afford $3\mathbf{r}$ as colorless oil (42 mg, 0.15 mmol, 76% yield). (new compound). ¹H NMR (400 MHz, CDCl₃): δ 7.81 (s, 4H), 5.39 (s, 2H), 4.85 (s, 2H), 4.19-4.00 (m, 4H), 2.41-2.35 (m, 2H), 2.19-2.12 (m, 4H), 2.06-1.94 (m, 4H), 1.88-1.79 (m, 6H), 1.74-1.68 (m, 2H), 1.22 (t, J = 7.2 Hz, 6H), 1.00 (d, J = 6.4 Hz,

6H), 0.92 (d, J = 6.4 Hz, 6H); ¹³C NMR (125 MHz, CDCl₃): δ 174.4, 170.3, 146.7, 141.9, 128.3, 118.7, 70.1, 60.5, 51.8, 35.1, 34.0, 25.7, 24.7, 24.7, 23.8, 14.1; HRMS: calcd for $C_{34}H_{49}N_2O_4$ (M⁺+H) 549.3687; found 549.3685.

ethyl 7-((1,3-dimethyl-2-oxoindolin-3-yl)methyl)-2-isobutyl-6-methylene-3,4,5,6-tetrahydro-2*H*-azepine-2-carboxylate (**3s**)

Prepared from ethyl 2-isobutyl-2-isocyanohept-6-enoate (47.4 mg, 0.2 mmol, 1.0 equiv) and N-(2-iodophenyl)-N-methylmethacrylamide (91 mg, 0.3 mmol, 1.5 equiv) according to the general procedure. Column chromatography purification (EtOAc: petroleum ether 10: 1) furnished the product 3s as yellow solid (50 mg, 0.12 mmol, 61% yield). (new compound). 1 H NMR (500 MHz, CDCl₃): δ 7.22-7.17 (m, 2H), 7.00-6.98 (m, 1H), 6.79-6.76 (m, 1H), 5.03-5.01 (m, 1H), 4.92-4.91 (m, 1H), 4.06-3.90 (m, 2H), 3.32-3.28 (m, 1H), 3.19-3.17 (m, 2H), 3.03-2.98 (m, 1H), 1.84-1.82 (m, 1H), 1.69-1.54 (m, 4H), 1.52-1.32 (m, 6H), 1.26-1.10 (m, 5H), 0.80-0.68 (m, 6H); 13 C NMR (125 MHz, CDCl₃): δ 180.4, 174.4, 168.5, 148.4, 143.8, 134.0, 127.3, 122.8, 121.8, 115.7, 107.6, 69.4, 60.4, 49.0, 48.6, 46.9, 34.4, 32.9, 26.2, 25.7, 24.3, 24.3, 24.0, 23.5, 14.1; HRMS: calcd for $C_{25}H_{35}N_2O_3$ (M^+ +H) 411.2642; found 411.2645.

methyl 2-isopropyl-6-methylene-7-phenyl-3,4,5,6-tetrahydro-2*H*-azepine-2-carboxylate (**4a**)

Prepared from methyl 2-isocyano-2-isopropylhept-6-enoate (42 mg, 0.2 mmol, 1.0 equiv) and iodobenzene (61 mg, 0.3 mmol, 1.5 equiv) according to the general

procedure. Column chromatography purification (EtOAc : petroleum ether 30 : 1) furnished the product **4a** as colorless oil (56 mg, 0.19 mmol, 99% yield). (new compound). 1 H NMR (400 MHz, CDCl₃): δ 7.90 (dd, J = 8.0, 1.6 Hz, 2H), 7.42-7.26 (m, 3H), 5.39 (s, 1H), 4.87 (d, J = 1.2 Hz, 1H), 3.60 (s, 3H), 2.45-2.39 (m, 1H), 2.22-2.04 (m, 3H), 1.86-1.79 (m, 2H), 1.71-1.64 (m, 1H), 1.07 (d, J = 6.4 Hz, 3H), 1.04 (d, J = 6.4 Hz, 3H); 13 C NMR (125 MHz, CDCl₃): δ 174.2, 170.9, 146.2, 140.2, 129.8, 128.6, 127.8, 118.0, 72.6, 51.1, 40.2, 33.6, 31.8, 26.2, 18.4, 16.9; HRMS: calcd for $C_{18}H_{24}NO_2$ (M^+ +H) 286.1802; found 286.1800.

methyl 2-(sec-butyl)-6-methylene-7-phenyl-3,4,5,6-tetrahydro-2*H*-azepine-2-carboxylate (**4b**)

Prepared from methyl 2-(sec-butyl)-2-isocyanohept-6-enoate (45 mg, 0.2 mmol, 1.0 equiv) and iodobenzene (61 mg, 0.3 mmol, 1.5 equiv) according to the general procedure. Column chromatography purification (EtOAc: petroleum ether 30: 1) furnished the product **4b** as colorless oil (55 mg, 0.18 mmol, 92% yield). (new compound). 1 H NMR (400 MHz, CDCl₃): δ 7.90-7.88 (m, 2H), 7.40-7.33 (m, 3H), 5.38 (s, 1H), 4.86 (d, J = 1.2 Hz, 1H), 3.60 (s, 3H), 2.44-2.38 (m, 1H), 2.15-2.07 (m, 2H), 1.94-1.64 (m, 5H), 1.40-1.21 (m, 1H), 1.07-0.94 (m, 6H); 13 C NMR (125 MHz, CDCl₃): δ 174.3, 170.7, 146.2, 140.1, 129.8, 128.6, 127.8, 117.9, 73.2, 51.1, 47.3, 33.4, 31.4, 25.8, 24.8, 13.0, 12.7; HRMS: calcd for $C_{19}H_{26}NO_2$ (M^+ +H) 300.1958; found 300.1955.

methyl 2-(*tert*-butyl)-6-methylene-7-phenyl-3,4,5,6-tetrahydro-2*H*-azepine-2-carboxylate (**4c**)

Prepared from methyl 2-(tert-butyl)-2-isocyanohept-6-enoate (45 mg, 0.2 mmol,

1.0 equiv) and iodobenzene (61 mg, 0.3 mmol, 1.5 equiv) according to the general procedure. Column chromatography purification (EtOAc : petroleum ether 30 : 1) furnished the product $\bf 4c$ as colorless solid (50 mg, 0.16 mmol, 83% yield). (new compound). 1 H NMR (400 MHz, CDCl₃): δ 7.95-7.91 (m, 2H), 7.43-7.35 (m, 3H), 5.36 (s, 1H), 4.78 (s, 1H), 3.54 (s, 3H), 2.40-2.29 (m, 2H), 2.05-1.80 (m, 3H), 1.53-1.49 (m, 1H), 1.12 (s, 9H); 13 C NMR (125 MHz, CDCl₃): δ 173.1, 169.9, 146.4, 139.8, 129.8, 128.4, 127.9, 116.7, 74.3, 50.6, 39.9, 33.5, 28.4, 26.5, 26.1; HRMS: calcd for $C_{19}H_{26}NO_2$ (M⁺+H) 300.1958; found 300.1958.

ethyl 6-methylene-2-(pent-4-en-1-yl)-7-phenyl-3,4,5,6-tetrahydro-2*H*-azepine-2-carboxylate (**4d**)

Prepared from ethyl 2-isocyano-2-(pent-4-en-1-yl)hept-6-enoate (50 mg, 0.2 mmol, 1.0 equiv) and iodobenzene (61 mg, 0.3 mmol, 1.5 equiv) according to the general procedure. Column chromatography purification (EtOAc : petroleum ether 30 : 1) furnished the product **4d** as colorless oil (59 mg, 0.16 mmol, 83% yield). (new compound). 1 H NMR (400 MHz, CDCl₃): δ 7.83 (dd, J = 8.0, 1.2 Hz, 2H), 7.39-7.33 (m, 3H), 5.88-5.81 (m, 1H), 5.39 (s, 1H), 5.06-4.95 (m, 2H), 4.86 (d, J = 1.2 Hz, 1H), 4.18-4.03 (m, 2H), 2.43-2.39 (m, 1H), 2.19-2.08 (m, 4H), 2.00-1.93 (m, 2H), 1.87-1.79 (m, 3H), 1.72-1.60 (m, 1H), 1.50-1.40 (m, 1H), 1.22 (t, J = 6.8 Hz, 3H); 13 C NMR (125 MHz, CDCl₃): δ 173.9, 171.2, 146.7, 140.5, 138.9, 129.9, 128.7, 127.9, 118.7, 114.4, 69.9, 60.5, 43.3, 34.0, 34.0, 25.9, 23.6, 14.2; HRMS: calcd for $C_{21}H_{28}NO_2$ (M $^+$ +H) 326.2115; found 326.2119.

diethyl (6-methylene-2-(pent-4-en-1-yl)-7-phenyl-3,4,5,6-tetrahydro-2H-azepin-2-yl) phosphonate (**4e**)

Prepared from diethyl (6-isocyanoundeca-1,10-dien-6-yl)phosphonate (63 mg, 0.2 mmol, 1.0 equiv) and iodobenzene (61 mg, 0.3 mmol, 1.5 equiv) according to the general procedure. Column chromatography purification (EtOAc : petroleum ether 15 : 1) furnished the product **4e** as yellow oil (63 mg, 0.16 mmol, 81% yield). (new compound). 1 H NMR (400 MHz, CDCl₃): δ 7.77 (d, J = 6.8 Hz, 2H), 7.37-7.30 (m, 3H), 5.78-5.74 (m, 1H), 5.42 (s, 1H), 5.00-4.91 (m, 3H), 4.27-4.14 (m, 4H), 2.55-2.52 (m, 1H), 2.37-2.25 (m, 1H), 2.20-1.79 (m, 7H), 1.60-1.49 (m, 2H), 1.34-1.26 (m, 6H); 13 C NMR (125 MHz, CDCl₃): δ 169.8 (d, J = 24.3 Hz), 146.7, 141.0, 139.0, 130.1, 129.0, 128.1, 119.5, 114.9, 68.4 (d, J = 169.5 Hz), 63.1 (d, J = 7.5 Hz), 35.5, 34.6, 33.5, 31.2 (d, J = 153.3 Hz), 30.0, 29.7, 23.8 (d, J = 3.1 Hz), 23.2 (d, J = 12.4 Hz), 16.9 (t, J = 6.3 Hz); HRMS: calcd for $C_{22}H_{33}NO_{3}P$ (M^{+} +H) 390.2193; found 390.2186.

ethyl 2-isobutyl-5-methylene-6-phenyl-2,3,4,5-tetrahydropyridine-2-carboxylate (4f)

Prepared from ethyl 2-isobutyl-2-isocyanohex-5-enoate (45 mg, 0.2 mmol, 1.0 equiv) and iodobenzene (61 mg, 0.3 mmol, 1.5 equiv) according to the procedure but in THF as a solvent. Column chromatography purification (EtOAc : petroleum ether 30 : 1) furnished the product **4f** as colorless oil (46 mg, 0.15 mmol, 77% yield). (new compound). 1 H NMR (400 MHz, CDCl₃): δ 7.49-7.47 (m, 2H), 7.36-7.35 (m, 3H), 5.38 (s, 1H), 5.25 (s, 1H), 4.23-4.12 (m, 2H), 2.54-2.51 (m, 2H), 2.25-2.19 (m, 1H), 1.99-1.73 (m, 4H), 1.27 (t, J = 6.8 Hz, 3H), 0.97 (d, J = 6.4 Hz, 3H), 0.95 (d, J = 6.4

Hz, 3H); 13 C NMR (125 MHz, CDCl₃): δ 174.3, 167.3, 139.8, 137.6, 128.9, 128.7, 127.8, 121.8, 66.9, 61.0, 48.5, 31.2, 26.4, 24.7, 24.4, 24.0, 14.2; HRMS: calcd for $C_{19}H_{26}NO_2$ (M^++H) 300.1958; found 300.1960.

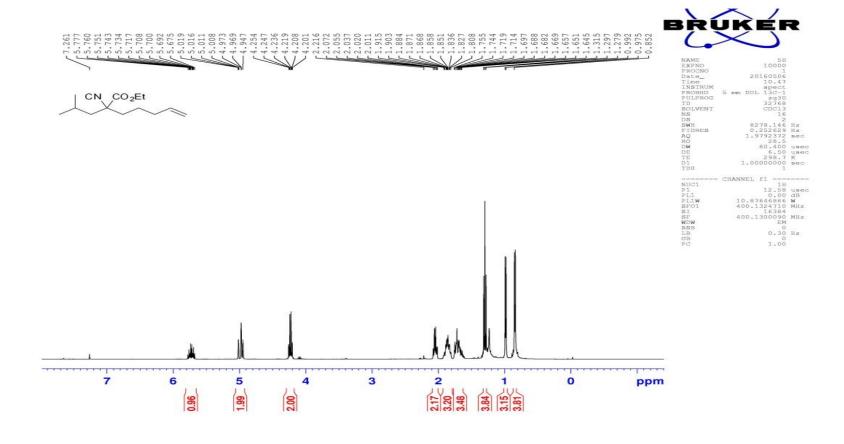
ethyl 2-isobutyl-4-methylene-5-phenyl-3,4-dihydro-2*H*-pyrrole-2-carboxylate (**4g**)

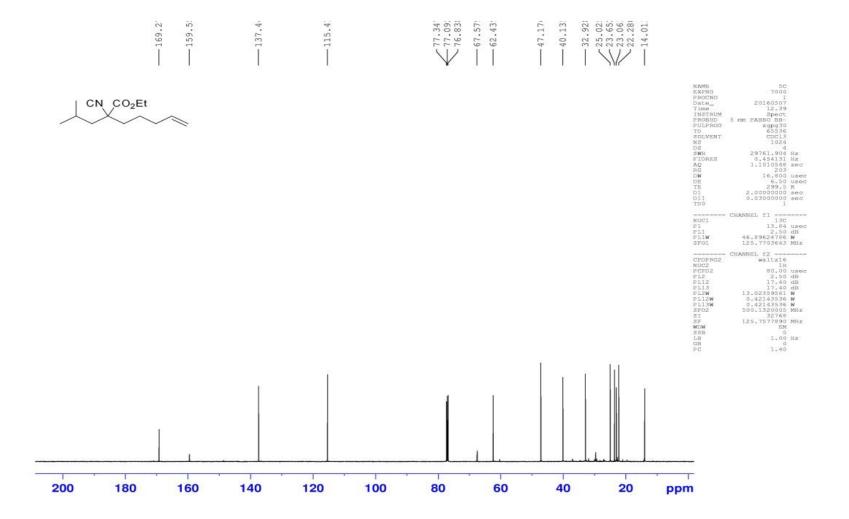
Prepared from ethyl 2-isobutyl-2-isocyanopent-4-enoate (42 mg, 0.2 mmol, 1.0 equiv) and iodobenzene (61 mg, 0.3 mmol, 1.5 equiv) according to the general procedure. Column chromatography purification (EtOAc: petroleum ether 30: 1) furnished the product **4g** as colorless oil (36 mg, 0.12 mmol, 63% yield). (new compound). ¹H NMR (400 MHz, CDCl₃): δ 7.66-7.63 (m, 2H), 7.47-7.40 (m, 3H), 5.47 (t, J = 2.4 Hz, 1H), 5.42 (t, J = 2.4 Hz, 1H), 4.29-4.17 (m, 2H), 3.27 (dt, J = 16.8, 2.4 Hz, 1H), 1.99-1.93 (m, 1H), 1.88-1.79 (m, 2H), 1.30 (t, J = 6.8 Hz, 3H), 0.96 (d, J = 6.0 Hz, 6H); ¹³C NMR (125 MHz, CDCl₃): δ 174.0, 172.3, 148.1, 133.4, 130.0, 128.8, 128.3, 112.6, 79.3, 61.2, 47.7, 40.6, 25.1, 24.1, 23.8, 14.2; HRMS: calcd for $C_{18}H_{24}NO_{2}$ (M^{+} +H) 286.1802; found 286.1804.

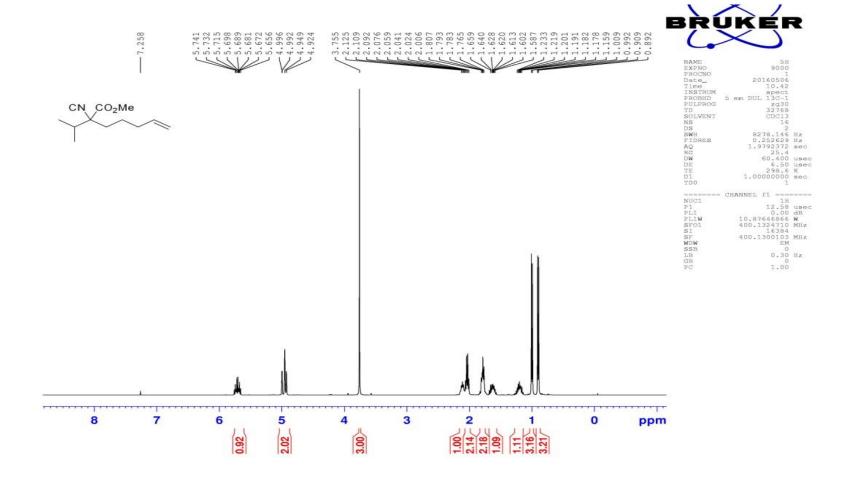
ethyl 4-methylene-5-phenyl-3,4-dihydro-2*H*-pyrrole-2-carboxylate (**4h**)

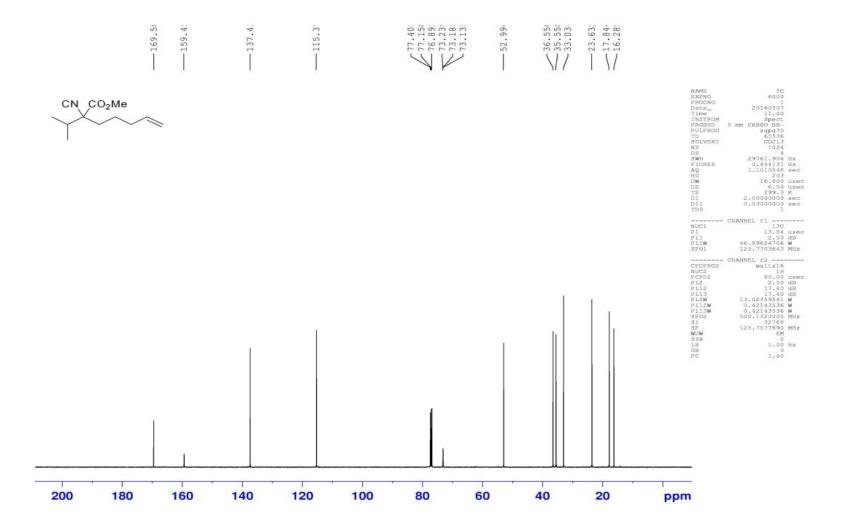
Prepared from ethyl 2-isocyanopent-4-enoate (30 mg, 0.2 mmol, 1.0 equiv) and iodobenzene (61 mg, 0.3 mmol, 1.5 equiv) according to the general procedure. Column chromatography purification (EtOAc : petroleum ether 30 : 1) furnished the product **4h** as yellow oil (33 mg, 0.14 mmol, 72% yield). (new compound). ¹H NMR (400 MHz, CDCl₃): 7.67-7.65 (m, 2H), 7.46-7.40 (m, 3H), 5.51-5.47 (m, 2H), 4.87 (t, J = 6.4 Hz, 1H), 4.30-4.22 (m, 2H), 3.06-3.03 (m, 2H), 1.32 (t, J = 6.8 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃): δ 174.8, 172.0, 147.8, 133.1, 130.2, 128.7, 128.4, 112.9, 71.0, 61.4, 34.3, 14.2; HRMS: calcd for C₁₄H₁₆NO₂ (M⁺+H) 230.1176; found 230.1174.

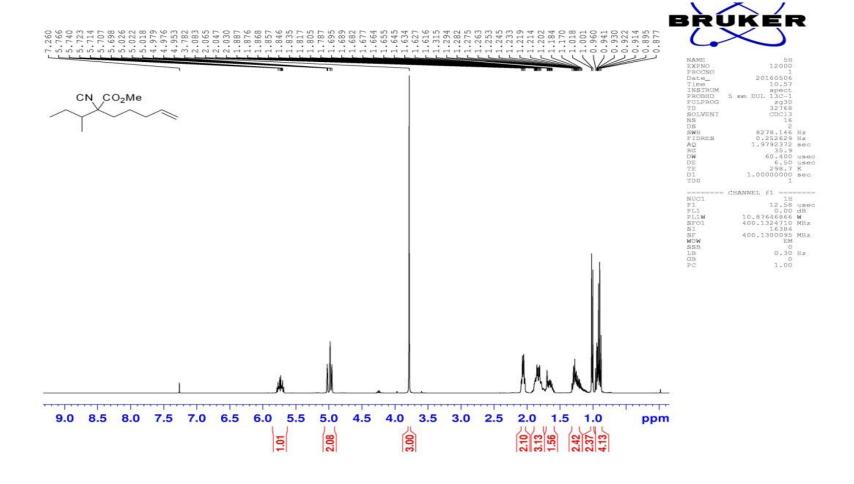
(*E*)-ethyl 4-benzylidene-2-isobutyl-5-phenyl-3,4-dihydro-2*H*-pyrrole-2-carboxylate (**4i**)

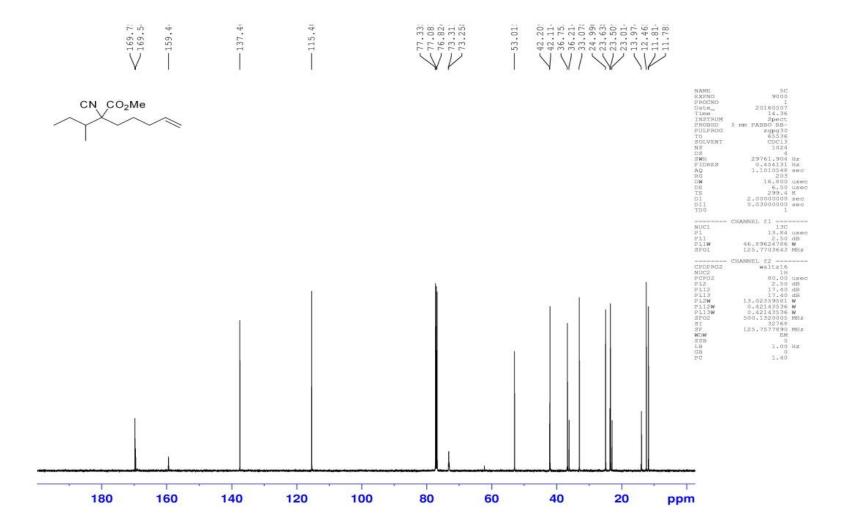

Prepared from (*E*)-ethyl 2-isobutyl-2-isocyano-5-phenylpent-4-enoate (57 mg, 0.2 mmol, 1.0 equiv) and iodobenzene (61 mg, 0.3 mmol, 1.5 equiv) according to the general procedure. Column chromatography purification (EtOAc : petroleum ether 30 : 1) furnished the product **4i** as yellow oil (70 mg, 0.19 mmol, 97% yield). (new compound). ¹H NMR (400 MHz, CDCl₃): 7.66-7.65 (m, 2H), 7.48-7.37 (m, 7H), 7.32-7.25 (m, 1H), 6.80 (t, J = 2.4 Hz, 1H), 4.31-4.18 (m, 2H), 3.55 (dd, J = 17.2, 2.8 Hz, 1H), 3.02 (dd, J = 17.2, 2.8 Hz, 1H), 1.97-1.93 (m, 2H), 1.91-1.82 (m, 1H), 1.31 (t, J = 6.8 Hz, 3H), 0.98-0.95 (m, 6H); ¹³C NMR (125 MHz, CDCl₃): δ 174.5, 174.5, 140.9, 136.8, 134.2, 130.1, 129.7, 129.4, 129.3, 129.0, 128.7, 128.6, 81.2, 61.7, 48.4, 27.4, 25.4, 24.4, 24.2, 14.5; HRMS: calcd for $C_{24}H_{28}NO_2$ (M⁺+H) 362.2115; found 362.2118.

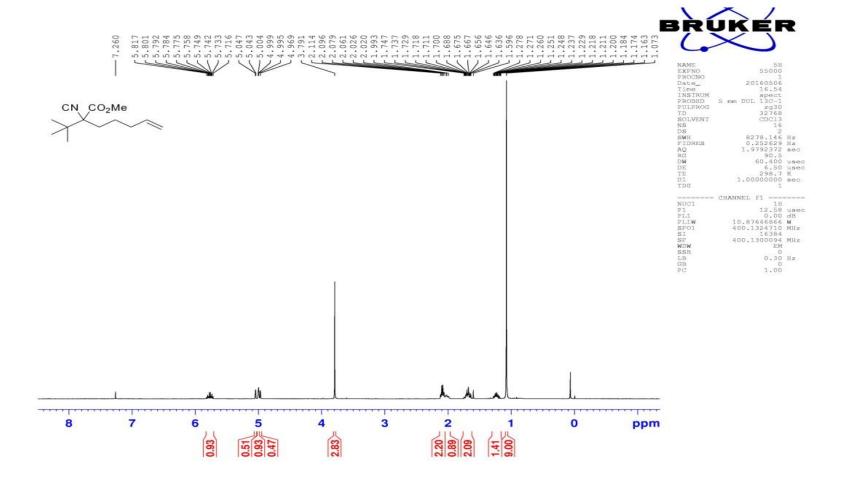

V. References

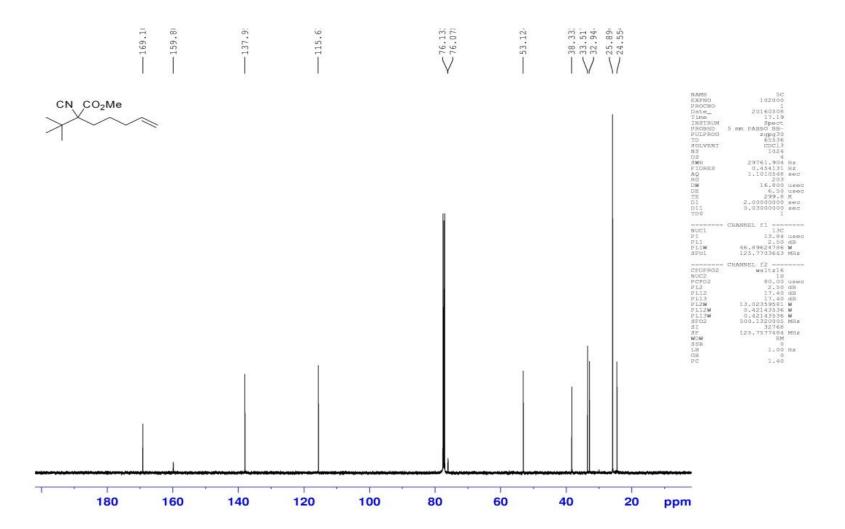

- (1) Casabona, D.; Jim énez, A.; Cativiela C. Tetrahedron. 2007, 63, 5056.
- (2) Gulevich, A. V.; Zhdanko, A. G.; Orru, R. V. A.; Nenajdenko, V. G. *Chem. Rev.* **2010**, *110*, 5235.
- (3) Ito, Y.; Higuchi, N.; Murakami, M. Tetrahedron Lett. 1988, 29, 5151.
- (4) Banfi, L.; Basso, A.; Guanti, G.; Riva, R. Tetrahedron Lett. 2003, 44, 7655.

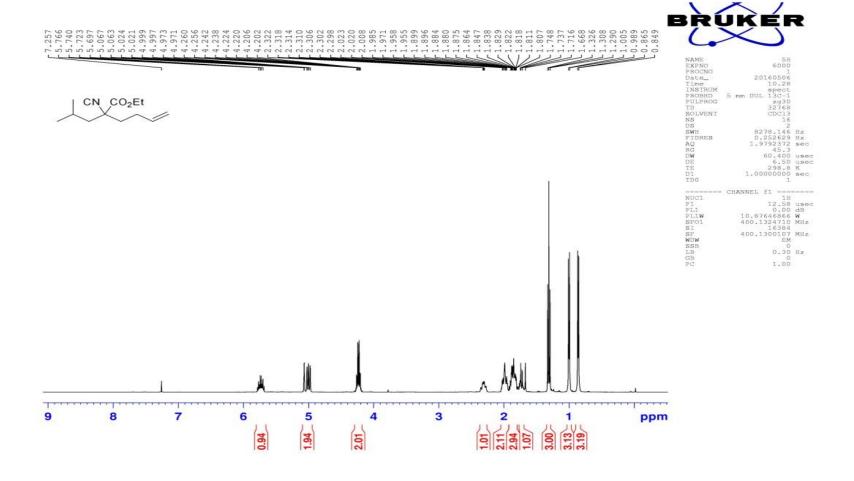

VI. Copies of ¹H and ¹³C NMR Spectra

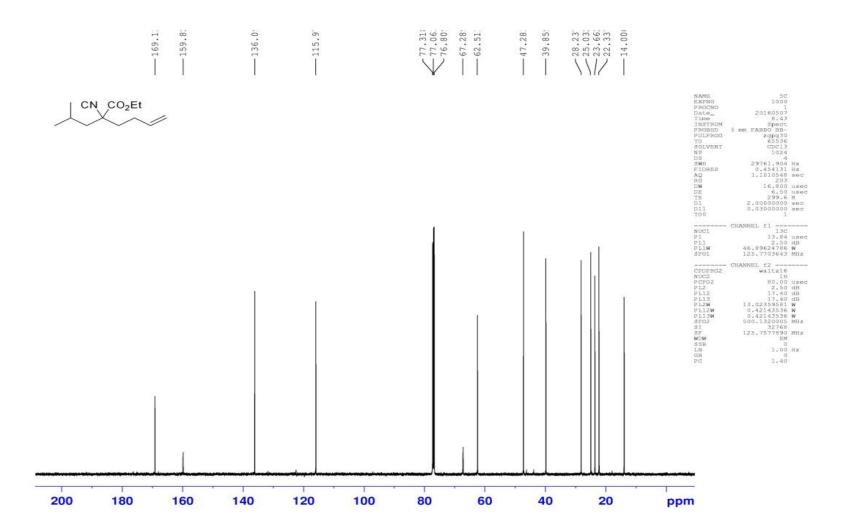

1a

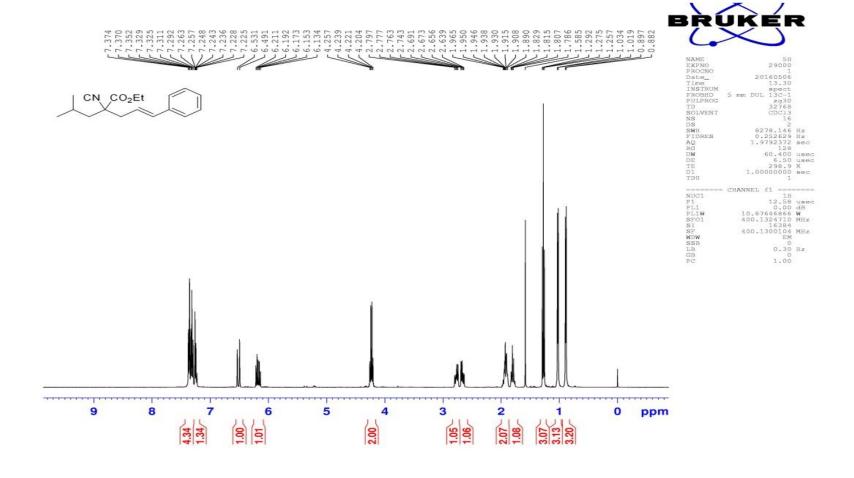


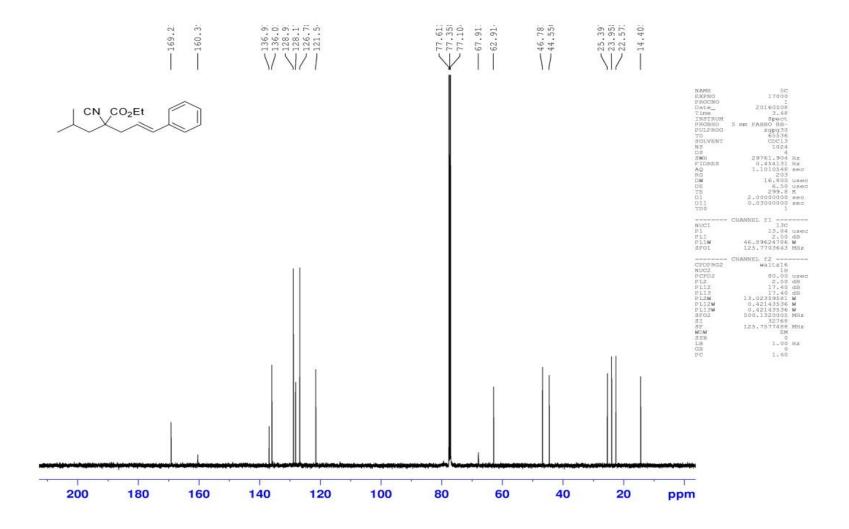


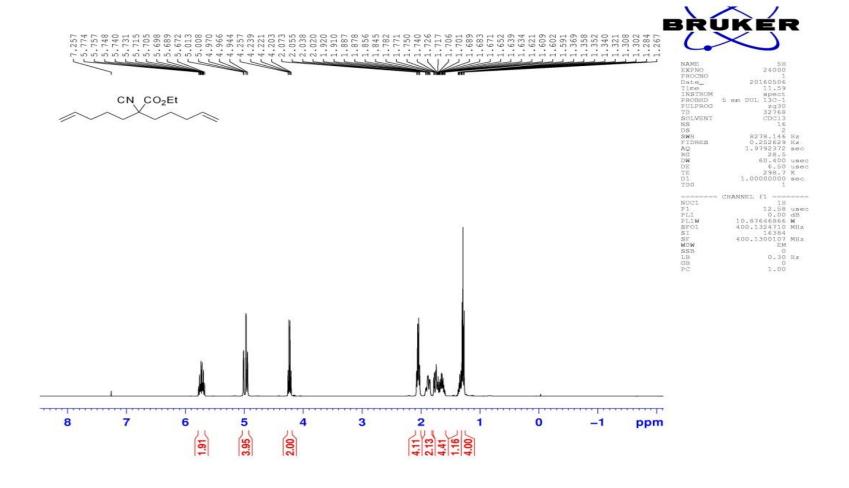


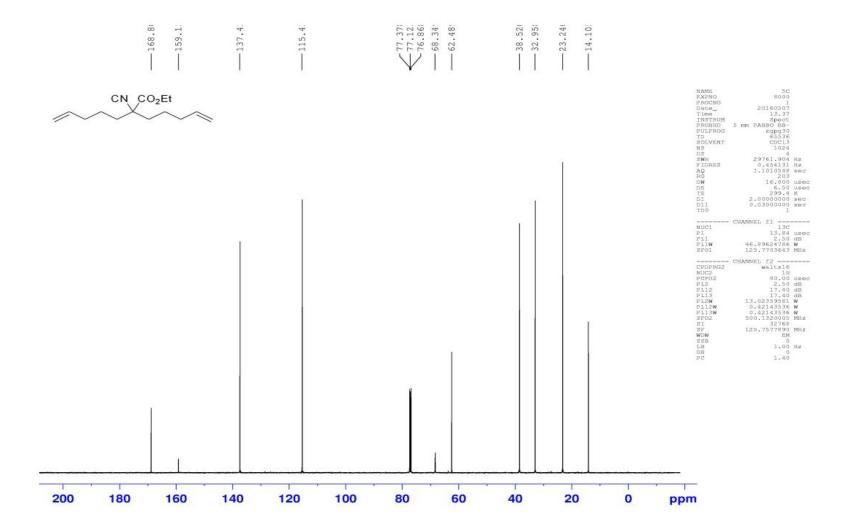


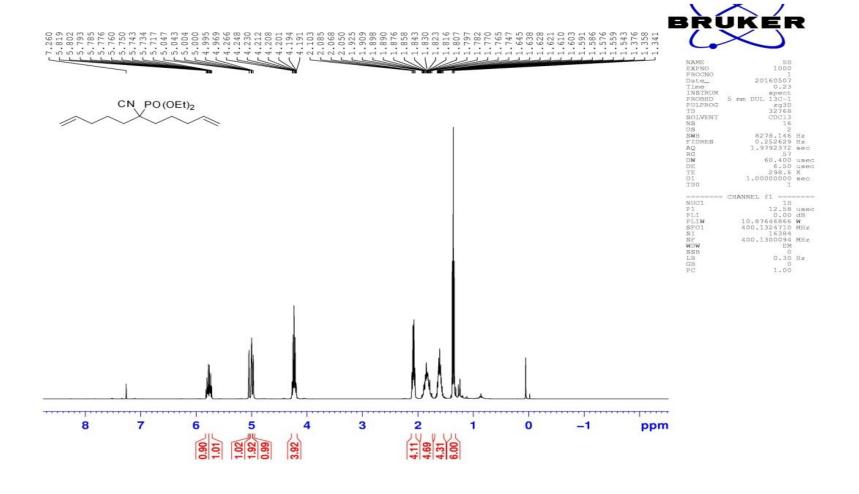


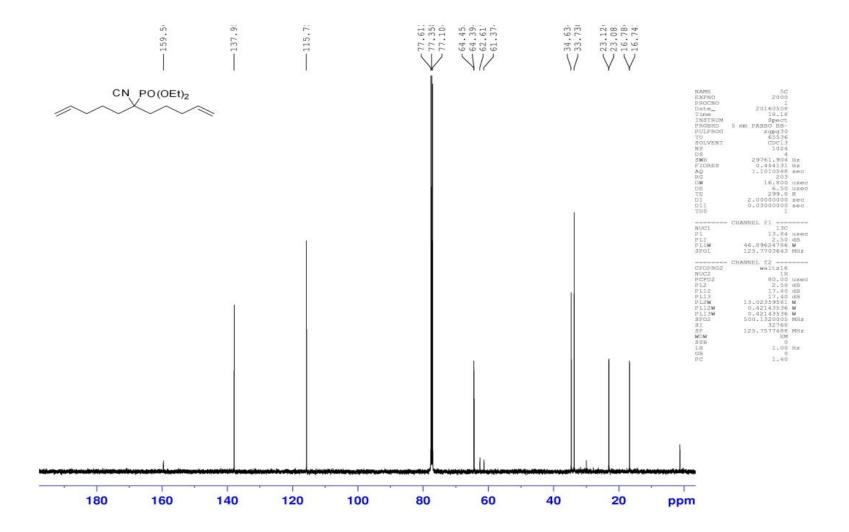


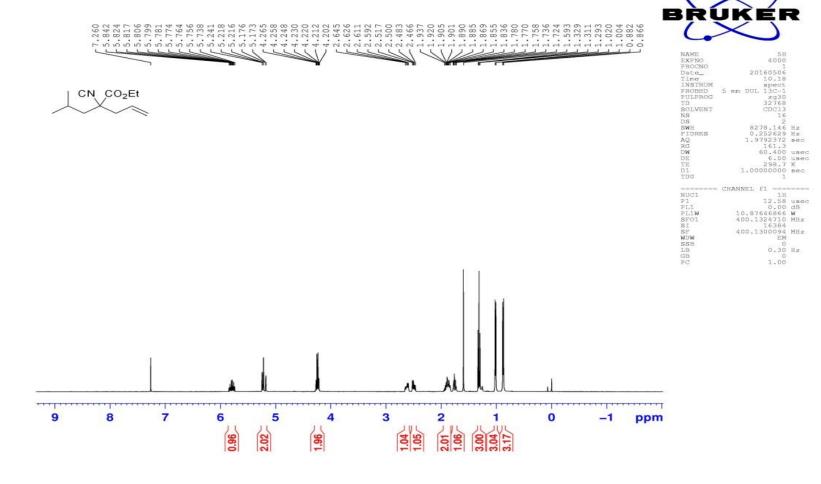


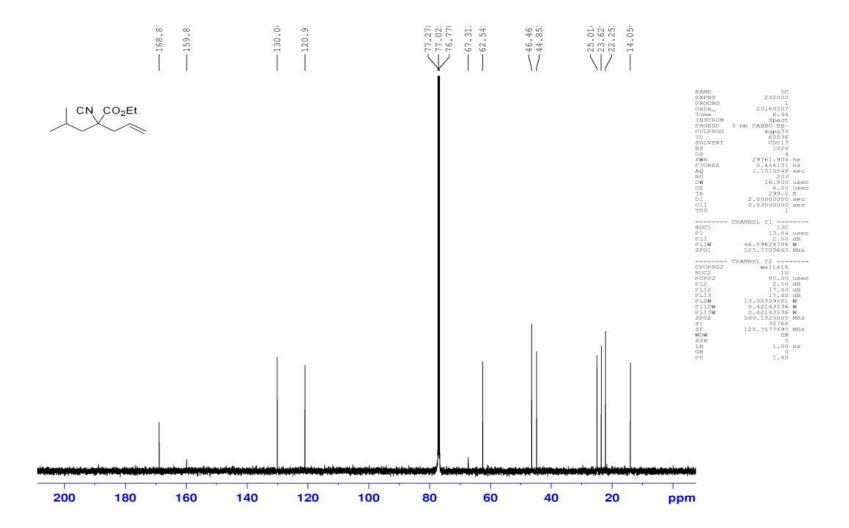


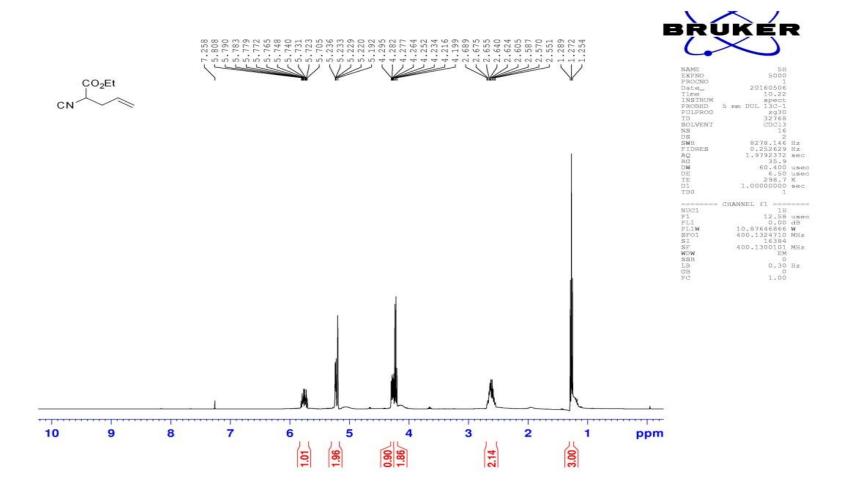


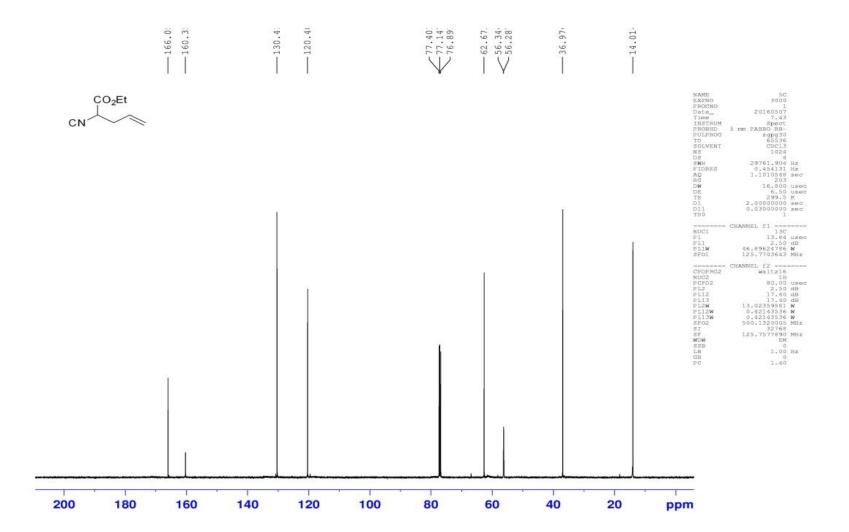


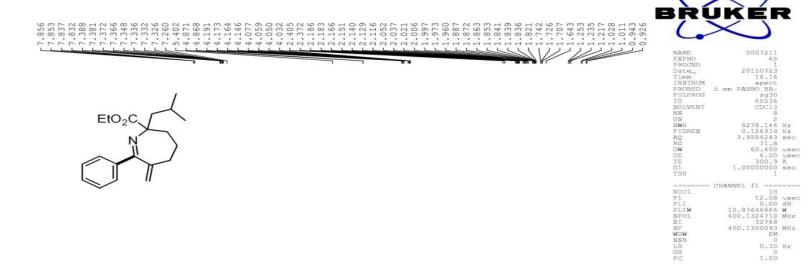


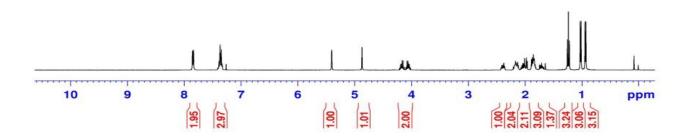


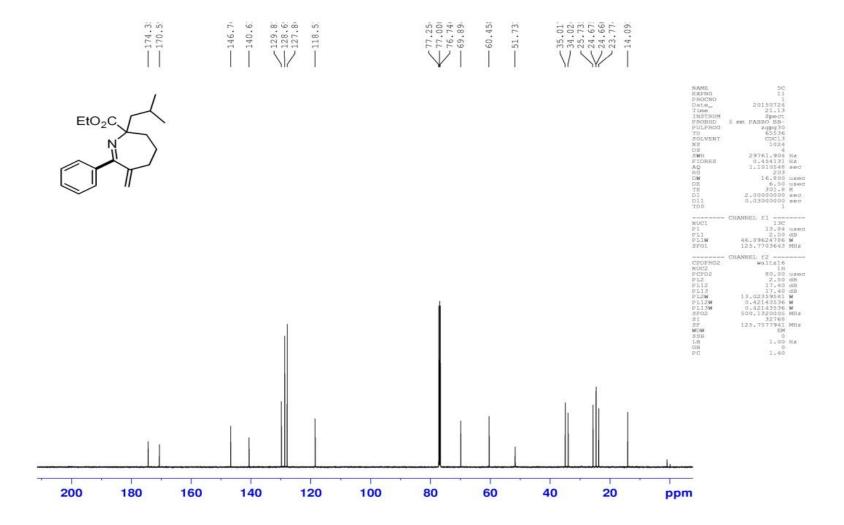


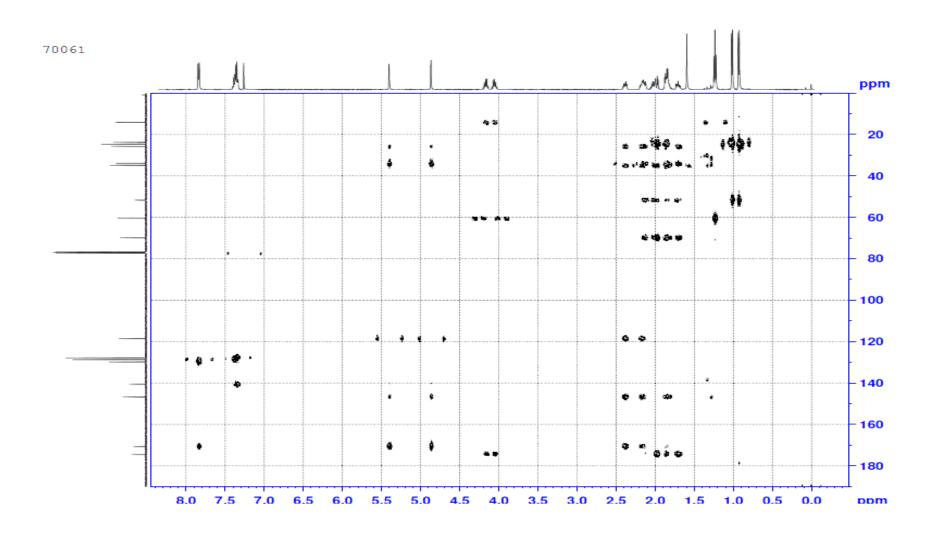


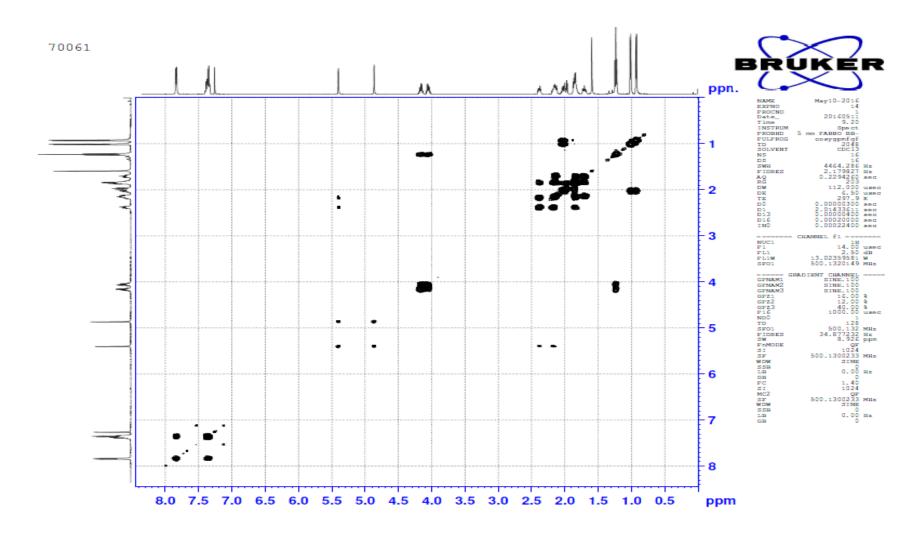


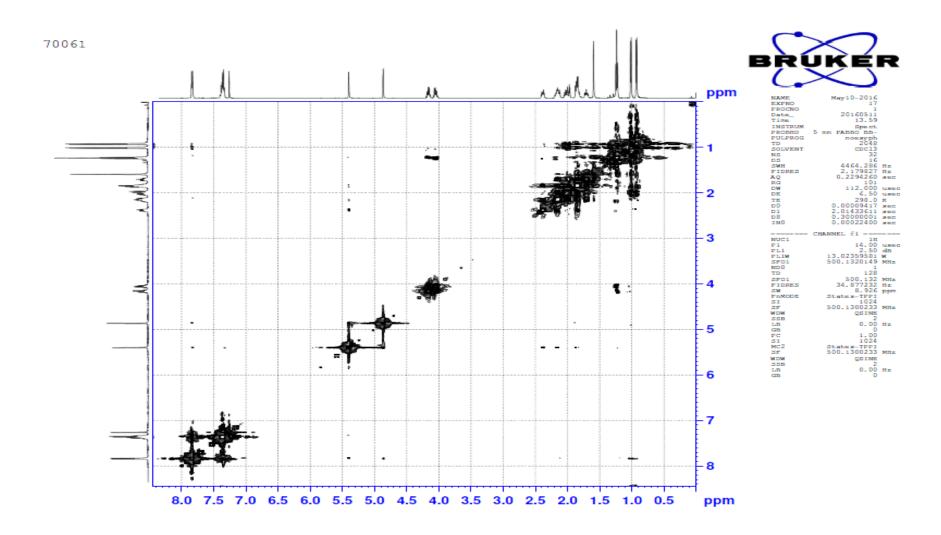


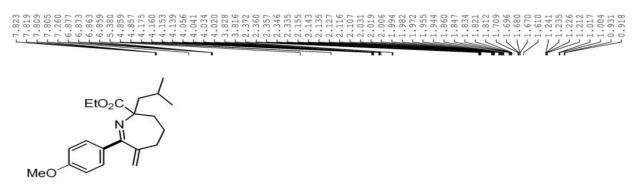






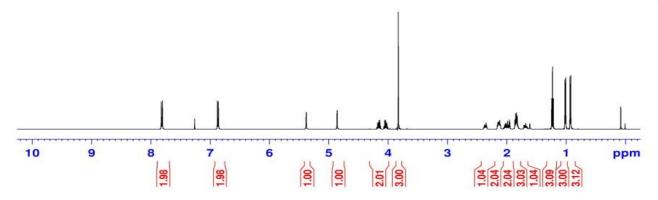

3a-HMBC

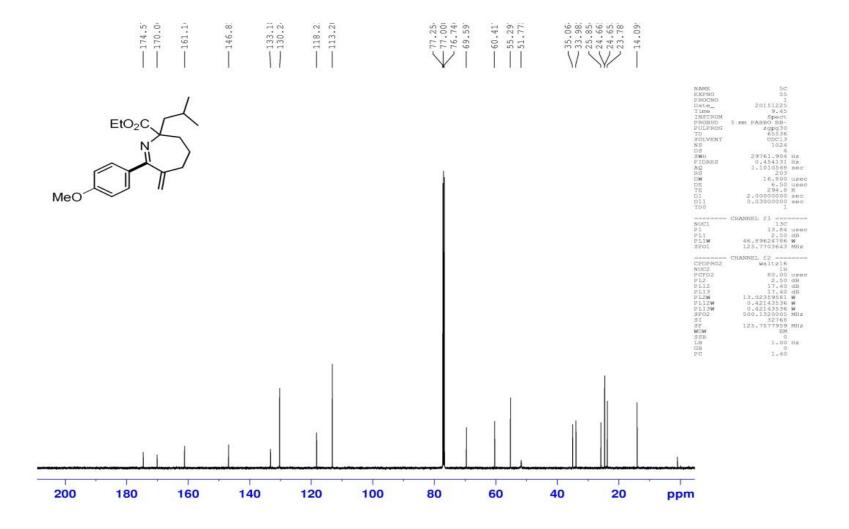

3a-HSQC

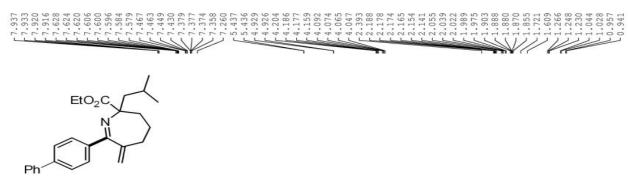


3a-COSY

3a-NOE

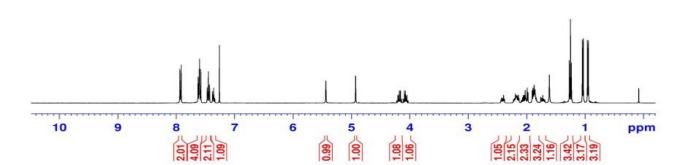


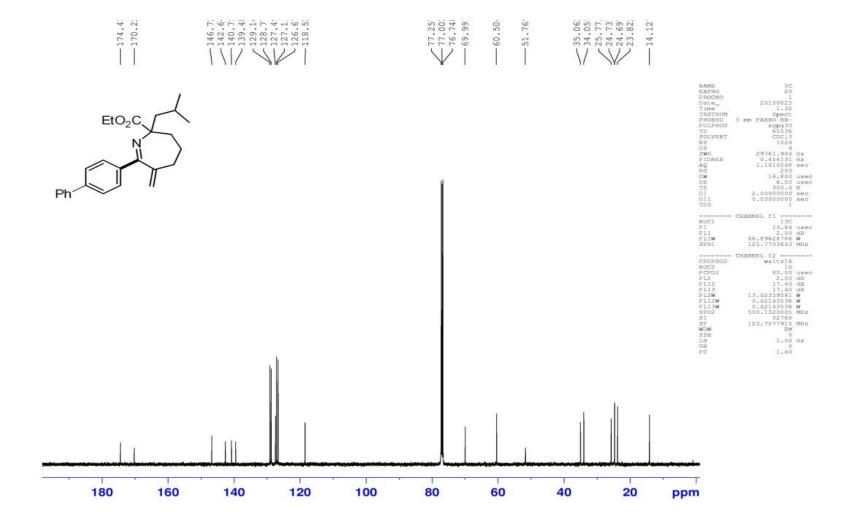


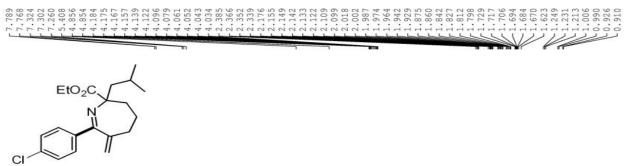


NAME EXPNO	5H 25	
PROCNO	1	
Date_	20151224	
Time	23.12	
INSTRUM	Spect	
PROBHD	5 mm PABBO BB-	
PULPROG	zg30	
TD	65536	
SOLVENT	CDC13	
NS	16	
DS .	2	
SWH	10330.578	Hz
FIDRES	0.157632	Hz
AQ	3.1719923	sec
RG	101	
DW	48,400	used
DE	6.50	used
TE	303.0	K
D1	1.00000000	sec
TDO	1	
	CHANNEL fl	

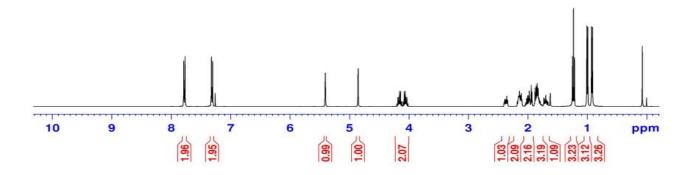
	CHANNEL fl	
	CHANNEL II	
NUC1	18	
P1	14.00	
PLI	2.50	dB
PLIW	13.02359581	W
SFO1	500.1330885	MH
SI	32768	
SF	500.1300229	MH:
WDW	EM	
SSB	0	
LB.	0.30	Hz
GB	0	
PC	1.00	

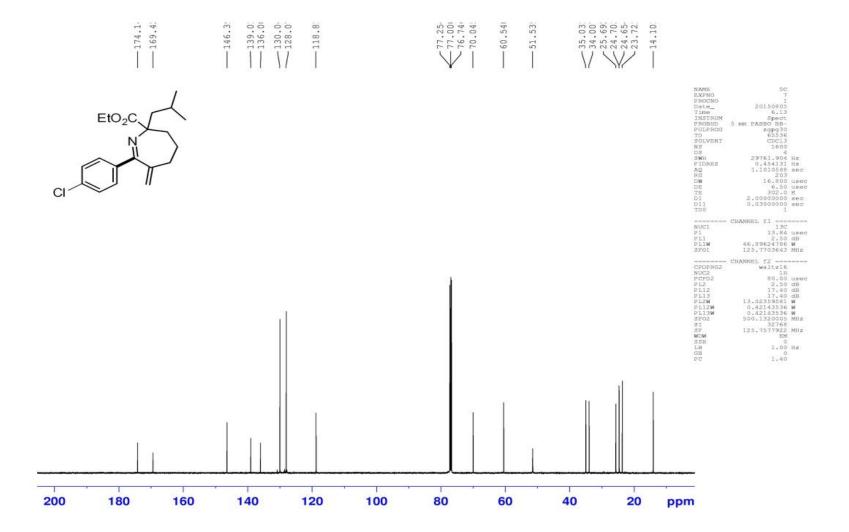


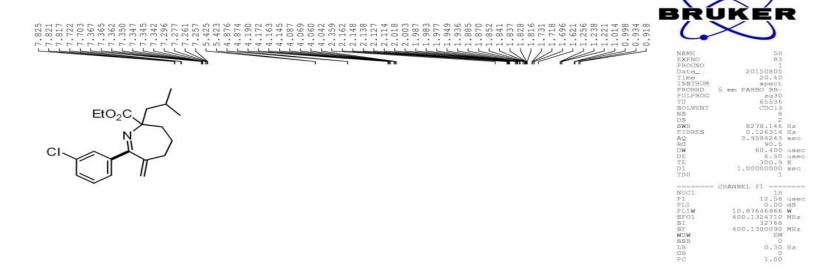


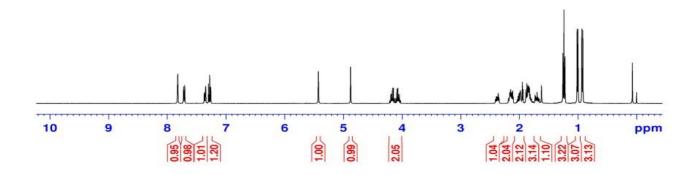


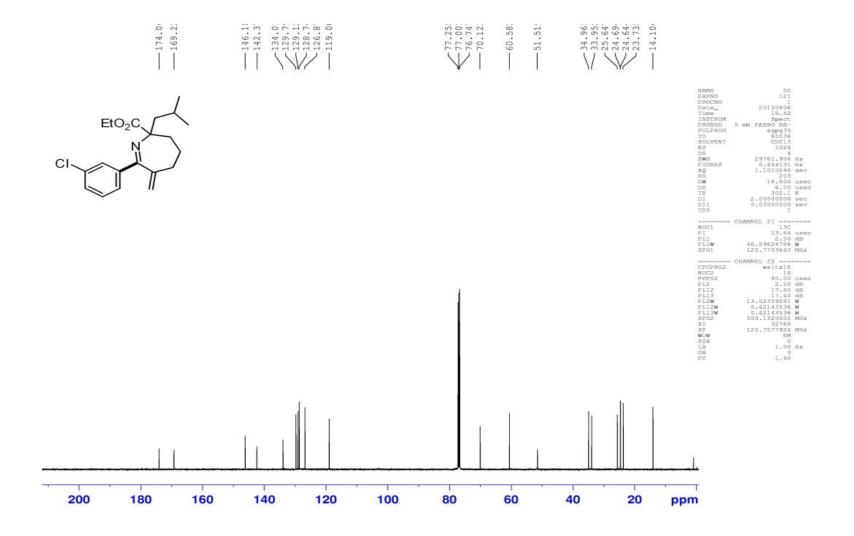
NAME	5H	
EXPNO	29	
PROCNO	1	
Date_	20150824	
Time	11.51	
INSTRUM	spect	
PROBHD	5 mm PABBO BB-	
PULPROG	zg30	
TD	65536	
SOLVENT	CDC13	
NS	8	
DS.	2	
SWH	8278.146	Hz
FIDRES	0.126314	Hz
AO	3.9584243	sec
RG	161.3	
DW	60.400	
DE	6.50	usec
TE	300.0	K
D1	1.00000000	sec
TDO	1	
	CHANNEL fl	
NUC1	111	
P1	12.58	usec
PLI	0.00	
PL1W	10.87646866	W
SFO1	400.1324710	MHz
SI	32768	
SF	400.1300092	MHz
WDW	EM	
SSB	0	
LB		Hz
GB	0	
PC	1.00	

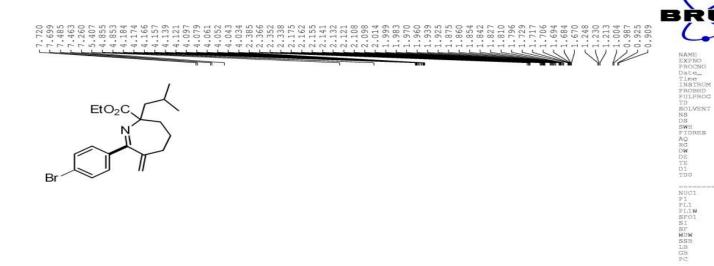


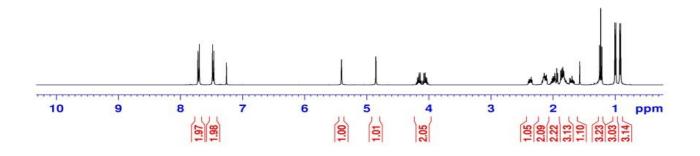


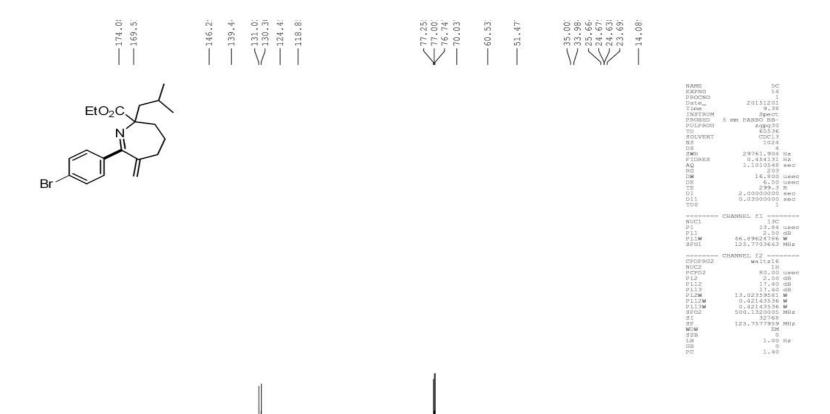




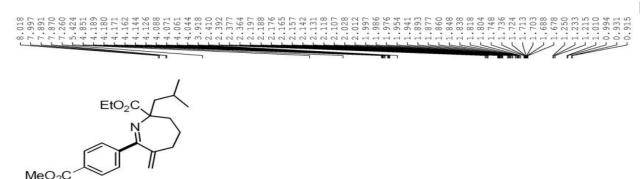

NAME EXPNO PROCNO Date_ Time INSTRUM	5H 311 1 20150803 15.43 spect	
PROBHD	5 mm PABBO BB-	
PULPROG	zg30 65536	
SOLVENT	CDC13	
NS	8	
DS.	2	
SWH	8278.146	Hz
FIDRES	0.126314	Hz
AQ	3.9584243	sec
RG	71.8	
DW	60.400	usec
DE	6.50	usec
TE	300.7	K
D1	1.00000000	sec
TDO	-1	






5H 3000

8278.146 Hz 0.126314 Hz 3.9584243 sec 128 60.400 usec 6.50 usec 301.2 K 1.00000000 sec


CHANNEL FI

12.58 usec
0.00 dB
10.87646866 W
400.1324710 MHz
32768
400.1300094 MHz
EM
0.30 Hz
0
1.00

1 20150808 9,30 spect 5 mm PABBO BE-2g30 65536 CDC13

ppm

NAME EXPNO PROCNO Date Time INSTRUM PROBHD PULPROG TD SOLVENT NS SWH PIDRES AQ RG DW DE	5H 300 20150803 15.37 5 mm PABEO BB- 2036 65536 CDC13 8278.146 0.126314 3.9584243 90.5 60.400	Hz Hz sec
TE	300.7	
D1 TD0	1.00000000	
NUC1 P1 PL1	CHANNEL f1 === 1H 12.58 0.00	use
at Asta	0.00	64.00

CHANNEL f1

12.58 usec

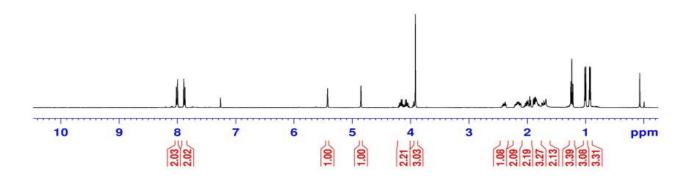
11. 0.00 dB

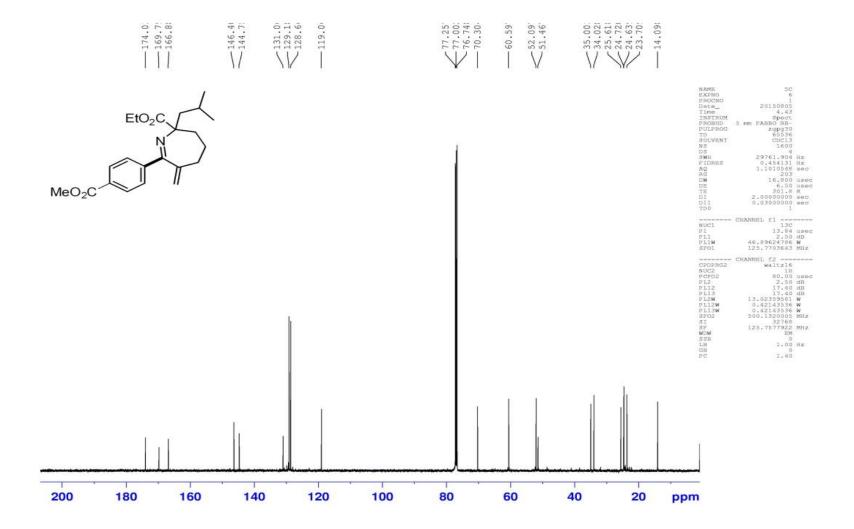
11. 0.00 dB

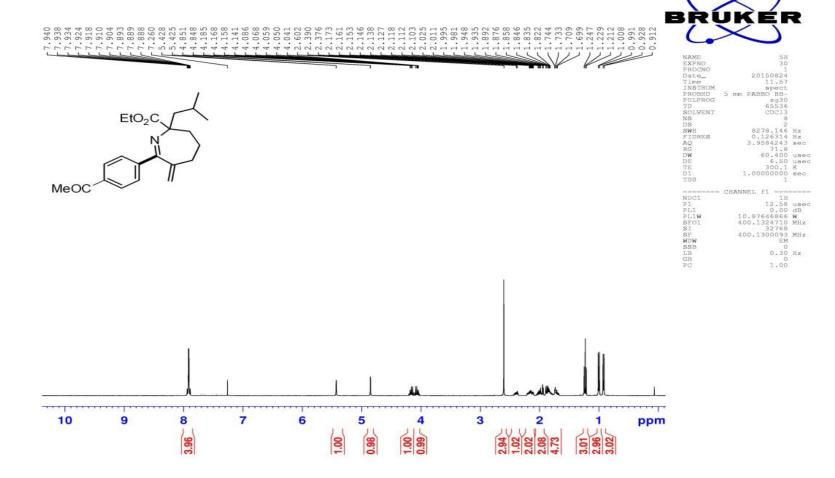
10.87646866 W

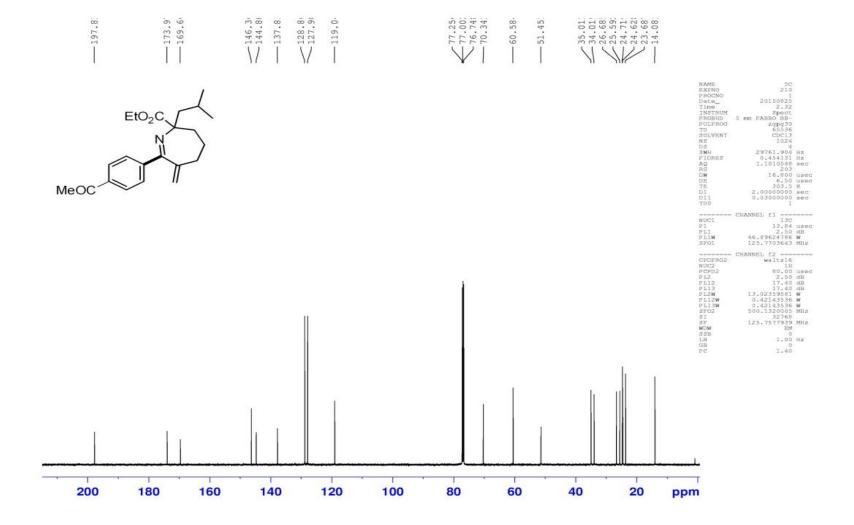
SFO1 400.1324710 MHz

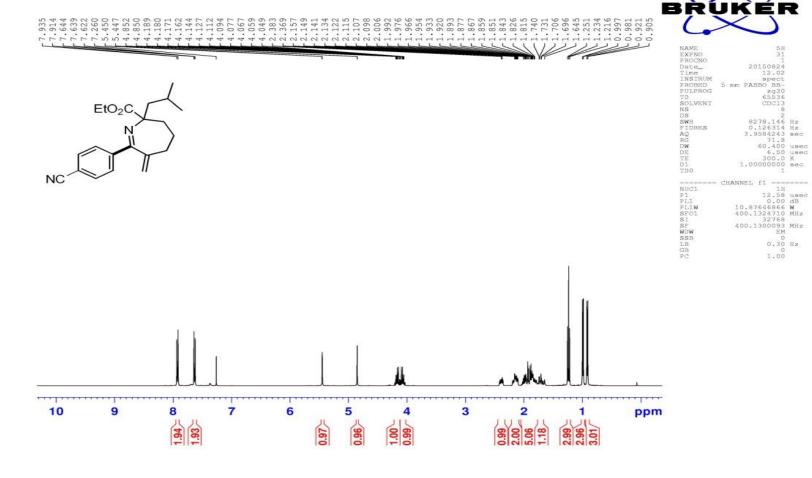
SI 32768

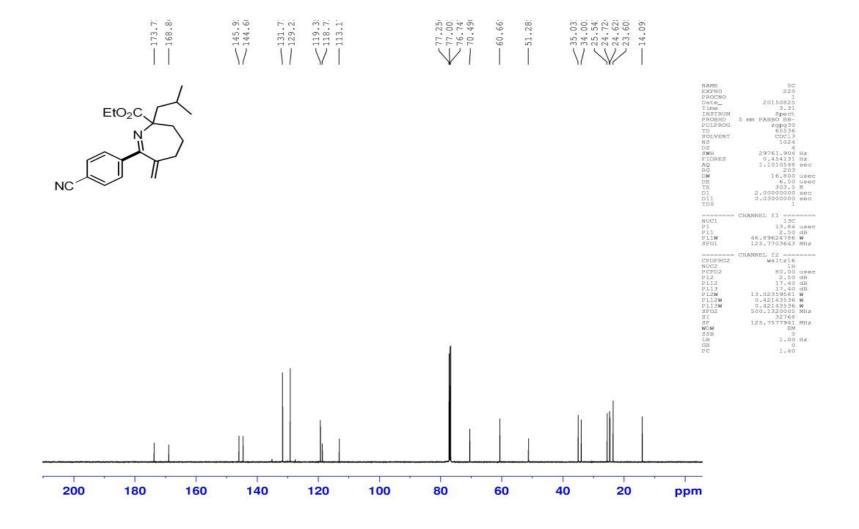

SF 400.1300093 MHz

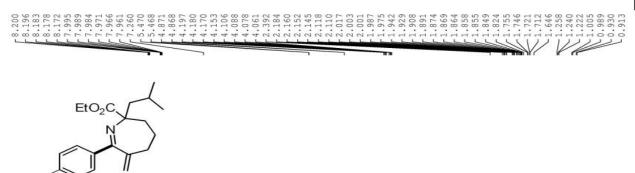

SSB 0

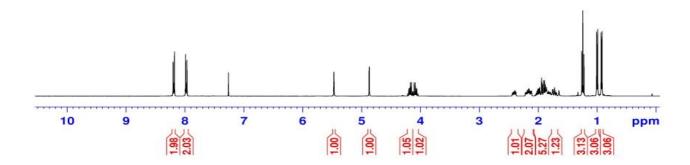

LB 0.30 Hz

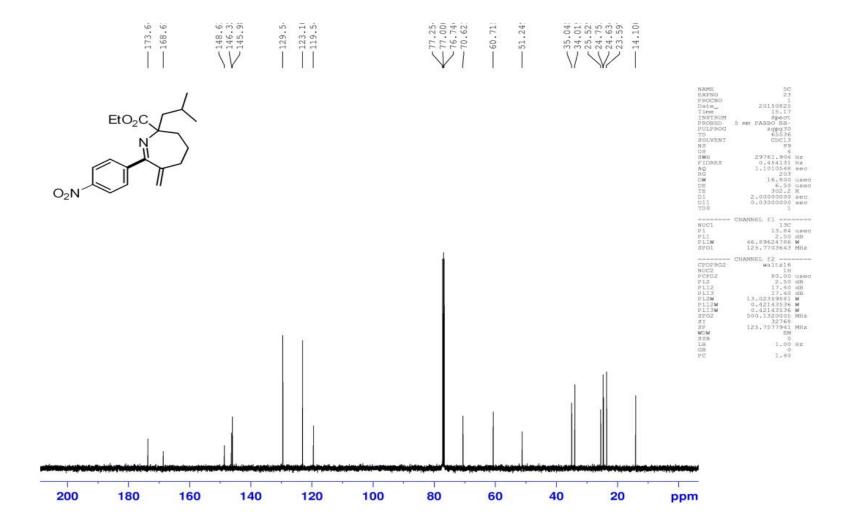

GB 0

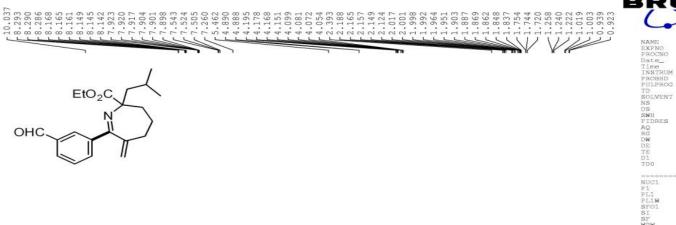

PC 1.00

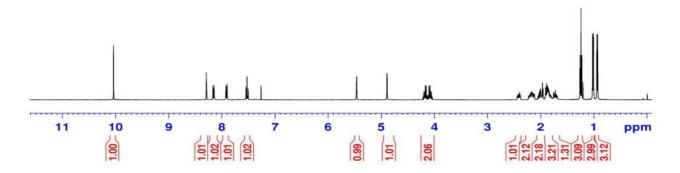


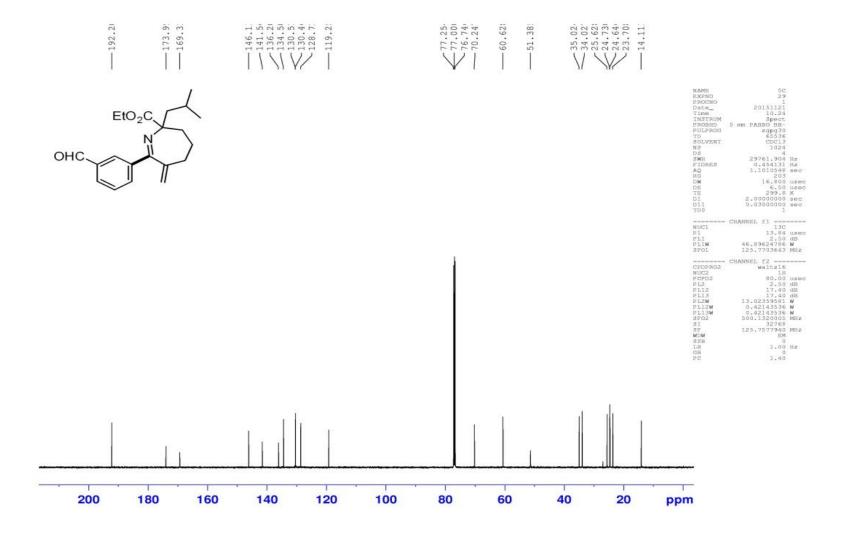


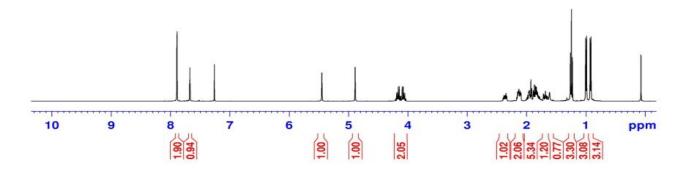

5H 31

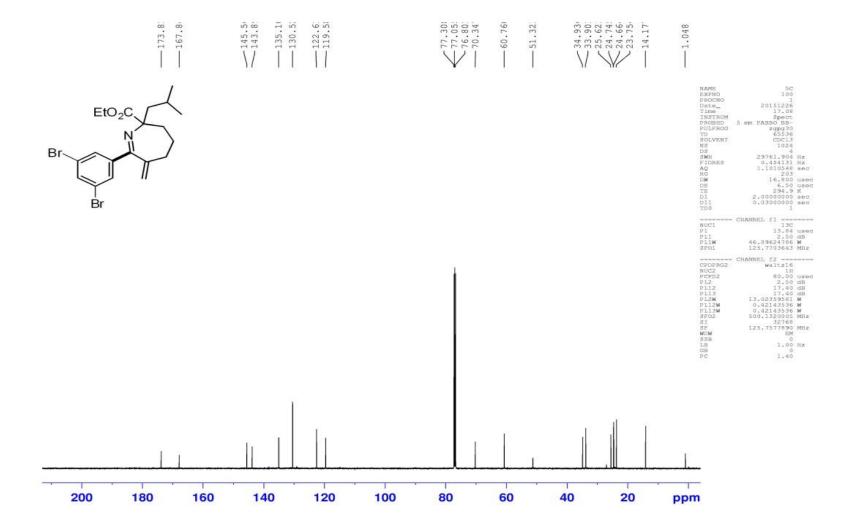


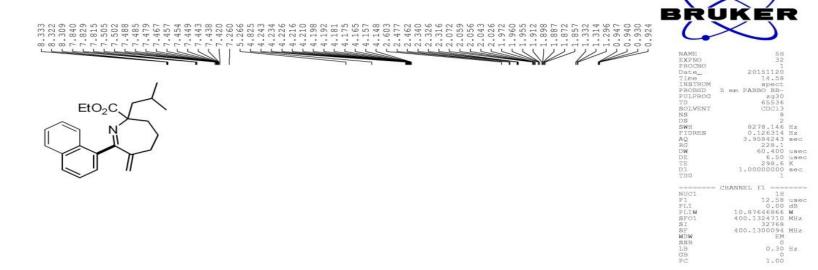


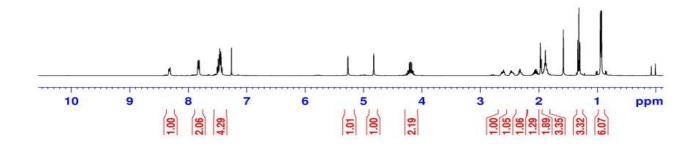

NAME	5H	
EXPNO	321000	
PROCNO	1	
Date_	20150824	
Time	12.08	
INSTRUM	spect	
PROBHD	5 mm PABBO BB-	
PULPROG	zg30	
TD	65536	
SOLVENT	CDC13	
NS	8	
DS	2	
SWH	8278.146	
FIDRES	0.126314	
AQ	3.9584243	
RG	71.8	
DW	60.400	
DE	6.50	
TE	300.1	
D1	1.00000000	sec
TDO	-1	
	CHANNEL fl	
NUC1	18	
P1	12.58	use
DITT	0.00	ATI.

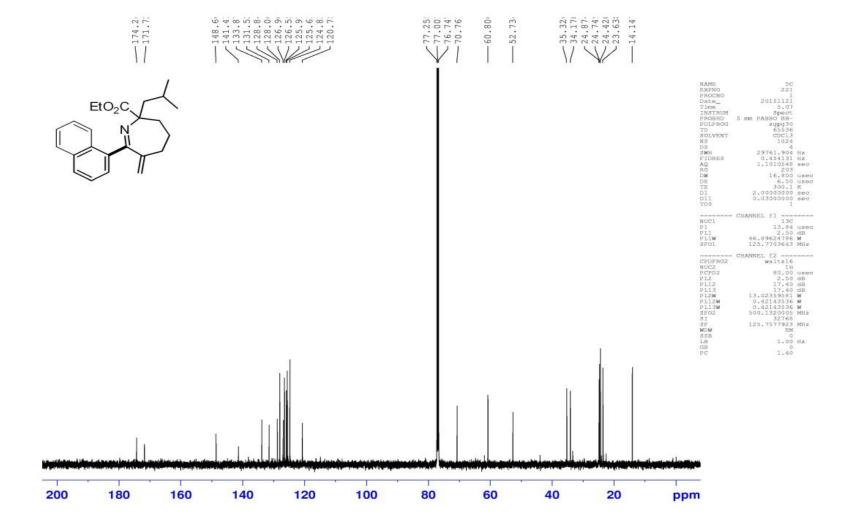




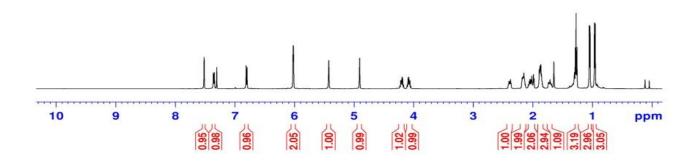


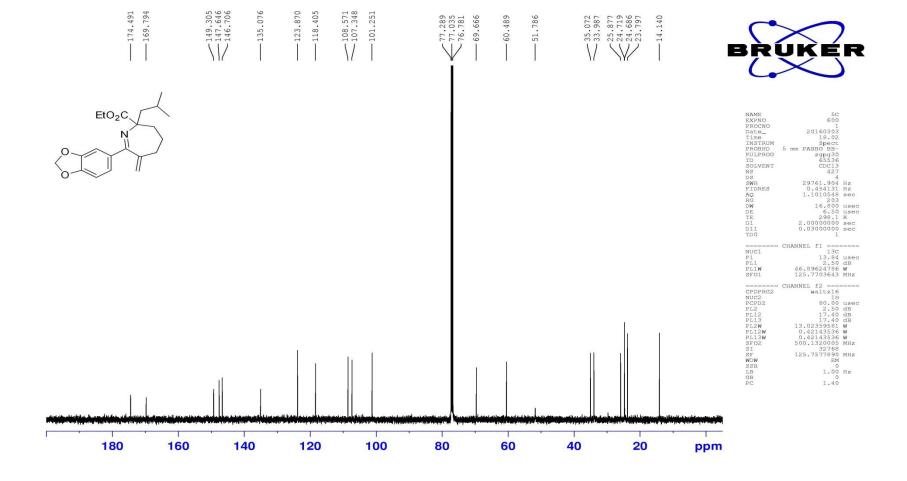

SH	
1	
20150929	
CDC13	
8	
2	
8278.146	Hz.
0.126314	Hz
3.9584243	sec
90.5	
60.400	USE
6.50	use
	×
	sec
1	
	2 8278.146 0.126314 3.9584243 90.5 60.400 6.50 299.4 1.00000000

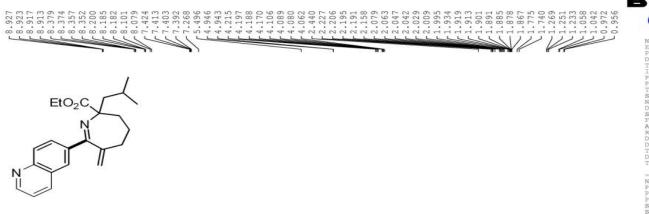

CHANNEL f1 12.58 usec Channel f1 12.58 usec Channel f1 12.58 usec Channel f1 12.58 usec Channel f1 12.59 usec



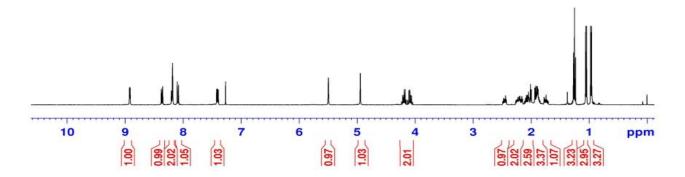
3m

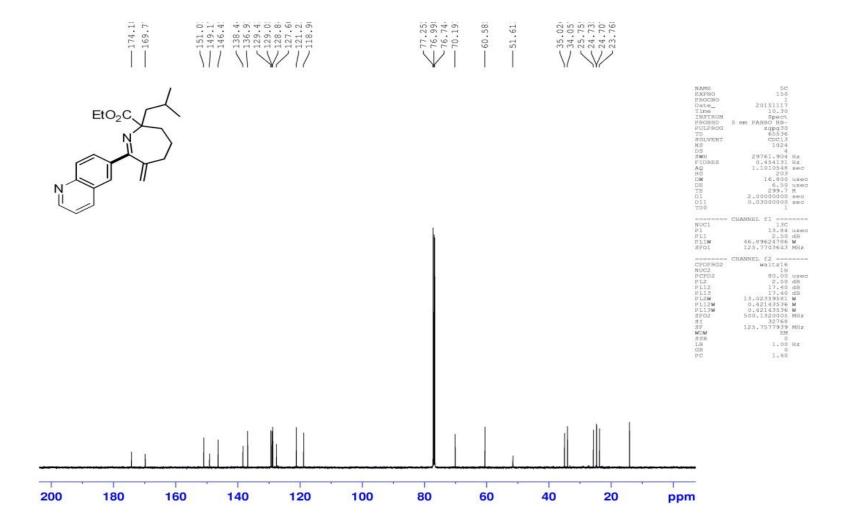




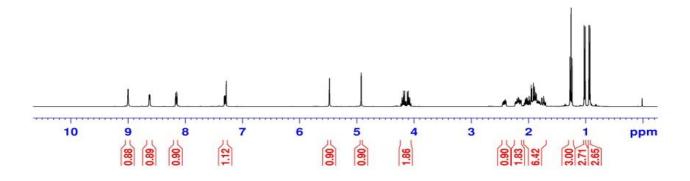


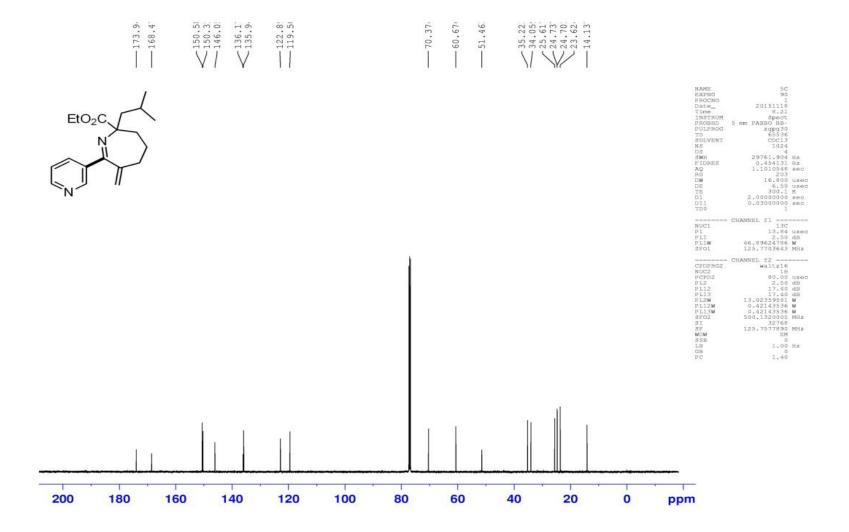
NAME EXPNO PROCNO Date_ Time INSTRUM PROBHD PULPROG TD SOLVENT	5H 500 1 20160303 17.33 Spect 5 mm PABBO HB- 2g30 65536 CDC13	
NS	16	
DS.	2	
SWH	10330.578	Hz
FIDRES	0.157632	
AO	3,1719923	
RG	114	
DW	48.400	
DE	6.50	usec
TE	298.1	
D1	1.000000000	sec
TDO	1	
	CHANNEL fl	
NUC1	1H	
P1	14.00	usec
PLI	2.50	
PL1W	13.02359581	W
SFO1	500.1330885	MHz
SI	32768	
SF	500.1300000	MHz
WDW	EM	
SSB	0	
LB	0.30	Hz
GB	0	
PC	1.00	

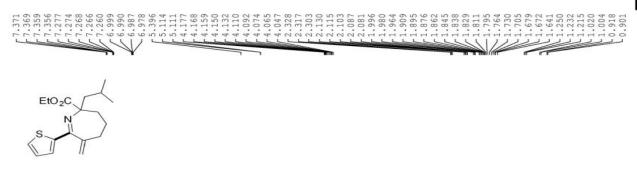


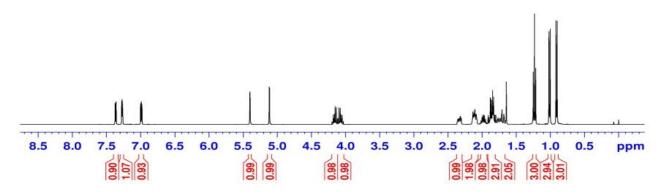


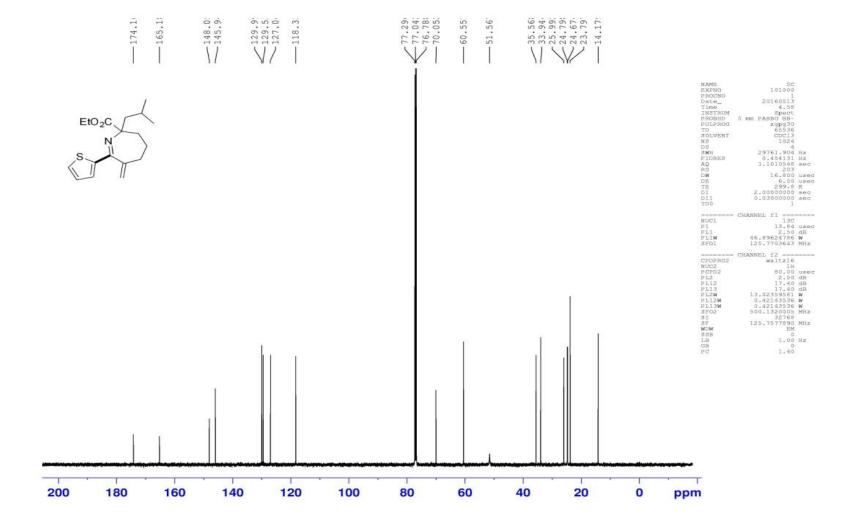


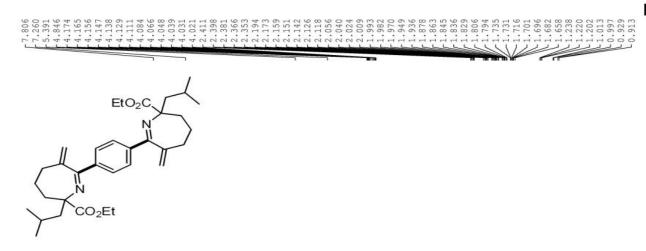



NAME EXPNO PROCNO	5H 49	
Date	20151116	
Time	20.15	
INSTRUM	spect	
PROBHD	5 mm PABBO BB-	
PULPROG	zg30	
TD	65536	
SOLVENT	CDC13	
NS	8	
DS	2	
SWH	8278.146	Hz.
FIDRES	0.126314	Hx
AO	3.9584243	sec
RG	114	
DW	60.400	used
DE	6.50	
TE	298.7	
D1	1.00000000	sec
TDO	-1	
	CHANNEL fl	
NUC1	1H	
P1	12.58	
PLI	0.00	
PLIW	10.87646866	
SFO1	400.1324710	MHz
SI	32768	
SF	400.1300061	MHz
WDW	EM	
SSB	0	000
LB	0.30	HZ
GB	0	
PC	1.00	



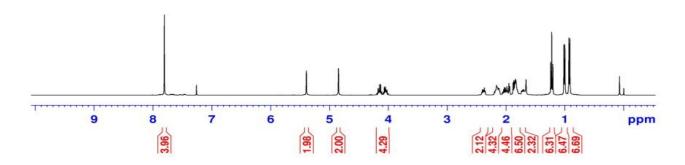


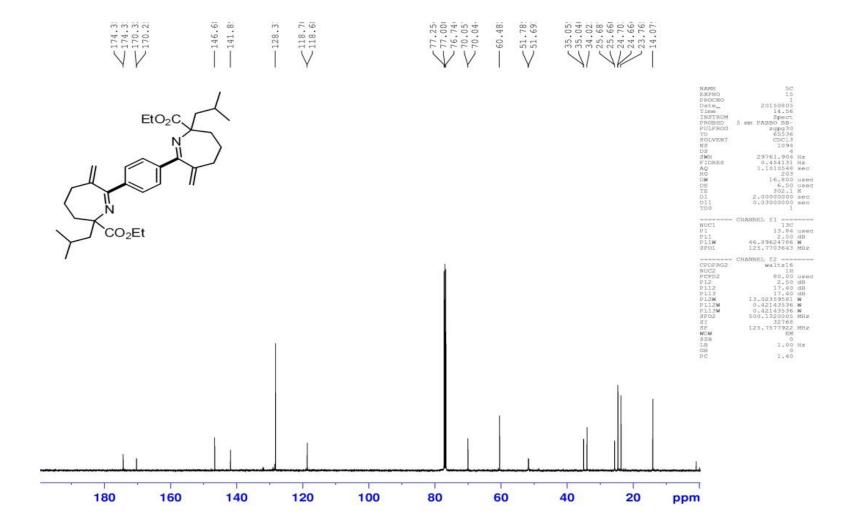


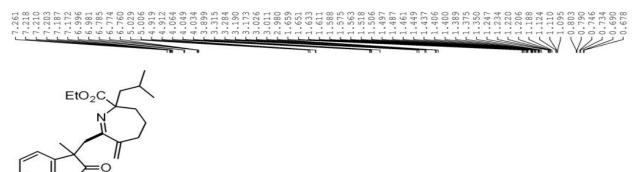

NAME	5H	
EXPNO	2000	
PROCNO	2000	
Date	20160512	
Time	9.39	
INSTRUM	spect	
PROBHD	5 mm DUL 13C-1	
PULPROG	zg30	
TD	32768	
SOLVENT	CDC13	
NS	16	
DS	2	
SWH	8278,146	Hz
FIDRES	0.252629	
AQ	1.9792372	
RG	71.8	
DW	60.400	USE
DE	6.50	
TE	298.6	
D1	1.00000000	sec
TDO	1	

CHANNEL f1

NUC1 12.58 usec
PL1 12.58 usec
PL1 10.8764866 Mz
SI 400.132284 MHz
SI 16384 MHz
SI 400.1300092 MHz
WDW 200.1300092 MHz
SSB 0.30 Hz
GB 0.30 Hz
GC 1.00

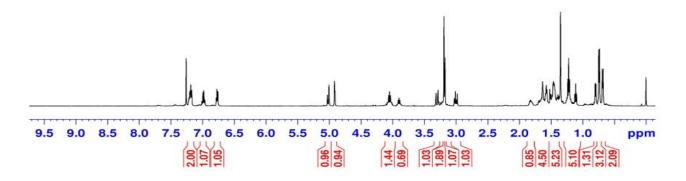


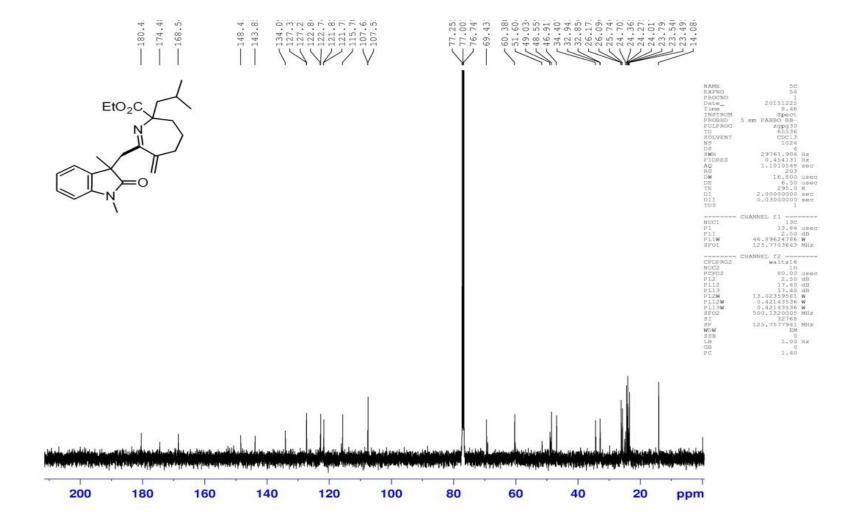


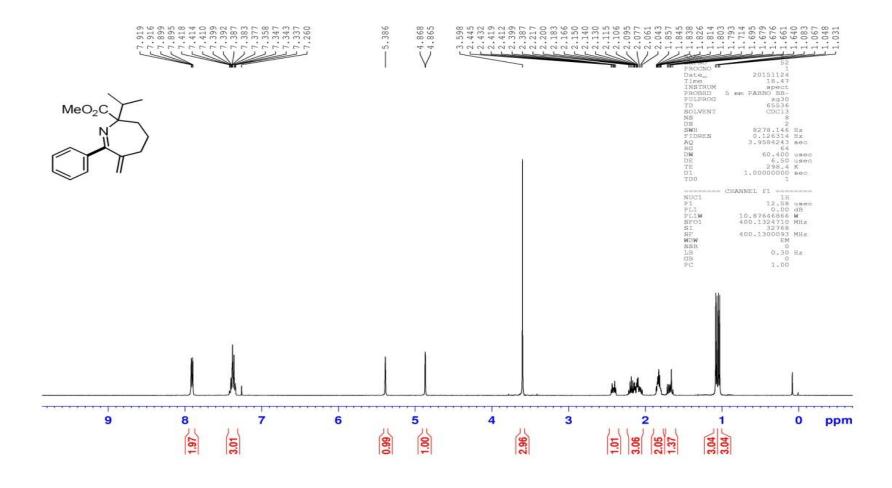


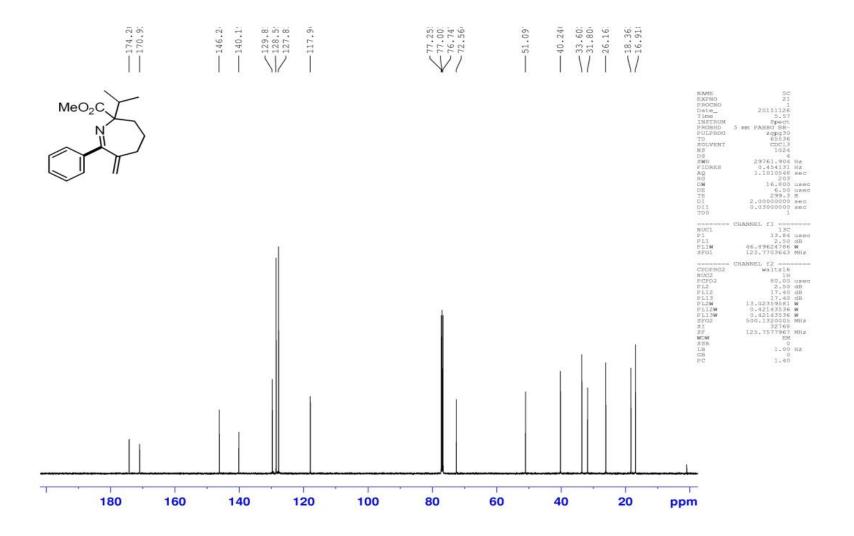
NAME	5H	
EXPNO	3	
PROCNO Date	20150804	
Time		
INSTRUM	9.29 spect	
PROBHD	5 mm PABBO BB-	
PULPROG	zg30	
TD	65536	
SOLVENT	CDC13	
NS	8	
DS	2	
SWH	8278,146	Hz
FIDRES	0.126314	Hz
AQ	3.9584243	sec
RG	90.5	
DW	60,400	
DE	6.50	
TE	300.9	
D1	1.00000000	sec
TDO	-1	
	CHANNEL fl	
NUC1	18	
P1	12.58	use
PLI	0.00	dB
PLIW	10.87646866	
SFO1	400.1324710	MHz

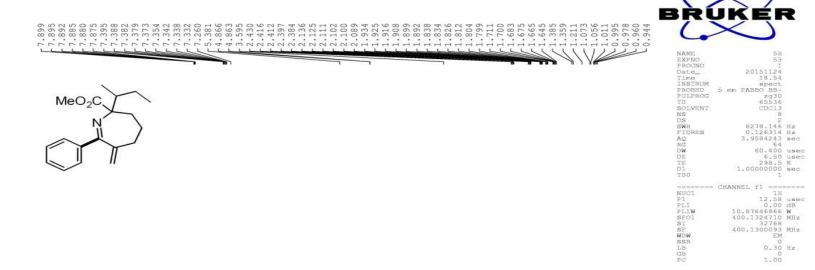
CHANNEL f1
NUC1
P1 1 2.58 usec
CHANNEL F1
P1 1 0.8764666 W
SF01 400.1324710 WHz
SI 32768
SF 400.1300094 WHz
WDW SSB 0
LB 0.30 Hz
GB 0
PC 1.00

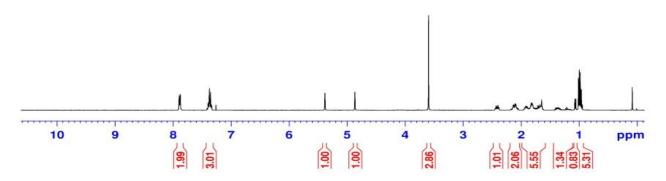


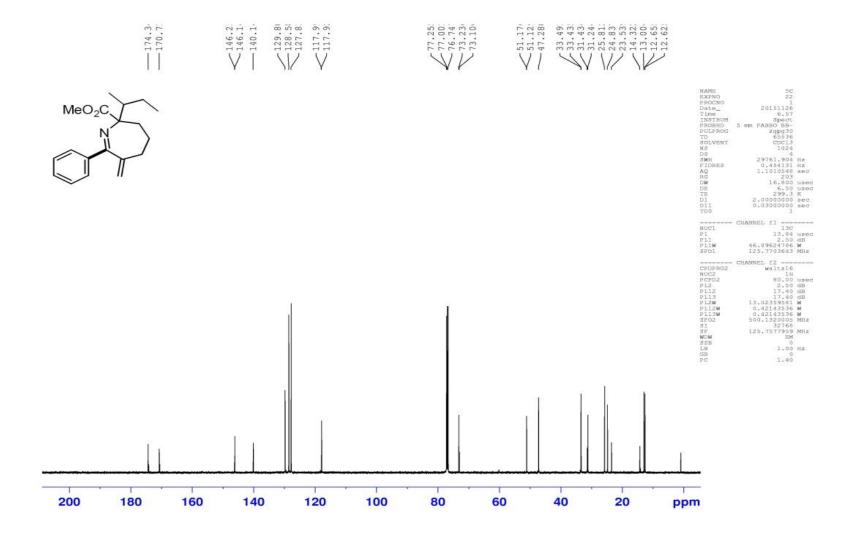


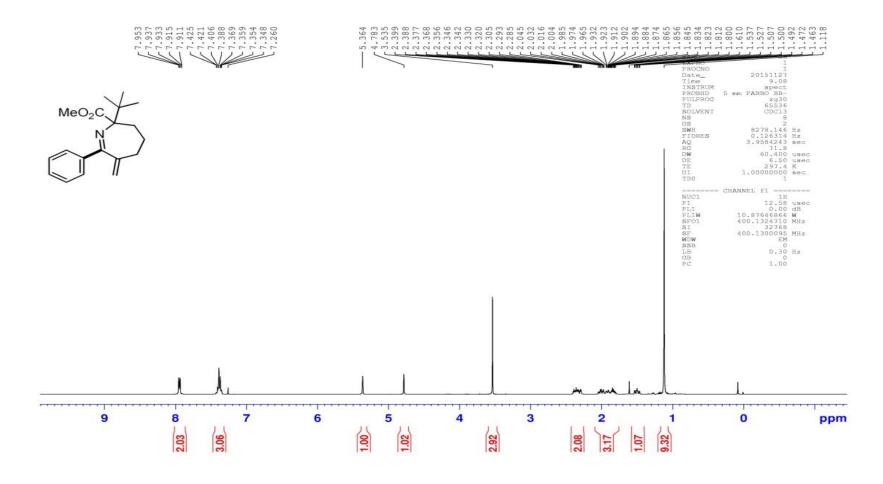


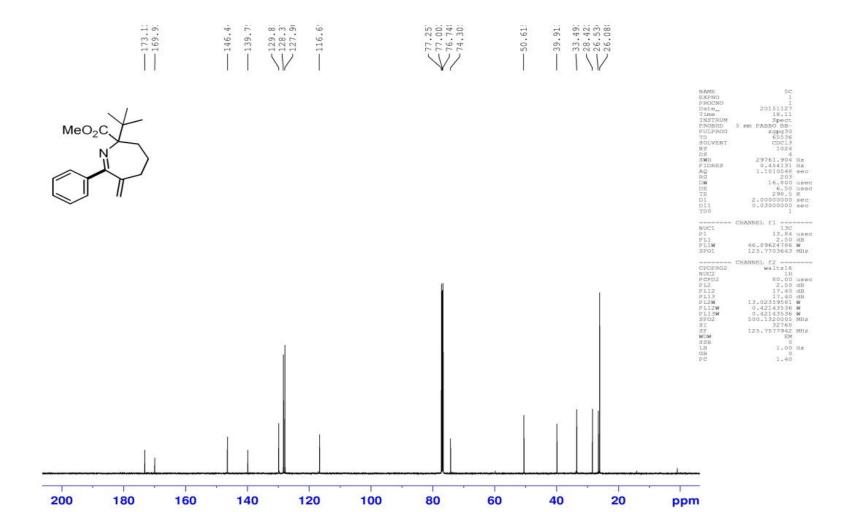


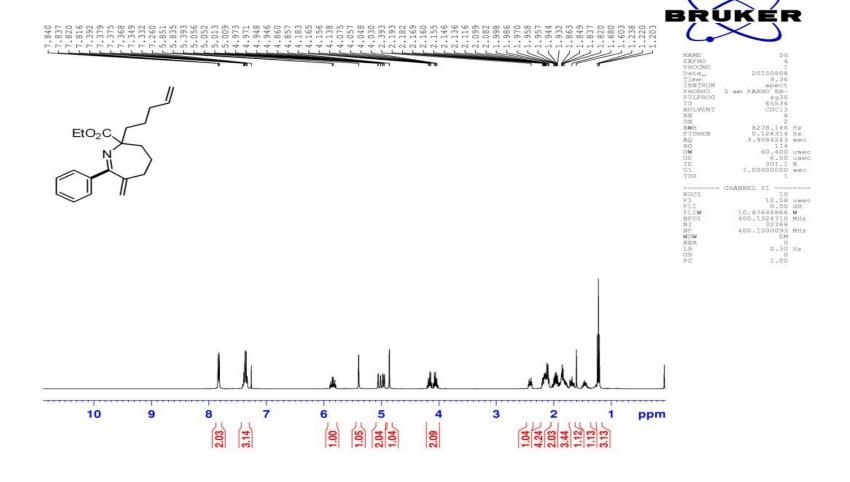

NAME	58	
EXPNO	2.7	
PROCNO		
	00153001	
Date_	20151224	
Time	21.33	
INSTRUM	Spect	
PROBHD	5 mm PABBO BB-	
PULPROG	zq30	
TD	65536	
SOLVENT	CDC13	
NS	16	
DS	2	
SWH	10330.578	Hz
FIDRES	0.157632	Hz
AO	3,1719923	sec
RG	203	
DW	48.400	usec
DE		usec
TE	302.9	
D1	1.00000000	sec
TDO	-1	

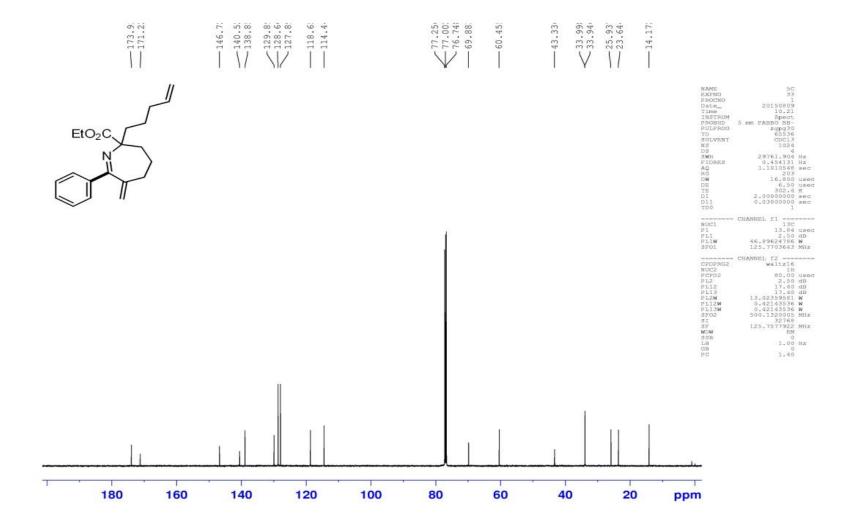


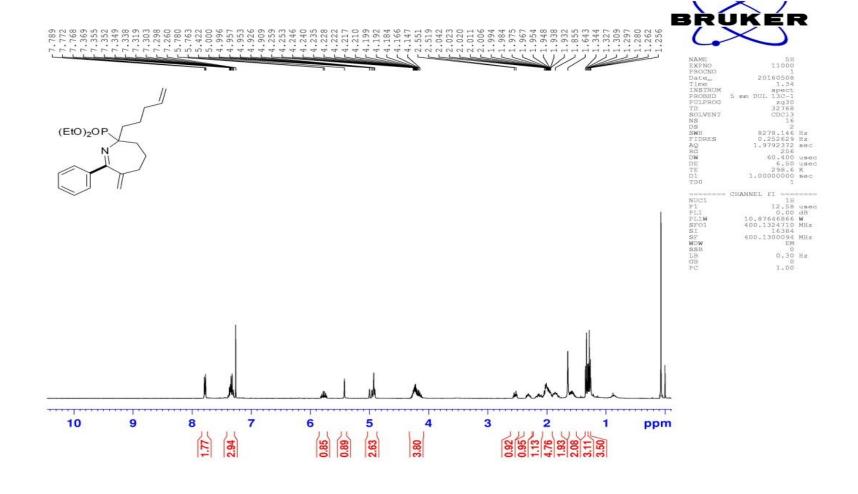


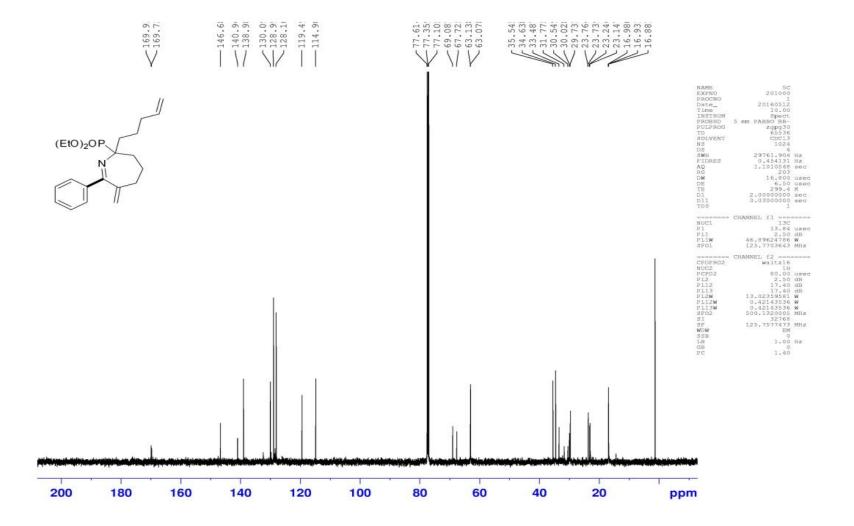


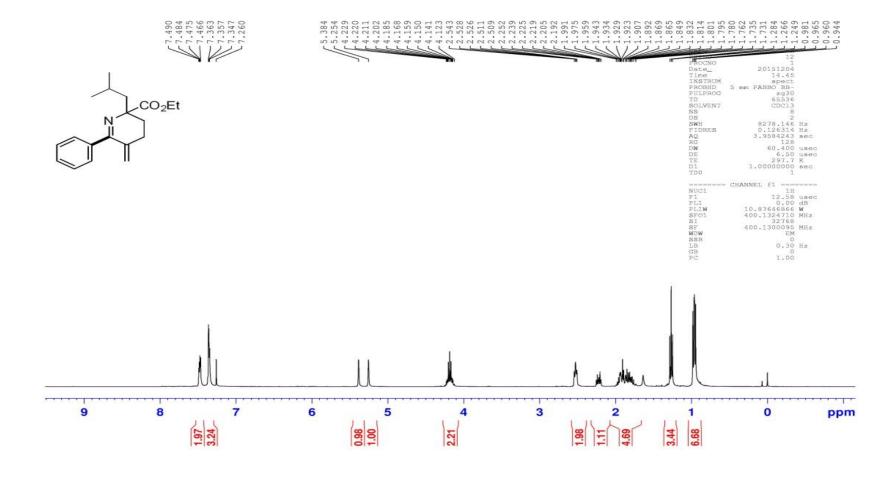


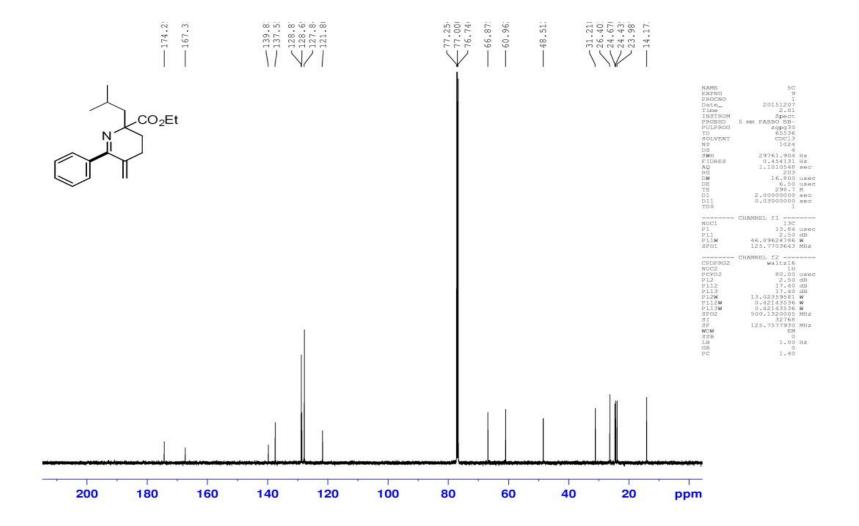


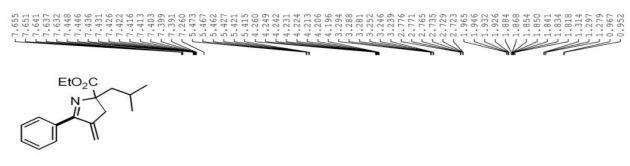


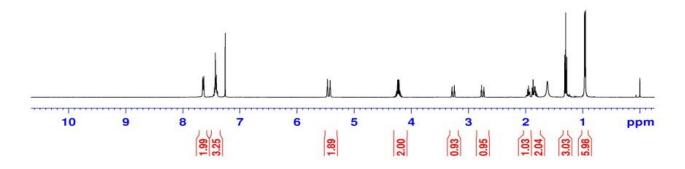


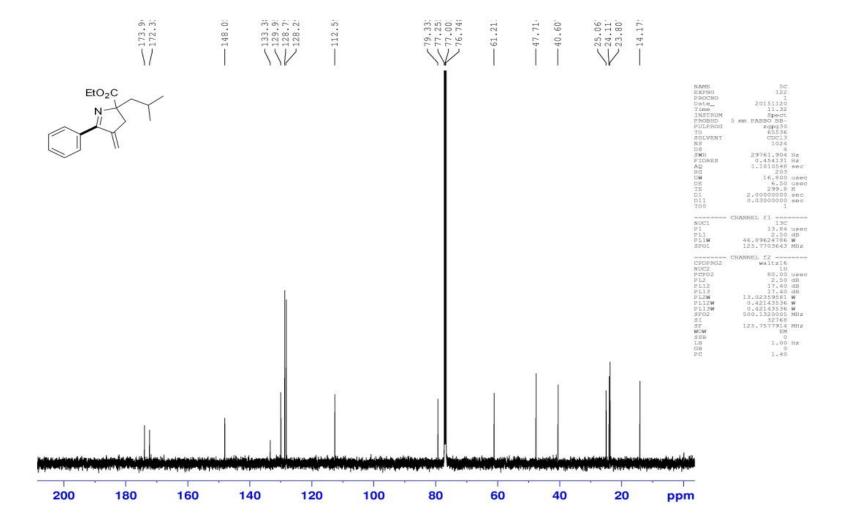


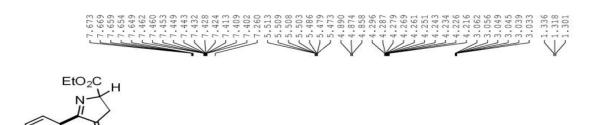






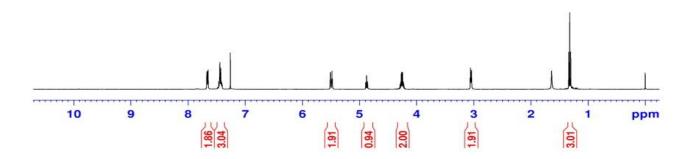


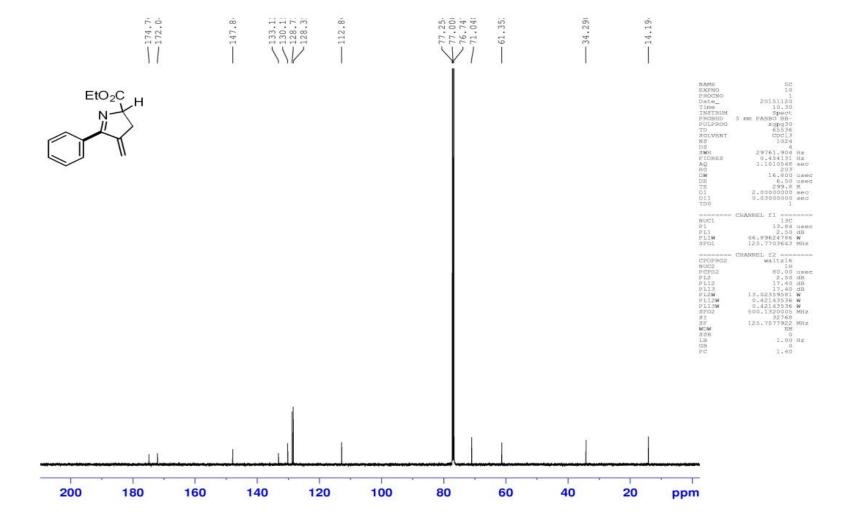


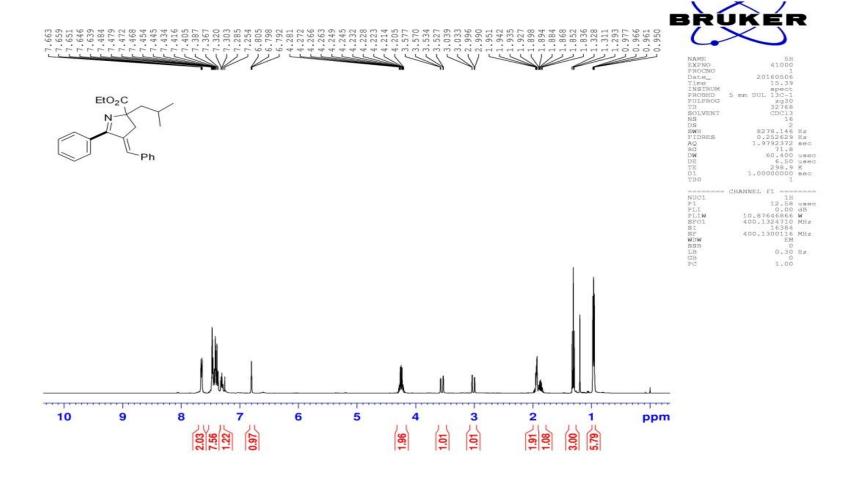


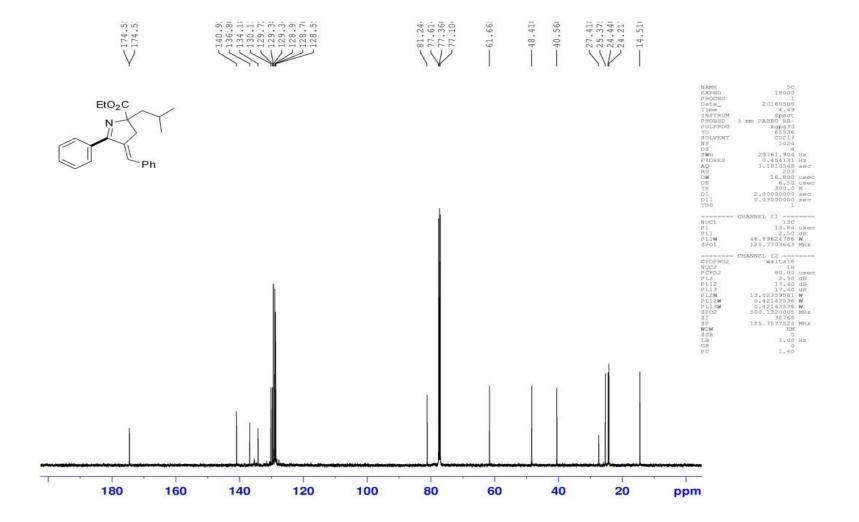
5H 51 11 2015111 16.43 spect 5 mm PABBO BB- 2930 65536 CDC13	
8278.146 0.126314 3.9584243	Hz Hz sec
1.00000000	
CHANNEL fl	
1H	
	MHZ
	MHz
	Hz
	52
1.00	
	51 2015119 16.43 spect 5 mm PARSO BB- 2036 60536

4h

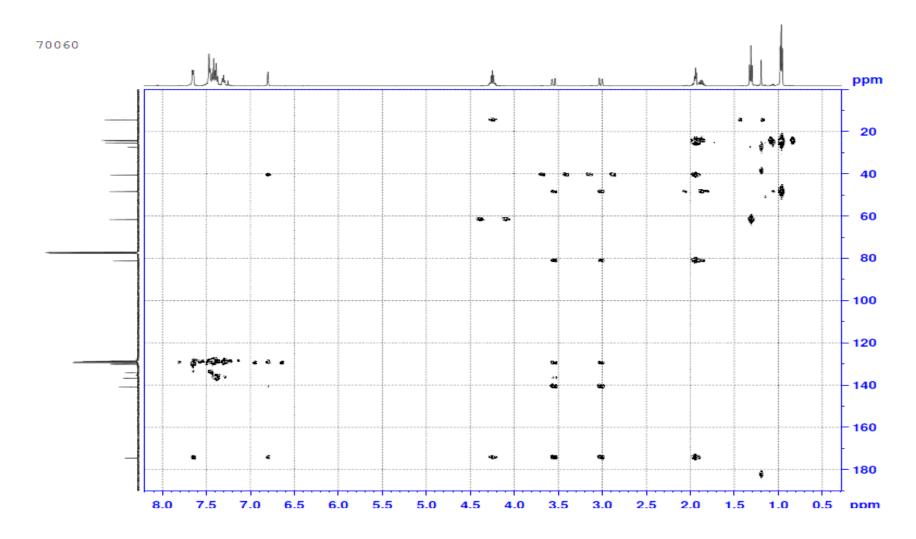



NAME	5H	
EXPNO	41	
PROCNO	1	
Date_	20151119	
Time	15.18	
INSTRUM	spect	
PROBHD	5 mm PABBO BB-	
PULPROG	zg30	
TD	65536	
SOLVENT	CDC13	
NS	8	
DS	2	
SWH	8278.146	Hz
FIDRES	0.126314	
AQ	3.9584243	
RG	322.5	
DW	60,400	
DE	6.50	
TE	298.8	
D1	1.00000000	sec
TDO	-1	
	CHANNEL fl	
NUC1	1H	
P1	12.58	
PLI	0.00	dB
PL1W	10.87646866	


CHANNEL f1


P1 12.58 usec
FL1 0.00 d8

FL1W 10.87646866 W
SFO1 400.1324710 MHz
SF 400.1324710 MHz
SF 400.130005 MHz
SF 0 0.30 Hz
GB 0 0 0
PC 1.00





4i-HMBC

4i-NOE

