Supporting Information

Structure-Activity \quad Relationship \quad of ${ }^{18}$ F-labeled phosphoramidate peptidomimetic Prostate-Specific Membrane Antigen (PSMA)-targeted inhibitor analogues for PET imaging of prostate cancer

Shorouk Dannoon ${ }^{\text {I\#, }}$, Tanushree Ganguly ${ }^{2 \#}$, Hendry Cahayal Jonathan J. Geruntho ${ }^{2}$, Matthew S. Galliher ${ }^{2}$, Sophia K. Beyer ${ }^{2}$, Cindy J. Choy ${ }^{2}$, Mark R. Hopkins ${ }^{2}$, Melanie Regan ${ }^{1}$, Joseph E. Blecha ${ }^{1}$, Lubica Skultetyova ${ }^{3}$, Christopher R. Drake ${ }^{1}$, Salma Jivan ${ }^{l}$, Cyril Barinka ${ }^{3}$, Ella F. Jones ${ }^{1 s}$, Clifford E. Berkman ${ }^{2,4 \varsigma^{*}}$, Henry F. VanBrocklin ${ }^{1 s^{*}}$
${ }^{1}$ Department of Radiology and Biomedical Imaging, University of California San Francisco, USA; ${ }^{2}$ Department of Chemistry, Washington State University, USA; ${ }^{3}$ Institute of Biotechnology, CR, Prague; ${ }^{4}$ Cancer Targeted Technology, USA

\# Contributed equally
${ }^{\text {§ }}$ Contributed equally as senior authors
*Correspondence to:
Prof. Henry F. VanBrocklin
Department of Radiology and Biomedical Imaging
University of California San Francisco
185 Berry Street, Suite 350
San Francisco, CA 94107
tel: (415) 353-4569
fax: (415) 514-8242
henry.vanbrocklin@ucsf.edu

* Prof. Clifford E. Berkman

Department of Chemistry
Washington State University
Pullman, WA 99164-4630.
tel: (509) 335-7613
fax: (509) 335-8389.
cberkman@wsu.edu

Table of contents:

Section 1	Synthesis of 7 and precursors
Section 2	IC_{50} and Mode of inhibition determinations
Section 3	Crystallographic studies - Structure determination and refinement

Section 1: Synthesis of 7 and precursors.

Benzyl 2-((tert-butoxycarbonyl)amino)-5-hydroxypentanoate, A. Boc$\mathrm{Glu}(\mathrm{OBn})(1 \mathrm{~g}, 1$ equiv) and N-Methylmorpholine ($3.55 \mathrm{mmol}, 1.2$ equiv) were dissolved in 3 mL glyme and stirred at -15 C . iso-Butyloxychloride ($2.96 \mathrm{mmol}, 1$ equiv) was then added and stirred for an additional 15 min . The resulting white precipitate was filtered off and NaBH_{4} ($4.44 \mathrm{mmol}, 1.5$ equiv) was added to the filterate along with 4 mL of water and stirred for 15 min . Th eraction mixture was dissolved in ethylacetate (EtoAc) and extracted with brine thrice . The organic layer was dried over $\mathrm{Mg}_{2} \mathrm{SO}_{4}$ and rotaryevaporated at $40^{\circ} \mathrm{C}$. Pure product was obtained on drying ($0.726 \mathrm{~g}, 76 \%$). Characterization confirmed formation of the product.

B
Dibenzyl 2-(((R)-(benzyloxy)(((R)-5-(benzyloxy)-4-((tert-butoxycarbonyl) amino)-5-oxopentyl)oxy)phosphoryl)amino)pentanedioate, B. In a flame dried 100 mL flask, 10 mL dry dichloromethane (DCM) was taken, argon flushed and cooled over dried ice. $\mathrm{PCl}_{2} \mathrm{OBn}(2.31 \mathrm{mM}, 1.5$ equiv) and triethyamine ($1.855 \mathrm{mM}, 1.2$ equiv) was added and stirred. A ($1.56 \mathrm{mM}, 1$ equiv) was dissolved in 10 mL of DCM and added to the reaction mixture in parts. After complete addition, dry ice was replaced with ice bath and stirred for 5 h . 1:1 mixture of water:acetonitrile (ACN) was added and stirred for additional 1 h . The reaction mixture was rotary-evaporated to remove the organic solvent, dissolved in EtOAc, and washed successively with $10 \% \mathrm{HCl}, 10 \% \mathrm{NaHCO}_{3}$, and brine. Organic layer was dried, concentrated to remove solvent, and dried overnight. Crude phosphite was dissolved in 10 mL dry ACN, flushed with $\operatorname{argon}_{(\mathrm{g})}$, cooled on ice and 5 mL of CCl_{4} was added. $\mathrm{NH}_{2}-\mathrm{Glu}(\mathrm{OBn})_{2}(1.546 \mathrm{mM}, 1$ equiv) and TEA ($4.638 \mathrm{mM}, 3.2$ equiv) together were dissolved in 10 mL ACN and added to the phosphite in parts and stirred for 5 h . The reaction mixture was concentrated and purified by C-18 column chromatography using 80:20 MeOH:water as the mobile phase. Product \mathbf{B} was obtained as pale yellow oil (36.7% yield). ${ }^{1} \mathrm{HNMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$): $\delta 2.04(\mathrm{~s}, 9 \mathrm{H}), 2.05-2.06$ $(\mathrm{m}, 3 \mathrm{H}), 2.07(\mathrm{~m}, 4 \mathrm{~h}), 2.09(\mathrm{~m}, 4 \mathrm{~h}), 3.48-3.52(\mathrm{~m}, 1 \mathrm{H}), 3.91(\mathrm{t}, 4 \mathrm{~h}), 4.94(\mathrm{~m}, 4 \mathrm{~h}), 5.07$ (m, 4h) , 7.30-7.31 (m, 20H). ${ }^{13} \mathrm{C}$ NMR (300 MHz, CDCl_{3}): $\delta 28.5,28.9,30.0,53.8,53.9$, $66.6,66.7,67.2,67.5,76.9,77.3,77.7,135.5,154.8,172.61,172.65 .{ }^{31} \mathrm{P}$ NMR (300
$\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.41,8.44$. ESI mass spectroscopy ($\mathrm{M}+\mathrm{Na}$): Calculated 802.3, found 825.3 for $\mathrm{C}_{43} \mathrm{H}_{51} \mathrm{~N}_{2} \mathrm{O}_{11} \mathrm{P}^{+}$.

(2S)-dibenzyl 2-(((benzyloxy)(()S)-5-(benzyloxy)-4-((S)-5-(benzyloxy)-4-((tert-butoxycarbonyl)amino)-5-0xopentanamido)-5-oxopentyl)oxy)phosphoryl)amino)
pentanedioate, 7. Cbz-Glu(OBn) (0.15 g , 1 equiv) was dissolved in 3 mL of dry DMF in a flame dried flask and argon flushed. HBTU ($0.44 \mathrm{mmol}, 1.1$ equiv.) and triethylamine ($0.44 \mathrm{mmol}, 1.1$ equiv.) was added and stirred for 30 minutes for pre-activation of the carboxylic acid. In a separate flask, B was dissolved in 2 mL dry DCM, argon flushed and cooled over ice bath. 1 mL of dry TFA was added and stirred for 15 min . DCM was then evaporated off, reaction mixture dissolved in ethylacetate and washed with $10 \% \mathrm{NaHCO}_{3}$ (till pH neutralized), brine and organic layer dried on anhy. $\mathrm{Na}_{2} \mathrm{SO}_{4}$. It was then redissolved in 2 mL dry DMF added to the flask with the pre-activated acid and stirred overnight under $\operatorname{Argon}_{(\mathrm{g})}$. The reaction mixture was dissolved in ethyleacetate, and washed with $10 \% \mathrm{NaHCO}_{3}$ and brine. Organic layer dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and dried under vaccum. Purification was carried out using reversed phase C18 chromatography with $80 \% \mathrm{MeOH}$-water as the mobile phase. Pure 7 was isolated in 40% yield. ${ }^{1}$ HNMR (300 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 1.45-1.6(\mathrm{~m}, 3 \mathrm{H}), 1.80-1.98(\mathrm{~m}, 2 \mathrm{H}), 2.04-2.18(\mathrm{~m}, 2 \mathrm{H}), 2.20-2.34(\mathrm{~m}$, $3 H), 2.38-2.48(\mathrm{~m}, 2 \mathrm{H}), 3.45(\mathrm{~m}, 1 \mathrm{H}), 3.82$ (t, 2h), 4.37 (m, 1H), 4.56 (m, 1H), 4.81-5.00 $(\mathrm{m}, 2 \mathrm{~h}), 5.04-5.2(\mathrm{~m}, 10 \mathrm{H}), 5.89(\mathrm{~d}, 1 \mathrm{H},-\mathrm{NH}), 6.56(\mathrm{~d}, 1 \mathrm{H},-\mathrm{NH}), 6.70(\mathrm{~d}, 1 \mathrm{H},-\mathrm{NH})$, 7.22-7.40 (m, 25H). ${ }^{31} \mathrm{P}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.46$. ESI mass spectroscopy $(\mathrm{M}+\mathrm{Na})$: calculated $1055.40(\mathrm{M})$, found 1078.5 for $\mathrm{C}_{58} \mathrm{H}_{62} \mathrm{~N}_{3} \mathrm{O}_{14} \mathrm{P}^{+}$.

Section 2: IC $_{50}$ and Mode of inhibition determinations.

General method of $\mathbf{I C}_{\mathbf{5 0}}$. Inhibition studies were performed as previously described with minor modifications. ${ }^{1,2}$ Description is provided in Supplementary material (Section-2). Briefly, working solutions of the substrate N -[4-phenylazo)-benzoyl]-glutamyl- γ glutamic acid, (PABGgG) and inhibitor were prepared in Tris buffer ($50 \mathrm{mM}, \mathrm{pH} 7.4$). Working solutions of purified PSMA were diluted in Tris buffer ($50 \mathrm{mM}, \mathrm{pH} 7.4$ containing 1% Triton X-100) to provide $15-20 \%$ conversion of substrate to product in the absence of inhibitor. A typical incubation mixture (final volume of $250 \mu \mathrm{~L}$) was prepared by the addition of either $25 \mu \mathrm{~L}$ of an inhibitor solution or $25 \mu \mathrm{~L}$ TRIS buffer ($50 \mathrm{mM}, \mathrm{pH}$ 7.4) to $175 \mu \mathrm{~L}$ TRIS buffer ($50 \mathrm{mM}, \mathrm{pH} 7.4$). PABGgG $(25 \mu \mathrm{~L}, 10 \mu \mathrm{M})$ was added to the
above solution. The enzymatic reaction was initiated by the addition of $25 \mu \mathrm{~L}$ of the PSMA working solution. In all cases, the final concentration of PABGgG was $1 \mu \mathrm{M}$ while the enzyme was incubated with five serially diluted inhibitor concentrations providing a range of inhibition from 10% to 90%. The reaction was allowed to proceed for 15 min with constant shaking at $37{ }^{\circ} \mathrm{C}$ and was terminated by the addition of $25 \mu \mathrm{~L}$ methanolic TFA ($2 \% \mathrm{v} / \mathrm{v}$ trifluoroacetic acid in methanol) followed by vortex. The quenched incubation mixture was quickly buffered by the addition of $25 \mu \mathrm{~L} \mathrm{~K}_{2} \mathrm{HPO}_{4}$ (0.1 $\mathrm{M})$, vortexed, and centrifuged (10 min at $7,000 \mathrm{~g}$). An $85 \mu \mathrm{~L}$ aliquot of the resulting supernatant was subsequently quantified by HPLC as previously described. ${ }^{3,4} \mathrm{IC}_{50}$ values were calculated using KaleidaGraph 3.6 (Synergy Software, Reading, PA).

Mode of inhibition Study. The mode of inhibition studies followed the procedure described in our previous work. ${ }^{5}$ Description is provided in Supplementary material (Section-2). The concentration of PSMA $(2.5 \mu \mathrm{~g} / \mathrm{mL})$ was 100 -fold greater than used in the typical ezyme activity assays. The enzyme was pre-incubated for 10 minutes with 0.1 $\mu \mathrm{M}$ of inhibitor $(40 \mu \mathrm{~L})$, at approximately 10 -fold greater than the IC_{50} value. The solution was diluted with 1 mM of substrate in 50 mM tris $+1 \%$ triton buffer (100 -fold, total volume $3960 \mu \mathrm{~L}$). The formation of product was monitored every 5 minutes for 1 hour. A control sample was defined as incubation described here without inhibitor.

Section 3: Crystallographic studies - Structure determination and refinement.

Table S1. Data collection and refinement statistics

Data collection statistics		
Inhibitor	4	6
PDB code	4LQG	---
Wavelength (\AA)	0.918	0.918
Space group	I222	I222
Unit-cell parameters $a, b, c(\AA)$	101.9, 130.3, 158.3	100.4, 130.5, 157.6
Resolution limits (\AA)	50-1.77 (1.87-1.77)	50-1.71 (1.81-1.71)
Number of unique reflections	102,407 (15967)	111,302 (17797)
Redundancy	4.15 (4.14)	5.82 (5.80)
Completeness (\%)	99.4\% (97.4\%)	99.7\% (99.4\%)
I/ $/ \mathrm{I}$	13.47 (2.36)	23.42 (3.60)
$\mathrm{R}_{\text {merge }}$	0.093 (0.693)	0.052 (0.551)
Refinement Statistics		
Resolution limits (\AA)	19.51-1.77 (1.811-1.766)	29.25-1.71 (1.754-1.710)
Total number of reflections	97,284 (7,086)	105,653 (7,750)
Number of reflections in working set	92,164 (6,731)	100,093 (7,342)
Number of reflections in test set	5,120 (355)	5,560 (408)
$\mathrm{R} / \mathrm{R}_{\text {free }}$ (\%)	15.9/18.2	16.3/18.0
Total number of non-H atoms	6791	6438
Number of non-H protein atoms	5923	5791
Number Inhibitor molecules	1	1
Number of water molecules	591	409
Average B-factor (\AA^{2})	13.7	16.8
Protein atoms	12.2	15.6
Waters	20.8	22.2
Inhibitor	31.8	63.7
${ }^{\text {® }}$ Ramachandran Plot (\%)		
Most favored	97.4	97.8
Additionally allowed	2.5	2.1
Disallowed	0.1	0.1
R.m.s. deviations: bond lengths (\AA)	0.019	0.016
bond angles (${ }^{\circ}$)	1.7	1.5
planarity (Á)	0.009	0.009
chiral centers (\AA^{3})	0.1	0.1
Missing residues	545-546, 654-655	654-655

REFERENCES

1. Liu, T.; Wu, L. Y.; Kazak, M.; Berkman, C. E. Cell-Surface labeling and internalization by a fluorescent inhibitor of prostate-specific membrane antigen. Prostate 2008, 68, 955-964.
2. Wu, L. Y.; Anderson, M. O.; Toriyabe, Y.; Maung, J.; Campbell, T. Y.; Tajon, C.; Kazak, M.; Moser, J.; Berkman, C. E. The molecular pruning of a phosphoramidate peptidomimetic inhibitor of prostate-specific membrane antigen. Bioorg Med Chem 2007, 15, 7434-7443.
3. Anderson, M. O.; Wu, L. Y.; Santiago, N. M.; Moser, J. M.; Rowley, J. A.; Bolstad, E. S.; Berkman, C. E. Substrate specificity of prostate-specific membrane antigen. Bioorg Med Chem 2007, 15, 6678-6686.
4. Maung, J.; Mallari, J. P.; Girtsman, T. A.; Wu, L. Y.; Rowley, J. A.; Santiago, N. M.; Brunelle, A. N.; Berkman, C. E. Probing for a hydrophobic a binding register in prostate-specific membrane antigen with phenylalkylphosphonamidates. Bioorg Med Chem 2004, 12, 4969-4979.
5. Liu, T.; Toriyabe, Y.; Kazak, M.; Berkman, C. E. Pseudoirreversible Inhibition of Prostate-Specific Membrane Antigen by Phosphoramidate Peptidomimetics. Biochemistry 2008, 47, 12658-12660.
