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We provide supporting information on the calculation of the heterogeneous ice nucleation

rate on the kaolinite (001) hydroxylated surface. The computational geometry is specified

together with the details of the molecular dynamics simulations used in this work. Moreover,

we discuss the choice of the order parameter we have employed within the forward flux

sampling calculations, and we provide additional information about the implementation of
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the algorithm and the results obtained at each stage of the latter. A brief discussion about

heterogeneous classical nucleation theory is also presented together with the technical details

of the topological criteria used to characterized the ice nuclei and a discussion about finite

size effects.

Computational Geometry

The computational setup we have used is depicted in Fig. S1a. A single layer of kaolinite,

cleaved along the (001) plane (perpendicular to the normal to the slab) was prepared by

starting from the experimental cell parameters and lattice positions.1 Specifically, a kaolinite

bulk system made of two identical slabs was cleaved along the (001) plane. The triclinc

symmetry of the system (space group C1) was modified by setting the α and γ angles

(experimentally equal to 91.926 and 89.797 degrees respectively1) to 90 degrees in order to

make the cell orthorombic. We explicitly verified that this modification does not introduce

any structural change within the clay. The final slab has in-plane dimensions of 61.84 and

71.54 Å, corresponding to a 12 by 8 supercell. We positioned 6144 water molecules randomly

atop this kaolinite slab at the density of the TIP4P/Ice model2 at 300 K, and expanded the

dimension of the simulation cell along the normal to the slab to 150 Å. This setup allows

for a physically meaningful equilibration of the water at the density of interest at a given

temperature, but suffers from two distinct drawbacks: i) the kaolinite slab possesses a net

dipole moment which is not compensated throughout the simulation cell and ii) the presence

of the water-vacuum interface can alter the structure and the dynamics of the liquid film.

However, we have verified that compensating the dipole moment by means of a mirror slab

does not affect our simulations, as we have been able to replicate the results of Ref. 3

independently of the computational geometry. Furthermore, the water film is thick enough

to allow a bulk-like region to exist in terms of both structure and dynamics. The effect

of the water-vacuum interface is therefore negligible. In Fig. S1b we highlight the layered
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nature of the slab, while in Fig. S1c we zoom in on a portion of the (001) hydroxylated

surface and show the hexagonal arrangement of the hydroxyl groups. This arrangement is

important as the water can interact with the hydroxyls, so this arrangement is responsible

for the templating effect of the clay which serves to promote ice nucleation. The amphoteric

nature of the hydroxyl groups at the surface is depicted in Fig. S1d.

Molecular Dynamics Simulations

The CLAY_FF4 force field was used to model the kaolinite slab. We have not included

the - optional - angular term (see Ref. 4), as we have verified that it does not affect the

structure of the surface. In order to mimic the experimental conditions, we have constrained

the system at the experimental lateral dimensions (see above), and have also restrained the

positions of the silicon atoms at the bottom of the slab by means of an harmonic potential

characterized by a spring constant of 1000 kJ/mol. All the other atoms within the kaolinite

slab are unconstrained. We have verified that the thermal expansion of the clay at 230 K (∼

0.4% with respect to each lateral dimension) does not alter the structure nor the dynamics

of the water-kaolinite interface. This setup is thus as close as we can get to the realistic

(001) hydroxylated surface within the CLAY_FF model. The interaction between the water

molecules have been modeled using the TIP4P/Ice model,2 so that our results are consistent

with the homogeneous simulations of Ref. 5. The interaction parameters between the clay

and the water were obtained using the standard Lorentz-Berthelot mixing rules.6,7 Extreme

care must be taken in order to correctly reproduce the structure and the dynamics of the

water-clay interface. The Forward Flux Sampling (FFS) simulations reported in this work

rely on a massive collection of unbiased Molecular Dynamics (MD) runs, all of which have

been performed using the GROMACS package, version 4.6.7. The code was compiled in

single-precision, in order to alleviate the huge computational workload needed to converge

the FFS algorithm and because we have taken advantage of GPU acceleration, which is not
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available in the double-precision version. The equations of motions were integrated using a

leap-frog integrator with a timestep of 2 fs. The van der Waals (non bonded) interactions

were considered up to 10 Å, where a switching function was used to bring them to zero

at 12 Å. Electrostatic interactions have been dealt with by means of an Ewald summation

up to 14 Å. The NVT ensemble was sampled at 230 K using a stochastic velocity rescaling

thermostat8 with a very weak coupling constant of 4 ps in order to avoid temperature

gradients throughout the system. The geometry of the water molecules (TIP4P/Ice being a

rigid model) was constrained using the SETTLE algorithm9 while the P_LINCS algorithm10

was used to constrain the O-H bonds within the clay. We have verified that these settings

reproduce the dynamical properties of water reported in Ref.5 The system was equilibrated

at 300 K for 10 ns, before being quenched to 230 K over 50 ns. This is the starting point for

the calculation of the flux rate discussed in the next section.

Forward Flux Sampling Simulation

Order Parameter

The first step in setting up the FFS simulation involved choosing a suitable order parameter

λ. We start by labeling as ice-like any water molecule whose oxygen atom displays a value

of lq6>0.45, where lq6 is constructed as follows: we first select only those oxygens which are

hydrogen-bonded to four other oxygens. For each of the i−th atoms of this subset S4HB, we

calculate the local order parameter:

lq6i =

∑NS4HB
j=1 σ(rij)

∑6
m=−6 q

6∗
i,m · q6j,m∑NS4HB

j=1 σ(rij)
(1)

where σ(rij) is a switching function tuned so that σ(rij)=1 when atom j lies within the first

coordination shell of atom i and which is zero otherwise. q6i,m is the Steinhardt vector11

4



a)

b) c)

d)

Fig. S1: a) The simulation cell used in this work. A film of liquid water about 40 Å thick is
in contact with a single slab of kaolinite, cleaved along the (001) plane. This slab geometry
is thus characterized by two interfaces: the water-kaolinite interface and the water-vacuum
interface. The dimension of the simulation box along the normal to the slab is extended up to
150 Å. Water molecules are depicted as sticks, while atoms within the kaolinite slab as balls.
Red, white, light blue and yellow atoms correspond to oxygen, hydrogen, aluminum and
silicon atoms respectively. b) (side view) The layered structure of the kaolinite slab: yellow
tetrahedra and light blue octahedra represent the tetrahedral silica sheet and the octahedral
alumina sheet, terminated with hydroxyl groups, respectively. c) (top view) A small portion
of the kaolinite slab depicting the hexagonal arrangement of the hydroxyl groups exposed. d)
Sketch of the amphoteric character of the hydroxylated (001) face of kaolinite: the hydroxyl
groups on top can either donate or accept an hydrogen bond from e.g. water molecules at
the water-clay interface.

q6i,m =

∑NS4HB
j=1 σ(rij)Y6m(rij)∑NS4HB

j=1 σ(rij)
, (2)

Y6m(rij) being one of the 6th order spherical harmonics. We have used 3.2 Å as the cutoff

for σ(rij) to be consistent with Ref. 5. Note that by selecting oxygen atoms within the
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S4HB subset exclusively we ensure that the hydrogen bond network within the ice nuclei is

reasonable. Having identified a set of ice-like water molecules, we pinpoint all the connected

clusters of oxygen atoms which: i) belong to the S4HB subset; ii) have a value of lq6>0.45

and; iii) are separated by a distance ≤ 3.2 Å. We then select the largest of these clusters (i.e.

the one containing the largest number of oxygen atoms or equivalently water molecules).

The final step is to find all the surface molecules that are connected to this cluster, as

this procedure allows us to account for the diffuse interface between the solid and the liquid.

Surface molecules are defined as the water molecules that lie within 3.2 Å from the molecules

in the cluster. The final order parameter λ used in this work is thus the number of water

molecules within the largest ice-like cluster plus the number of surface molecules. This

approach allow us to include ice-like atoms sitting directly on top of the kaolinite surface,

which are never labeled as ice-like (and which would thus never be included into the ice

nuclei) because they are undercoordinated and because they display a different symmetry

to the molecules within bulk water (which in turn leads to different values of lq6). Note

that the order parameter used in Ref. 5 differs with respect to our formulation in that i)

a slightly stricter criterion has been used to label molecules as ice-like, namely lq6>0.5 to

be compared with our choice of lq6>0.45; and ii) surface molecules are not included in the

largest ice-like nucleus. This means that in order to compare quantitatively our results with

those of Ref. 5 in terms of e.g. the size of the critical nucleus, the very same order parameter

has to be used. The calculation of the order parameter is performed on the fly during our

MD simulations thanks to the flexibility of the PLUMED plugin12 (version 2.2). This code

deals chiefly with metadynamics simulations, but can be adapted to a FFS simulation. Note

that PLUMED benefits from a fully parallel implementation that flawlessly couples with the

GPU-accelerated version of GROMACS, and thus provides a very fast tool for performing

FFS simulations. Indeed, while several implementations of FFS are beginning to appear, the

main issue preventing wider adoption remains the implementation of the order parameter,

which can be as complex as the one used in this work. PLUMED allows a wide range of
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order parameters to be exploited without the need to re-code them elsewhere.

Converging the Flux Rate and the Individual Crossing Probabilities

In order to calculate the flux rate Φ0 we have performed a 1.5 ms long unbiased MD simula-

tion, and subsequently built the probability density distribution for P (λ) shown in Fig. S2a.

We have thus delimited the liquid basin in terms of the order parameter as 0 < λ < λLiq = 32,

while setting the initial interface for the FFS λ0=75, corresponding to a value of the cumu-

lative distribution function of P (λ) (also reported in Fig. S2a) of 0.99. The flux rate is then

computed as the number of direct crossings of λ0 (i.e. coming from λ < λLiq) divided by

the total simulation time, and as such should flatten as a function of time. Meanwhile, the

number of direct crossings should increase linearly with time. The value obtained for Φ0 and

the number of crossings as a function of time are reported in Fig. S2b. This figure demon-

strates that, as previously noted in Ref. 13, long simulation times are needed in order to

converge this quantity for inhomogeneous systems. The calculated value of Φ0 is 0.00056359

ps−1, which normalized by the average volume of the water film (189350.2980352 Å3) leads

to the final value of 3.0·10−9±1 ps−1 Å−3. Note that we have chosen to normalize the flux

rate by the average volume of the water film instead of by the surface area for the slab.

While the latter choice could in principle be thought as more meaningful in the context of

heterogeneous nucleation, our objective is to compare our numbers with the homogeneous

case, which is why we choose the volume normalization rather than the surface area one.

However, it should be noticed that the two different normalizations only introduce a differ-

ence of an order of magnitude in the nucleation rate. The number of starting configurations,

one for each direct crossing of λ0, is of the order of eight hundred, providing a comprehensive

sampling including ice-like clusters in the bulk of the water film as well as on top of the water

surface (albeit the latter represent about 25%).

Converging the individual crossing probabilities P (λi|λi−1) required in our case as many

as 10,000 trial MD runs for the first few interfaces. The initial velocities for each MD run
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were randomly initialized consistent with the corresponding Maxwell-Boltzmann distribution

at 230 K. In line with the coarse graining approach discussed in Ref. 5, we have decided to

compute the value of λ on the fly every 4 ps, a frequency far smaller than the relaxation

time of the liquid at this temperature (about 0.5 ns) which allows us to neglect meaningless

fluctuation on very short timescales. The individual crossing probabilities, normalized by

their value after 250 crossing events, are reported in Fig. S2c. Note that at the interfaces

corresponding to critical/post-critical ice nuclei a much smaller number (about 500) of trial

MD runs have been shot, as for large ice nuclei to get back to the liquid phase simulation

times of the order of 10-40 ns are needed, dramatically increasing the computational cost -

albeit more and more nuclei proceed to grow as λ increases leading to a faster convergence

of the crossing probabilities. In fact, crossings for n>250 are not reported in Fig. S2c as

the crossing probabilities are already converged well before n=250 within the last stages of

the algorithm. The confidence intervals for each P (λi|λi−1) have been computed according

to the binomial distribution of the number of successful trial runs collected at λi (see e.g.

Ref.14).

Heterogeneous Classical Nucleation Theory

Within the framework of classical nucleation theory, the homogeneous rate of nucleation

JHomo can be written as:15,16

JHomo = AHomo · e
−∆G∗Homo

kBT (3)

where AHomo is a kinetic prefactor, ∆G∗Homo is the height of the free energy barrier for

nucleation and kB is the Boltzmann constant. On the other hand, the heterogeneous rate of

nucleation JHetero can be written as:15,16

JHetero = AHetero · e
−FS ·∆G∗Homo

kBT (4)
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Fig. S2: a) Probability density distribution for the order parameter λ (P (λ) left y-axis, boxes)
and correspondent cumulative distribution function (CDF, right y-axes, empty circles). The
blue and red vertical arrows mark the upper limit of the liquid basin λLiq and the position of
λ0 respectively. b) Flux rate (Φ0, left y-axis, filled circles) and number of direct crossing of the
λ0 interface (N0, right y-axis, empty circles) as a function of simulation time. c) Individual
crossing probabilities P (λi|λi−1) (normalized by their value at N=250) as a function of the
number of crossing events.

where AHetero is a kinetic prefactor which in principle can differ from AHomo and FS is a

shape factor, or potency factor, which embeds the effectiveness of the substrate to promote

nucleation. The value of FS ranges from one (the surface does not contribute at all in

lowering the free energy barrier for nucleation) to 0 (the nucleation proceeds in a barrierless

fashion). By taking the ratio JHetero

JHomo
and assuming that AHetero = AHomo (which is in many
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cases a perfectly reasonable assumption, see e.g. Refs. 17–19), one can write the shape factor

for heterogeneous nucleation as:

FS = 1−
[

kBT

∆G∗Homo
· ln
(
JHetero
JHomo

)]
(5)

The value of ∆G∗Homo = 1
2
|∆µsl|NC

Homo is 86± 5 kBT , obtained from Ref. 5 by using the

definition of λ we have employed here (thus using a slighlty different lq6i cutoff and including

surface molecules, see Eq. 1) - which accounts for an homogeneous critical nucleus size of

540 ± 30 water molecules and makes a direct comparison possible. Inserting this value into

the expression above leads to a shape factor of 0.46± 0.09.

Double-Diamond and Hexagonal Cages

Double-Diamond (DDC) and Hexagonal cages (HC) are the building blocks of cubic and

hexagonal ice respectively. We have identified water molecules involved in DDC and/or HC

within the largest ice nucleus in the system (defined according to the order parameter λ, see

Eqs. 1 and 2) following the topological criteria detailed in Ref. 5. The first step in order to

locate DDC and HC is the construction of the ring network of the oxygen atoms belonging to

each water molecule. In this work, we have obtained all the six-atom rings needed to build

DDC and HC using King’s shortest path criterion20,21 as implemented in the R.I.N.G.S.

code.22 The same distance cutoff of 3.2 Å used for the construction of the order parameter

λ has been employed to determine the nearest neighbors of each oxygen atom. The same

algorithm described in Ref. 5 has subsequently been used to determine DDC and HC.

Asphericity Parameter

Many different choices are available to quantify the asphericity of clusters of molecules.

We have considered the gyration radius as well as the α ( ∆ in Ref. 23) and S asphericity
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parameters reported in Ref. 23. All of these quantities provided the same qualitative picture,

so we have chosen to report the asphericity trends for α only, the latter being defined as:

α =
3

2(trT )2

3∑
i=1

(µi − µ̄)2 (6)

where µi are the three eigenvalues of the inertia tensor T for a given cluster, and µ̄ =

trT
3

=
∑3

i=1(µi)

3

Spatial extent ∆z

The spatial extent ∆z for a given ice nucleus has been calculated as the difference between

the minimum and maximum values of the z- components of the position vector of all the

oxygens belonging to the nucleus. As the direction normal to the kaolinite slab coincides

to the z-axis of our simulation box, ∆z provides a qualitative indication of the number of

ice layers in the nuclei. Ice nuclei are defined to be on top of the kaolinite surface (Surf ,

see main text) if the minimum value of the z- components of the position vector of all the

oxygens belonging to the nucleus is < 15.0 Å, which correspond to the position of the main

peak in the density profile of the water film along the z-axis. If this is not the case, the ice

nuclei are considered to sit in the bulk of the water film (Bulk, see main text).

Avoiding Finite Size Effects

Special care has to be taken when dealing with atomistic simulations of crystal nucleation

from the liquid phase. Specifically, the presence of periodic boundary conditions can in-

troduce significant finite effects, most notably spurious interactions between the crystalline

nuclei and their periodic images. This artefact results in nonphysically large nucleation rates

and/or crystal growth speeds. In this work we have considered simulation boxes with lateral

dimensions of the order of 60 Å, which is sufficient to ensure that finite size effects do not
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affect our results. We also measured the distance between the ice nuclei and their periodic

images using the average set-set distance d(A,B), which is defined as:

d(A,B) = inf lim
x∈A,y∈B

|x− y| (7)

where x and y are the position vectors of each oxygen atoms belonging to the largest ice

nucleus (defined according to the order parameter λ) A and its first periodic image B respec-

tively. At the FFS interface closest to the critical nucleus size (λ=225), d(A,B)=20±6Å,

and even at the last FFS interface we have considered (λ=325) the ice nuclei are still quite

far away from their periodic images, d(A,B) being 15±7Å, which is of the order of 1/4 of

the lateral dimension of the simulation box.
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