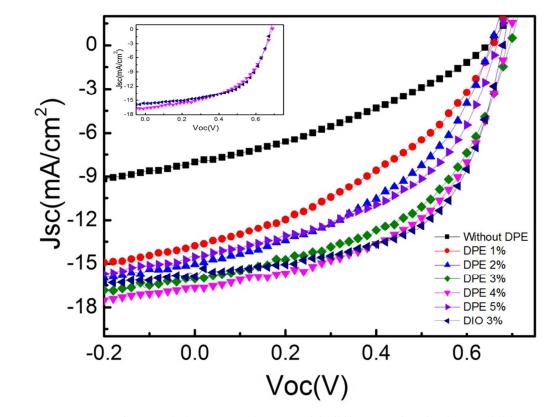
Supporting Information

Towards efficient thick active PTB7 photovoltaic layers using diphenyl ether as a solvent additive

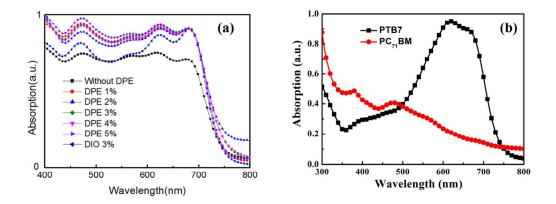
Yifan Zheng[†], Tenghooi Goh[‡], Pu Fan[†], Wei Shi[†], Junsheng Yu^{*†}, and André D. Taylor^{*‡}

[†]State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Information, University of Electronic Science and Technology of China (UESTC), Chengdu 610054, P. R. China.

[‡]Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut, 06511, United States


KEYWORDS: Diphenyl ether (DPE), Solvent additive, Organic photovoltaic (OPV), Thick active layer, Low-bandgap polymer

^{*&}lt;sup>†</sup> E-mail: jsyu@uestc.edu.cn. Tel.: +86-28-83207157, Fax: +86-28-83206123.

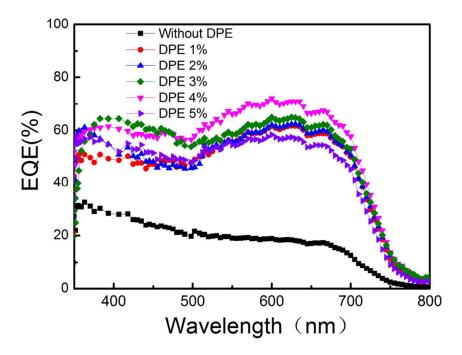
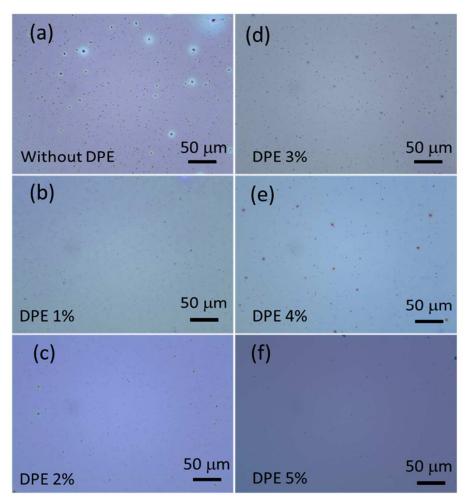
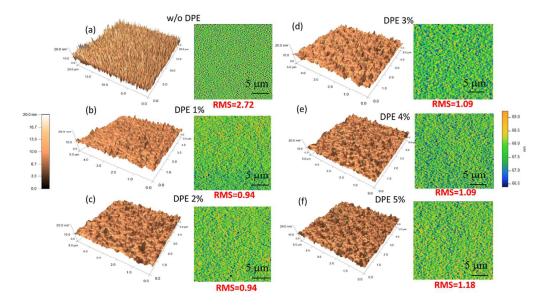

^{*‡} E-mail: andre.taylor@yale.edu. Tel.: (203) 432-2217, Fax: (203) 432-4387.

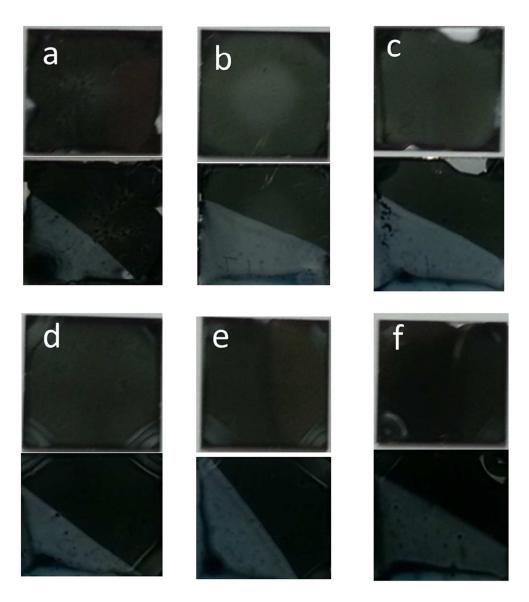
Devices	R_1	CPE1-T	CPE1-P	R_2	C_2	$ au_{avg}$
	(Ω)	(F/cm^2)		(Ω)	(F)	(µs)
Without DPE	1.07×10^{3}	4.2×10 ⁻⁹	0.94	1.03×10^{6}	1.01×10 ⁻⁹	4.5
DPE 2%	6.43×10 ³	2.1×10 ⁻⁹	0.87	9.10×10 ⁵	1.17×10 ⁻⁹	13.5
DPE 4%	1.55×10^{3}	2.4×10 ⁻⁸	0.99	3.00×10 ⁵	2.44×10 ⁻¹²	37.1
DPE 5%	2.77×10^{3}	9.8×10 ⁻⁹	0.98	3.06×10 ⁵	3.19×10 ⁻¹²	27.2

Table S1 Parameters employed for the fitting of the impedance spectra by use of an equivalent circuit model.

Figure S1 *J-V* characteristic curves of OPVs with different ratio of solvent additives; Inset: Comparison *J-V* characteristic of the device with DIO 3% and DPE 4%.

Figure S2 UV-Vis absorption spectra of (a) the PTB7:PC₇₁BM BHJ film with different solvent additive ratio and (b) the pure PTB7 and PCBM film.


Figure S3 External Quantum Efficiency (EQE) of device with variety ratio of DPE.

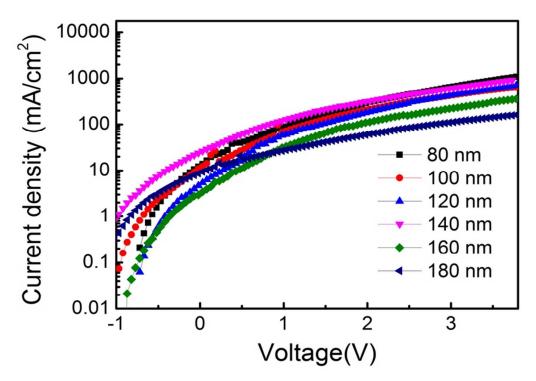

Figure S4 Metallurgical Microscope image of PTB7:PC₇₁BM BHJ blend film with variety concentrations of DPE, (a) without DPE, (b) DPE 1%, (c) DPE 2%, (d) DPE 3%, (e) DPE 4% and (f) DPE 5%.

Figure S5 AFM 3D exhibitions (left) and phase image (right) of PTB7:PC₇₁BM BHJ blend films with different concentrations of DPE (a) without DPE, (b) DPE 1%, (c) DPE 2%, (d) DPE 3%, (e) DPE 4% and (f) DPE 5%.

Figure S6. Image of the PTB7:PC₇₁BM blend film added by different concentration of DPE (up) and the film washed by CB (down). (a) without DPE, (b) DPE 1%, (c) DPE 2%, (d) DPE 3%, (e) DPE 4% and (f) DPE 5%.

Figure S7. *J-V* characteristics of hole-only devices with a configuration of ITO/MoO₃ (15 nm)/PTB7 : $PC_{71}BM$ (x nm) /MoO₃ (15 nm)/Ag (100 nm) based on 4% DPE

$J_{\rm ph}$ Calculation

To investigate the effect of DPE on device performance, photocurrent density (J_{ph}) of OPVs is examined. J_{ph} is defined by $J_{ph}=J_{light} - J_{dark}$, where J_{light} and J_{dark} represent the experimental current density measured in illumination and dark conditions, respectively.¹ J_{ph} can be analyzed using Equation as the analytical solution as suggested Sokel and Hughes.²

$$J_{\rm ph} = eGL \left[\frac{\exp(eV / kT) + 1}{\exp(eV / kT) - 1} - \frac{2kT}{eV} \right]$$

where *e* is the element charge, *G* is the charge carrier generation rate, and *L* is the thickness of the active layer. *k* is the Boltzmann constant, and *T* is the room temperature. *G* is described by a relation of $G(T, E)=G_{\max}P(T, E)$, where G_{\max} represents the total number of photogenerated charge transfer (CT), and P(T, E) is the probability for CT dissociation at the donor-acceptor interface.³

We tabulate J_{ph} of the thin PTB7:PC₇₁BM devices with DPE additive in Table 1. OPV based on DPE 4% shows the highest J_{ph} , indicating a large number of generation of CT states as well as high CT separation efficiency.⁴⁻⁶

References

1. Guan, Z.; Yu, J.; Huang, J.; Zhang, L., Power Efficiency Enhancement Of Solution-Processed Small-Molecule Solar Cells Based On Squaraine Via Thermal Annealing And Solvent Additive Methods. *Sol. Energy Mater. Sol. Cells* **2013**, *109*, 262-269.

2. Sokel, R.; Hughes, R., Numerical Analysis Of Transient Photoconductivity In Insulators. *J. Appl. Phys.* **1982**, *53* (11), 7414-7424.

3. Sariciftci, N.; Hebger, A., Reversible, metastable, Ultrafast Photoinduced Electron Transfer From Semiconducting Polymers To Buckminsterfullerene And In The Corresponding Donor/Acceptor Heterojunctions. *Int. J. Mod. Phys. B* **1994**, *8* (03), 237-274.

4. Yu, J.; Zheng, Y.; Huang, J., Towards High Performance Organic Photovoltaic Cells: A Review Of Recent Development In Organic Photovoltaics. *Polymers* **2014**, *6* (9), 2473-2509.

5. Zheng, Y.; Li, S.; Zheng, D.; Yu, J., Effects Of Different Polar Solvents For Solvent Vapor Annealing Treatment On The Performance Of Polymer Solar Cells. *Org. electron.* **2014**, *15* (11), 2647-2653.

6. Vandewal, K.; Albrecht, S.; Hoke, E. T.; Graham, K. R.; Widmer, J.; Douglas, J. D.; Schubert, M.; Mateker, W. R.; Bloking, J. T.; Burkhard, G. F., Efficient Charge Generation By Relaxed Charge-Transfer States At Organic Interfaces. *Nature Mater.* **2014**, *13* (1), 63-68.