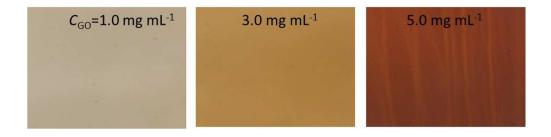
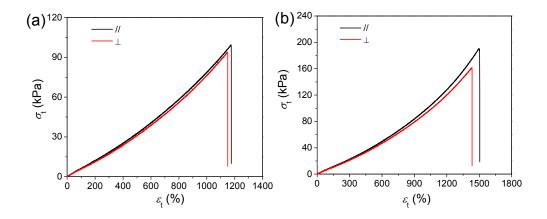
Supporting Information

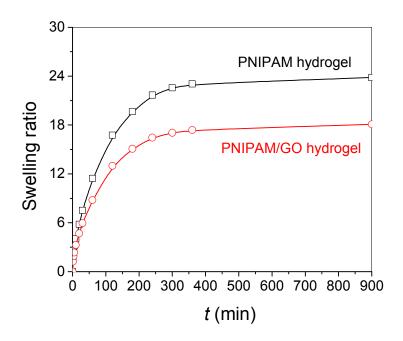
Tough and Thermosensitive Poly(*N*-isopropylacrylamide)/Graphene Oxide Hydrogels with Macroscopically Oriented Liquid Crystalline Structures

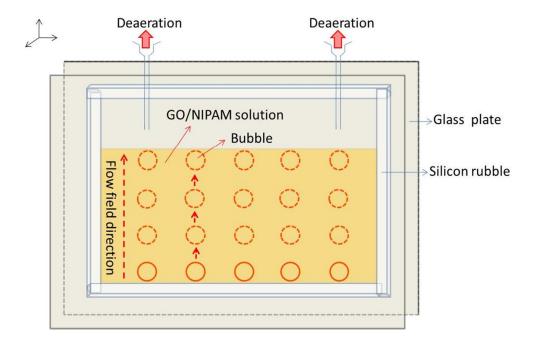

Zhongcheng Zhu, † Yang Li, † Hui Xu, † Xin Peng, † Ya-Nan Chen, † Cong Shang, † Qin Zhang, † Jiaqi Liu † and Huiliang Wang *†

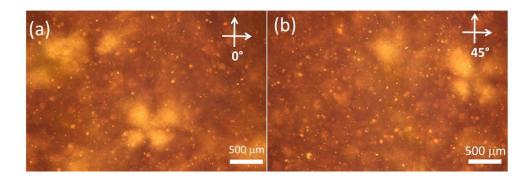
[†]Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China.


*E-mail: wanghl@bnu.edu.cn (H. Wang)

[‡]Department of Chemistry, Capital Normal University, Beijing 100048, P. R. China


Supporting Figures


Figure S1. Photographs of PNIPAM/GO nanocomposite hydrogels with different GO concentrations.


Figure S2. Tensile strain-stress curves of PNIPAM/GO hydrogels prepared with GO concentrations of 1.0 (a) and 3.0 mg mL⁻¹ (b) in the directions parallel and perpendicular to flow field direction.

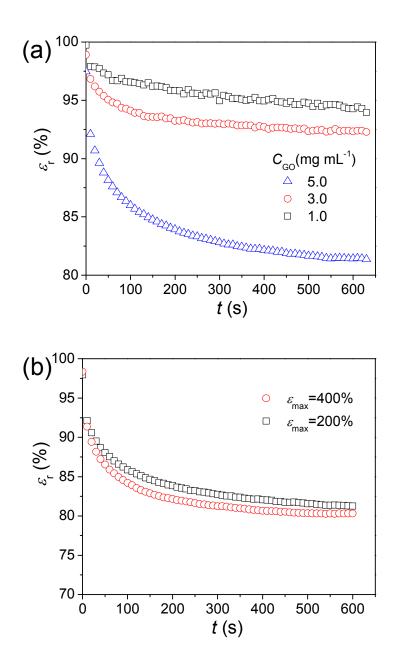

Figure S3. The swelling curves of the PNIPAM gel and the PNIPAM/GO gel (C_{GO} = 5.0 mg mL⁻¹) at 20°C.

Figure S4. Schematic diagram of preparation of PNIPAM/GO nanocomposite hydrogels.

Figure S5. Crossed POM images of the PNIPAM/GO hydrogel (C_{GO} = 5.0 mg mL⁻¹) prepared without degassing process at the rotation angles of 0° (a) and 45° (b).

Figure S6. (a) Stress relaxation curves of the PNIPAM/GO hydrogels prepared with different GO concentrations elongated to the maximum strain (ε_{max}) of 200%, and (b) those for the PNIPAM/GO hydrogel (C_{GO} = 5.0 mg mL⁻¹) elongated to different ε_{max} . ε_{r} is defined as the ratio of remaining stress at time (t) (σ_{t}) to the original stress (σ_{0}) at a given ε_{max} [100×(σ_{t} / σ_{0}) (%)].

Supporting Movies

Movie S1. Very fast real time reversible LC behavior under laser irradiation (532 nm, 5 mW).

Movie S2. The real time thermoresponsive and reversible LC behavior in the elongated gel.

Movie \$3. Rotation of the dried elongated gel under polarized light.