# SUPPORTING INFORMATION

for

## Biosynthesis of Drug Glucuronide Metabolites in the Budding Yeast Saccharomuces cerevisiae

# By

Shinichi Ikushiro, Miyu Nishikawa, Yuuka Masuyama, Tadashi Shouji, , Miharu Fujii, Masahiro Hamada, Noriyuki Nakajima, Moshe Finel, Kaori Yasuda, Masaki Kamakura, and Toshiyuki Sakaki

## Supporting information Figure legends

## Figure S1. Chemical structure of the glucuronidation substrates used in this study.

# Figure S2. Strategy for construction vectors for co-expressing different mammalian UGTs with the rat UGDH in budding yeast.

Upper part, left column represents the generation of the genome integrating expression vector with a Not I site for cloning the rat UGDH (pAUR-N). Upper part, right column represents the generation of rat UGDH. Once the pAUR-UGDH was ready, insertion of the selected UGT gene, through ligation into the Not1 site, results in the generation of co-expression vector of rat UGDH and the selected UGT, generally called pAUR-UGDH/UGT. Halftone boxes in the UGDH or UGT terminator genes in the figure represent the promoter and sequences of glyceraldehydes-3-phosphate dehydrogenase that were derived from Zygosaccharomyces rouxii (Ikezawa, et al., 2003)<sup>25</sup>

## Figure S3. Immunoblot analysis of rat UGDH in yeast cells.

Immunodetection was performed using the anti-rat UGDH antibody. Lanes 1 and 2 represent yeast cell extracts from control, untransfected cells, and from rat UGDH genes-transfected yeast strains, respectively. The arrowhead indicates the mature form of rat UGDH protein.

# *Figure S4. HPLC chromatograms of UDP-sugars in yeast extracts from rat UGDH expressing strain.* (A) UDP-sugars from yeast extracts of a strain that expresses rat UGDH. (B) UDP-sugars from wild type of yeast strain, i.e. a control strain that does not express rat UGDH. (C) UDP-glucose (peak no. 1) and UDPGA (peak no. 2) standards.

#### Figure S5. Mass spectroscopy measurement of purified diclofenac acyl glucuronide.

LC-MS analysis of diclofenac acyl glucuronide was performed on a Quadrupole 6120 and LC system 1260 Infinity (Agilent Technology, Santa Clara, CA, USA). The nitrogen gas flow rate, spray current, and voltages were adjusted to give maximum sensitivity for the glucuronide. The mass spectrometer was operated in positive ion mode with a scan range from 100 to 500 amu. Choromatographic separation was achieved using a Poroshell 120 EC-C18 (4.6 X 50 mm, 2.7µm, Agilent Technology, Santa Clara, CA, USA) column in conjunction with a gradient solvent system. Elution was performed using a mobile phase containing 0.1% formic acid in water and acetonitrile. The initial conditions consisted of water in 0.1% formic acid. After maintaining the initial conditions for 2 min, the proportion of acetonitrile was increased to 100% from 2 to 10 min and held for additional 1min. The solvent was delivered at a flow rate of 0.5 mL/min. A protonated molecular ion

of the glucuronide  $(m/z 472 [M+1]^+)$  and the aglycone ion  $(296 [472-C_6H_8O_6]^+)$  produced from the loss of the glucuronic acid due to in-source fragmentation confirmed the formation of mono-glucuronide of diclofenac.

# Figure S6. NMR spectra measurements of the purified diclofenac acyl glucuronide.

<sup>1</sup>H- and <sup>13</sup>C-NMR spectra of diclofenac acyl glucuronide were recorded on a Bruker Biospin AVANCE II 400 (400 and 100 MHz) in (CD<sub>3</sub>)<sub>2</sub>CO. Chemical shifts and coupling constants are reported in  $\delta$  values (ppm) and hertz, respectively. (A) <sup>1</sup>H NMR [400MHz, (CD<sub>3</sub>)<sub>2</sub>CO]: 3.51, 3.60 and 3.67 (3H, 3m, 2-H, 3-H and 4-H), 3.95 (2H, ABq, *J*=15.6 and 9.0 Hzs, ArCH<sub>2</sub>CO), 4.03 (1H, d, *J*=9.6 Hz, 5-H), 5.66 (1H, d, *J*=8.0 Hz, 1-H, anomeric), 6.47 (1H, d, *J*=8.0 Hz, ArH), 6.82 (1H, br, s, NH), 6.95 (1H, m, ArH), 7.11-7.19 (2H, m, ArH), 7.31 (1H, m, ArH) and 7.47 (2H, m, ArH). (B) <sup>13</sup>C NMR [100MHz, (CD<sub>3</sub>)<sub>2</sub>CO]:38.4, 72.5, 73.4, 76.7, 76.9, 95.8 (anomeric), 118.6, 122.9, 125.2, 125.8, 128.9,129.9, 130.7, 132.0, 138.9,143.8, 169.8 and 171.7. These NMR spectra of enzymatically synthesized diclofenac acyl glucuronide were identical to chemically synthesized one, which shows 1 $\beta$ -*O*-acyl glucuronide of diclofenac (Bowkett, *et al.* 2007) <sup>32</sup>.

| Species | UGTs    | GenBank accession no. |
|---------|---------|-----------------------|
| Human   | UGT1A1  | M57899                |
|         | UGT1A3  | M84127                |
|         | UGT1A4  | M57951                |
|         | UGT1A5  | NM 019078             |
|         | UGT1A6  | M39570                |
|         | UGT1A7  | U89507                |
|         | UGT1A8  | NM 019076             |
|         | UGT1A9  | AF056188              |
|         | UGT1A10 | U89508                |
|         | UGT2A1  | AJ006054              |
|         | UGT2B4  | Y00317                |
|         | UGT2B7  | J05425                |
|         | UGT2B10 | NM 001075             |
|         | UGT2B15 | U08854                |
|         | UGT2B17 | U59209                |
| Rat     | UGT1A1  | U20551                |
|         | UGT1A2  | M34007                |
|         | UGT1A3  | AY435131              |
|         | UGT1A5  | D38069(E1)            |
|         | UGT1A6  | J02612                |
|         | UGT1A7  | D38062(E1)            |
|         | UGT2B1  | M13506                |
|         | UGT2B3  | M31109                |
|         | UGT2B6  | M33746                |
|         | UGT2B12 | U06273                |
| Mouse   | Ugt1a1  | L02333                |
|         | Ugt1a5  | AY227196              |
|         | Ugt1a6a | U16818                |
|         | Ugt1a6b | AY227198              |
|         | Ugt1a9  | L27122                |
|         | Ugt2b1  | BC027200              |
|         | - 0     |                       |

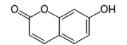
Table S1. List of accession no. of the UGT genes used in this study

|         | Ugt2b34      | AI788959           |
|---------|--------------|--------------------|
| Porcine | UGT1A3a      | AK235866           |
|         | UGT1A3b      | AK235866*(variant) |
|         | UGT2B18-like | 100516628**        |
|         | UGT2B31-like | 100623255**        |
|         | UGT2C1-like  | 100515394**        |
| Bovine  | UGT1A6       | AB008677           |

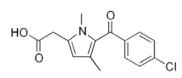
\*Porcine UGT1A3b is a variant of UGT1A3a (AK235866) with replacement of amino acids; K78Q, T82I, R95G, L97F, I180L, K221R, F227S, V228F and V269I.

\*\* The information of porcine UGT gene is from the database resource of Kyoto Encyclopedia of Genes and Genomes (KEGG)

Table S2. Amino acid sequence alignment of the putative N-terminal signal peptide of the human UGTs 1A1, 1A4, 1A7 and 1A9


| Human UGT | Amino acid sequence alignment of putative signal peptide |
|-----------|----------------------------------------------------------|
| UGT1A1    | MAVESQGGRPLVLGLLLCVLGPVVSHAG                             |
| UGT1A4    | MARGLQVPLPRLATGLLLLLSVQPWAESG                            |
| UGT1A7    | MARAGWTGLLPLYVCLLLTCGFAKAG                               |
| UGT1A9    | MACTGWTSPLPLCVCLLLTCGFAEAG                               |

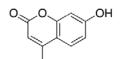
|         |         | Specific production rate<br>(µmol/day/g wet weight) |            |                         |
|---------|---------|-----------------------------------------------------|------------|-------------------------|
| Species | UGT     |                                                     |            |                         |
|         | _       | 7HC                                                 | Diclofenac | 11α-hydroxyprogesterone |
| Human   | UGT1A1  | 0.49                                                | ND         | ND                      |
|         | UGT1A3  | ND                                                  | ND         | 0.001                   |
|         | UGT1A4  | ND                                                  | ND         | 0.002                   |
|         | UGT1A5  | ND                                                  | ND         | ND                      |
|         | UGT1A6  | 10.26                                               | 0.02       | ND                      |
|         | UGT1A7  | 4.25                                                | 0.04       | 0.008                   |
|         | UGT1A8  | 1.17                                                | 0.04       | 0.006                   |
|         | UGT1A9  | 2.54                                                | 0.09       | 0.144                   |
|         | UGT1A10 | 0.88                                                | ND         | ND                      |
|         | UGT2A1  | 10.43                                               | 0.03       | 0.006                   |
|         | UGT2B4  | ND                                                  | ND         | 0.001                   |
|         | UGT2B7  | 0.03                                                | 0.01       | 0.015                   |
|         | UGT2B10 | ND                                                  | ND         | 0.001                   |
|         | UGT2B15 | 0.45                                                | 0.08       | ND                      |
|         | UGT2B17 | 0.09                                                | ND         | ND                      |
| Rat     | UGT1A1  | 0.02                                                | ND         | ND                      |
|         | UGT1A2  | 0.62                                                | 0.11       | 0.14                    |
|         | UGT1A3  | 0.02                                                | ND         | ND                      |
|         | UGT1A5  | 0.01                                                | ND         | ND                      |
|         | UGT1A6  | 0.08                                                | ND         | ND                      |
|         | UGT1A7  | 1.5                                                 | ND         | ND                      |
|         | UGT2B1  | 7.41                                                | 4.19       | ND                      |
|         | UGT2B3  | 1.67                                                | 0.32       | 0.011                   |
|         | UGT2B6  | 0.07                                                | 0.08       | 0.283                   |
|         | UGT2B12 | 0.02                                                | ND         | ND                      |
| Mouse   | Ugt1a1  | 0.02                                                | ND         | ND                      |
|         | Ugt1a5  | 0.05                                                | 0.07       | 0.001                   |
|         | Ugt1a6a | 2.68                                                | ND         | ND                      |
|         | Ugt1a6b | 5.57                                                | ND         | ND                      |
|         | Ugt1a9  | 1.16                                                | 0.02       | ND                      |


Table S3. Glucuronidation rates of budding yeast strains co-expressing rat UGDH and different mammalian UGT enzymes

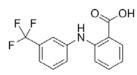
|         | Ugt2b1       | 3.58 | 1.85 | 0.002 |
|---------|--------------|------|------|-------|
|         | Ugt2b5       | 0.33 | ND   | 0.001 |
|         | Ugt2b34      | 0.02 | ND   | ND    |
| Porcine | UGT1A3a      | 1.86 | 1.36 | 0.014 |
|         | UGT1A3b      | 0.42 | 0.89 | 0.006 |
|         | UGT2B18-like | 0.16 | ND   | ND    |
|         | UGT2B31-like | 0.15 | ND   | ND    |
|         | UGT2C1-like  | 0.07 | 0.02 | 0.022 |
| Bovine  | UGT1A6       | 2.85 | ND   | ND    |

Each value of specific production rate was an average of duplicate experiments




7-Hydroxycoumarin




Zomepirac

HO

ő



4-Methyl umbelliferone



Flufenamic acid

.OH Ő

Mefenamic acid

Naproxen

H<sub>3</sub>C

11α-Hydroxyprogesterone

CH3

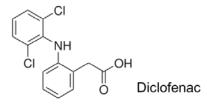
HO,

H<sub>3</sub>C

0

HO.

Ĥ Ì Ĥ


<u>\_</u>0

Н

Mycophenolic acid

Ŷ

ŅН



Loxoprofen

Figure S1

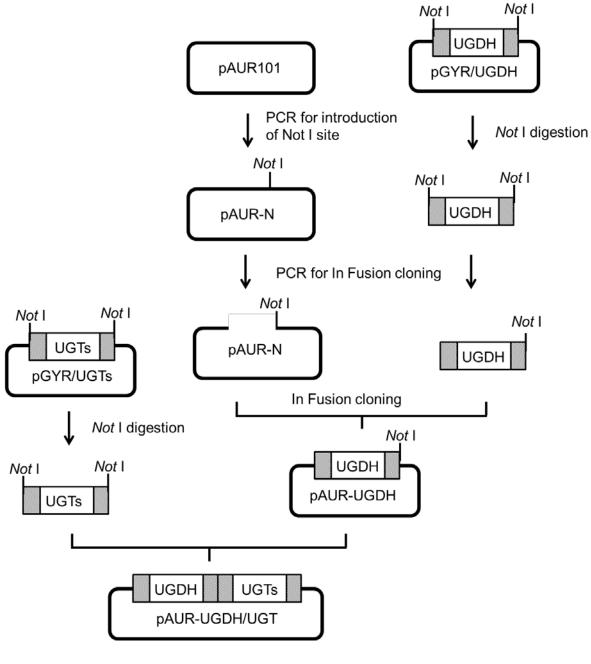



Figure S2

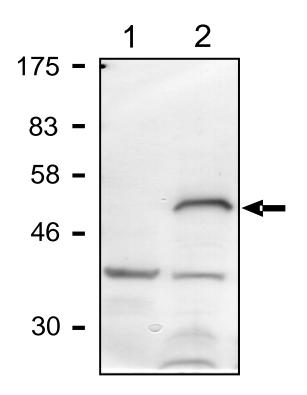



Figure S3

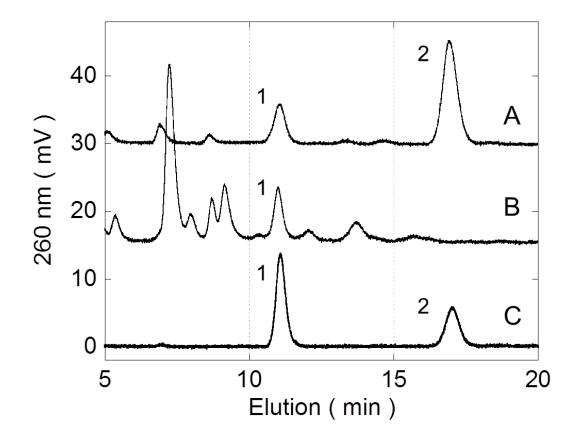



Figure S4.

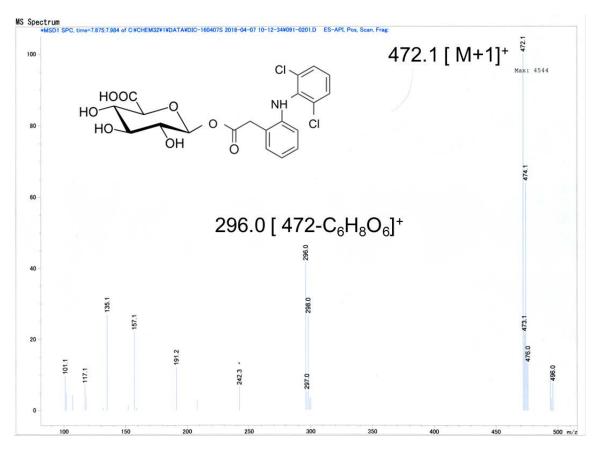



Figure S5

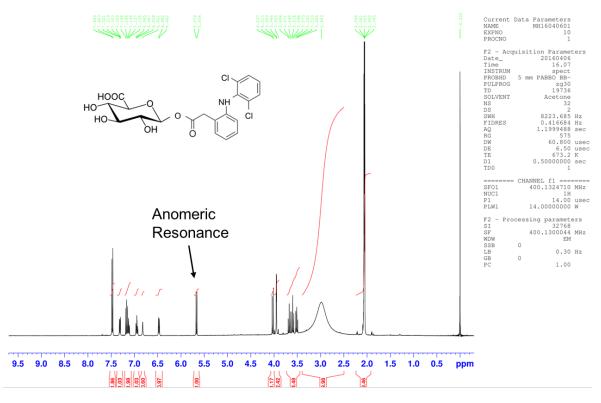
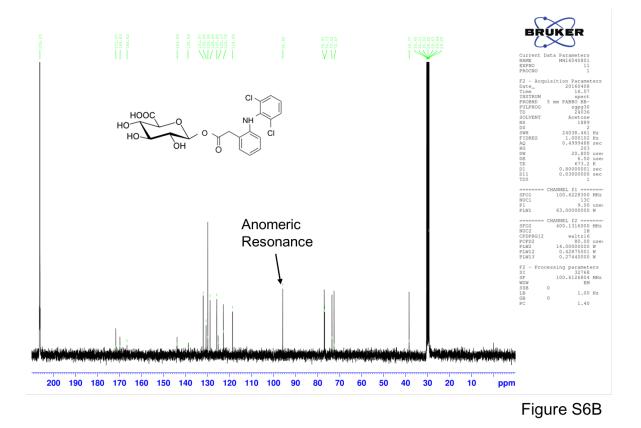




Figure S6A

