Supporting Information

Access to Structurally Diverse Quinoline-Fused Heterocycles via Rhodium(III)-Catalyzed C-C/C-N Coupling of Bifunctional Substrates

Songjie Yu, ${ }^{+}$Yunyun Li, ${ }^{+}$Xukai Zhou, He Wang, Lingheng Kong, Xingwei Li*Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023,China
Email: xwli@dicp.ac.cn
Contents

1. General remarks S2
2. Experimental Information and Characterization Data S2
3. Derivatization Reactions S16
4. Mechanistic Studies S17
5. NMR Spectra S18

I. General Remarks

All commercially available chemicals were used as received without further purification, unless otherwise stated. All reactions were performed in a nitrogen-filled dry box. ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$, and ${ }^{19} \mathrm{~F}$ NMR spectra were recorded on Bruker 400 MHz NMR spectrometer in the solvents indicated. HRMS were obtained on an Agilent Q-TOF 6540. Column chromatography was performed on silica gel (300-400 mesh) using ethyl acetate/petroleum ether as eluents. The indole substrates, ${ }^{1}$ pyridone substrates, ${ }^{2}$ and anthranils ${ }^{3}$ were prepared according to literature reports.

II. Experimental Information and Characterization Data

Representative procedures for the synthesis of product 3

N-pyrimidinylindole (0.2 mmol), $\left[\mathrm{Cp} * \mathrm{RhCl}_{2}\right]_{2}(0.006 \mathrm{mmol}), \mathrm{AgSbF}_{6}(0.04 \mathrm{mmol})$, and PivOH (0.4 mmol) were dissolved in $\mathrm{MeOH}(3 \mathrm{~mL})$ in a pressure tube. The resulting mixture was stirred for seconds under N_{2} atmosphere, to which was added anthranil (0.4 mmol). The mixture was stirred at $120^{\circ} \mathrm{C}$ for 20 hours. After that, the solvent was removed under vacuum and the residue was purified by silica gel chromatography using ethyl acetate/petroleum ether $/ \mathrm{Et}_{3} \mathrm{~N}$ (30:60:1) to afford product 3aa as a yellow solid (92\%).

Representative procedures for the synthesis of product 5

Pyridone (0.2 mmol), $\left[\mathrm{Cp} * \mathrm{RhCl}_{2}\right]_{2}(0.006 \mathrm{mmol}), \mathrm{AgSbF}_{6}(0.04 \mathrm{mmol})$, and $\mathrm{PivOH}(0.6$ mmol) were dissolved in DCE (3 mL) in a pressure tube. The resulting mixture was stirred for seconds under N_{2} atmosphere, to which was added anthranil (0.4 mmol). The mixture was stirred at $120{ }^{\circ} \mathrm{C}$ for 20 hours. After that, the solvent was removed under vacuum and the residue was purified by silica gel chromatography using ethyl acetate/petroleum ether (1:2) to afford product 5ag as a white solid (95\%).
 3aa, 92%

Product 3aa was obtained as a yellow solid in 92% yield (54.5 mg). ${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform- d) $\delta 9.06(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 2 \mathrm{H}), 8.81(\mathrm{~s}, 1 \mathrm{H}), 8.40(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.29(\mathrm{~d}, J=8.5$ $\mathrm{Hz}, 1 \mathrm{H}), 8.21(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.06(\mathrm{dd}, J=8.2,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.79(\mathrm{ddd}, J=8.5,6.8,1.5 \mathrm{~Hz}$, $1 \mathrm{H}), 7.63(\mathrm{ddd}, J=8.5,7.3,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.57(\mathrm{ddd}, J=8.0,6.8,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.46(\mathrm{td}, J=7.5,1.0$
$\mathrm{Hz}, 1 \mathrm{H}), 7.34(\mathrm{t}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 158.6,157.4,152.0,146.7,140.6$, $128.89,128.85,128.4,128.1,127.3,125.4,124.4,122.5,122.0,120.9,119.3,118.1,113.8 . H R M S:$ $\mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{19} \mathrm{H}_{13} \mathrm{~N}_{4}$: 297.1140, found 297.1144.

3ba, 84%

Product 3ba was obtained as a yellow solid in 84% yield (52.1 mg). ${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform- d) $\delta 9.00(\mathrm{~d}, J=4.9 \mathrm{~Hz}, 2 \mathrm{H}), 8.81(\mathrm{~s}, 1 \mathrm{H}), 8.18(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.12(\mathrm{~d}, J=8.3$ $\mathrm{Hz}, 1 \mathrm{H}), 8.01(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.71(\mathrm{ddd}, J=8.4,6.8,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.50(\mathrm{ddd}, J=8.0,6.8,1.2$ $\mathrm{Hz}, 1 \mathrm{H}), 7.45(\mathrm{t}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.30(\mathrm{t}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.18(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.94(\mathrm{~s}, 3 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}) $\delta 158.7,157.4,152.0,146.0,140.7,134.4,129.7,128.8,128.7$, $128.3,128.1,125.4,124.3,124.2,120.3,119.9,118.3,110.9,21.0$. HRMS: m/z: $[\mathrm{M}+\mathrm{H}]^{+}$ calculated for $\mathrm{C}_{20} \mathrm{H}_{15} \mathrm{~N}_{4}: 311.1297$, found 311.1293.

3ca, 94%

Product 3ca was obtained as a yellow solid in 94% yield (75.6 mg). ${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform- d) $\delta 8.97(\mathrm{~s}, 2 \mathrm{H}), 8.95(\mathrm{~s}, 1 \mathrm{H}), 8.19(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.92(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.90$ $(\mathrm{d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.68(\mathrm{ddd}, J=8.4,6.7,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.62-7.55(\mathrm{~m}, 2 \mathrm{H}), 7.51-7.33(\mathrm{~m}, 5 \mathrm{H})$, $7.24(\mathrm{t}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.90(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.37(\mathrm{~s}, 2 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $158.7,157.5,155.6,151.7,146.1,141.9,136.9,130.2,129.2,128.82,128.77,128.6,128.3,128.2$, 127.5, 125.7, 124.2, 118.5, 118.2, 111.2, 106.7, 105.2, 70.4. HRMS: m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{26} \mathrm{H}_{19} \mathrm{~N}_{4} \mathrm{O}: 403.1559$, found 403.1563 .
 3da, 79%

Product 3da was obtained as a yellow solid in 79% yield (59.3 mg). ${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform- d) $\delta 9.57(\mathrm{~s}, 1 \mathrm{H}), 9.08(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 2 \mathrm{H}), 8.29(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 8.24(\mathrm{~d}, J=8.5$ $\mathrm{Hz}, 1 \mathrm{H}), 8.13(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.81(\mathrm{ddd}, J=8.4,6.8,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.65-7.56(\mathrm{~m}, 2 \mathrm{H}), 7.45(\mathrm{t}$, $J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.40(\mathrm{t}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 158.7,157.0,151.5$, $146.6,141.8,130.6,129.4,128.7,128.62,128.60,126.5,125.0,124.5,120.8,118.6,117.5,112.2$. One signal is missing due to overlap. HRMS: m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{19} \mathrm{H}_{12} \mathrm{~N}_{4} \mathrm{Br}: 375.0245$, found 375.0245 .

3ea, 74%

Product 3ea was obtained as a yellow solid in 74% yield (54.5 mg). ${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform- d) $\delta 9.85$ (s, 1H), $9.02(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 2 \mathrm{H}), 8.41(\mathrm{dd}, J=8.3,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 8.14(\mathrm{~d}, J=$ $8.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.11(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 8.04(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.73(\mathrm{ddd}, J=8.4,6.7,1.5 \mathrm{~Hz}, 1 \mathrm{H})$, $7.58(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.51(\mathrm{ddd}, J=8.1,6.8,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.35(\mathrm{t}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.11(\mathrm{~s}, 3 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}) $\delta 167.7,158.8,157.0,151.9,146.8,141.4,135.1,129.7,129.3$, $128.3,127.2,126.0,125.5,125.3,124.2,121.5,118.8,117.5,117.1,52.5 . \operatorname{HRMS}: m / z:[\mathrm{M}+\mathrm{H}]^{+}$ calculated for $\mathrm{C}_{21} \mathrm{H}_{15} \mathrm{~N}_{4} \mathrm{O}_{2}: 355.1195$, found 355.1196 .

3fa, 81%
Product 3fa was obtained as a yellow solid in 81% yield (50.2 mg). ${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform- d) $\delta 8.81(\mathrm{~s}, 2 \mathrm{H}), 8.75(\mathrm{~s}, 1 \mathrm{H}), 8.20(\mathrm{t}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 8.15(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.98$ $(\mathrm{d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.70(\mathrm{ddd}, J=8.3,6.7,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.54(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.49(\mathrm{t}, J=7.4$ $\mathrm{Hz}, 1 \mathrm{H}), 7.38(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.40(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 158.7,155.4,152.1$, $146.80,140.76,128.9,128.8,128.4,128.1,127.7,127.4,125.2,124.2,122.3,121.8,121.0,119.2$, 113.4, 15.4. HRMS: m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{20} \mathrm{H}_{15} \mathrm{~N}_{4}: 311.1297$, found 311.1295 .

3ga, 85%
Product 3ga was obtained as a yellow solid in 85% yield (55.4 mg). ${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform- d) $\delta 8.97(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 2 \mathrm{H}), 8.72(\mathrm{~s}, 1 \mathrm{H}), 8.33(\mathrm{~d}, J=9.1 \mathrm{~Hz}, 1 \mathrm{H}), 8.21(\mathrm{~d}, J=8.6$ $\mathrm{Hz}, 1 \mathrm{H}), 7.98(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.71(\mathrm{ddd}, J=8.4,6.7,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.63(\mathrm{~d}, J=2.6 \mathrm{~Hz}, 1 \mathrm{H})$, 7.50 (ddd, $J=8.0,6.8,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.25(\mathrm{t}, J=4.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.16(\mathrm{dd}, J=9.0,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.94(\mathrm{~s}$, $3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 158.6,157.5,155.8,152.3,146.8,134.9,129.0,128.9,128.1$, $127.3,125.1,124.4,122.9,119.5,117.7,116.2,115.3,104.4,56.0$. HRMS: m/z: $[\mathrm{M}+\mathrm{H}]^{+}$ calculated for $\mathrm{C}_{20} \mathrm{H}_{15} \mathrm{~N}_{4} \mathrm{O}: 327.1246$, found 327.1246.

3ha, 80%

Product 3ha was obtained as a yellow solid in 80% yield (52.8 mg). ${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform- d) $\delta 8.98(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 2 \mathrm{H}), 8.67(\mathrm{~s}, 1 \mathrm{H}), 8.27(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.19(\mathrm{~d}, J=8.5$ $\mathrm{Hz}, 1 \mathrm{H}), 8.06(\mathrm{~s}, 1 \mathrm{H}), 7.95(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.72(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.58-7.40(\mathrm{~m}, 2 \mathrm{H}), 7.29$ $(\mathrm{t}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 158.7,157.2,151.9,147.0,138.8,129.4,128.9$, $128.3,128.2,128.0,127.9,125.2,124.7,123.3,120.7,118.2,115.3$. One signal is missing due to overlap. HRMS: m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{19} \mathrm{H}_{12} \mathrm{~N}_{4} \mathrm{Cl}$: 331.0750 , found 331.0755 .

3ia, 86%
Product 3ia was obtained as a yellow solid in 86% yield (60.9 mg). ${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform- d) $\delta 9.01(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 2 \mathrm{H}), 8.82(\mathrm{~d}, J=15.0 \mathrm{~Hz}, 2 \mathrm{H}), 8.29(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.23$ $(\mathrm{d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.19(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.00(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.73(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H})$,
$7.52(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.35(\mathrm{t}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.98(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $167.0,158.8,157.0,152.3,146.9,143.5,129.9,129.3,128.9,128.3,128.1,125.4,124.8,124.3$, 122.9, 121.9, 118.7, 118.6, 113.4, 52.2. HRMS: m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{21} \mathrm{H}_{15} \mathrm{~N}_{4} \mathrm{O}_{2}$: 355.1195, found 355.1200.

3ja, 73\%
Product 3ja was obtained as a yellow solid in 73% yield (48.2 mg). ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO-d $\left.d_{6}\right) \delta 9.30-8.96(\mathrm{~m}, 3 \mathrm{H}), 8.34(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.23-8.06(\mathrm{~m}, 2 \mathrm{H}), 7.99(\mathrm{~d}, J=8.4$ $\mathrm{Hz}, 1 \mathrm{H}), 7.84-7.69(\mathrm{~m}, 1 \mathrm{H}), 7.68-7.51(\mathrm{~m}, 2 \mathrm{H}), 7.46(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz , DMSO- $\left.d_{6}\right) \delta 159.8,156.4,151.8,146.5,141.2,133.3,130.0,129.1,128.9,128.3,125.4,124.9$, 123.5, 122.9, 120.4, 120.1, 117.8, 113.2. HRMS: m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{19} \mathrm{H}_{12} \mathrm{~N}_{4} \mathrm{Cl}$: 331.0750 , found 331.0751 .

3ka, 90%
Product 3ka was obtained as a yellow solid in 90% yield (63.7 mg). ${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform- d) $\delta 9.04(\mathrm{~d}, J=4.9 \mathrm{~Hz}, 2 \mathrm{H}), 8.9(\mathrm{~s}, 1 \mathrm{H}), 8.76(\mathrm{~s}, 1 \mathrm{H}), 8.20(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.14$ $(\mathrm{d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.06(\mathrm{dd}, J=8.0,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.96(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.73(\mathrm{ddd}, J=8.4,6.8$, $1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.49(\mathrm{t}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.34(\mathrm{t}, J=4.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.97(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 167.1,158.8,157.1,152.4,147.3,140.1,129.7,129.6,128.9,128.8,128.3,125.8,125.2$, 124.7, 123.8, 120.6, 118.4, 118.2, 115.2, 52.3. HRMS: m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{21} \mathrm{H}_{15} \mathrm{~N}_{4} \mathrm{O}_{2}$: 355.1195, found 355.1193 .

3la, 86%

Product 3la was obtained as a yellow solid in 86% yield (55.7 mg). ${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform- d) $\delta 8.97$ (dd, $J=4.9,2.2 \mathrm{~Hz}, 2 \mathrm{H}), 8.71(\mathrm{~s}, 1 \mathrm{H}), 8.08-7.99(\mathrm{~m}, 2 \mathrm{H}), 7.95(\mathrm{~d}, J=8.2$ Hz, 1H), 7.63 (ddd, $J=8.5,6.7,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.43(\mathrm{ddd}, J=8.0,6.7,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.40-7.29(\mathrm{~m}$, $3 \mathrm{H}), 2.35(\mathrm{q}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.06(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 159.0$, $158.5,154.2,146.9,139.9,129.1,128.7,128.7,128.6,128.2,127.4,125.3,123.9,122.7,122.4$, 119.9, 119.2, 119.1, 25.7, 13.9. HRMS: m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{21} \mathrm{H}_{17} \mathrm{~N}_{4}: 325.1453$, found 325.1457

3ma, 88\%

Product 3ma was obtained as a yellow solid in 88% yield (55.3 mg). ${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform- d) $\delta 8.99(\mathrm{~d}, J=4.9 \mathrm{~Hz}, 2 \mathrm{H}), 8.74(\mathrm{~s}, 1 \mathrm{H}), 8.12(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.97(\mathrm{~d}, J=8.2$ $\mathrm{Hz}, 1 \mathrm{H}), 7.92(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.68(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.47(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.37(\mathrm{t}, J=4.9$ $\mathrm{Hz}, 1 \mathrm{H}), 7.33-7.20(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 158.7,156.7,152.6,149.5(\mathrm{~J}=$ $246.6 \mathrm{~Hz}), 147.1,129.2,128.7,128.5(J=9.2 \mathrm{~Hz}), 128.4,128.3,125.22,125.19,124.4,122.6(J=$ $6.6 \mathrm{~Hz}), 119.6,118.6(J=2.3 \mathrm{~Hz}), 117.0(J=3.6 \mathrm{~Hz}), 115.5(J=19.0 \mathrm{~Hz}) .{ }^{19}$ F NMR (376 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta$-122.1. HRMS: m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{19} \mathrm{H}_{12} \mathrm{~N}_{4} \mathrm{~F}: 315.1046$, found 315.1046.

3na, 90\%

Product 3na was obtained as a yellow solid in 90% yield (56.5 mg). ${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform- d) $\delta 8.85(\mathrm{~s}, 2 \mathrm{H}), 8.73(\mathrm{~s}, 1 \mathrm{H}), 8.21-8.15(\mathrm{~m}, 2 \mathrm{H}), 8.13(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.98(\mathrm{~d}$, $J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.71(\mathrm{ddd}, J=8.4,6.8,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.54(\mathrm{ddd}, J=8.4,7.3,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.49$ (ddd, $J=8.1,6.8,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.38(\mathrm{td}, J=7.5,1.0 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $155.3(J=260.9 \mathrm{~Hz}), 153.2(J=3.4 \mathrm{~Hz}), 151.9,146.6(J=21.6 \mathrm{~Hz}), 146.3,140.5,129.0,128.9$, $128.5,128.2,127.5,125.3,124.5,122.7,121.9,121.1,119.2,113.3 .{ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ-141.5. HRMS: m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{19} \mathrm{H}_{12} \mathrm{~N}_{4} \mathrm{~F}: 315.1046$, found 315.1042.

30a, 71%
Product 3oa was obtained as a yellow solid in 71% yield (44.6 mg). ${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform- d) $\delta 8.65(\mathrm{dd}, J=5.0,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 8.58(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 8.15(\mathrm{dd}, J=10.6,2.4 \mathrm{~Hz}$, $1 \mathrm{H}), 8.07(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.01(\mathrm{dd}, J=8.5,5.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.98-7.91(\mathrm{~m}, 2 \mathrm{H}), 7.68(\mathrm{ddd}, J=$ $8.4,6.7,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.47(\mathrm{ddd}, J=8.1,6.7,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.28(\mathrm{dd}, J=6.8,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.06(\mathrm{td}$, $J=8.8,2.4 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 163.1(J=244.0 \mathrm{~Hz}), 152.1,151.0,148.2$, $145.9,142.0(J=12.9 \mathrm{~Hz}), 138.1,128.9,128.22,128.15,126.7(J=1.8 \mathrm{~Hz}), 125.0,124.2,121.9(J$ $=10.2 \mathrm{~Hz}), 121.2,119.8,118.5(J=0.7 \mathrm{~Hz}), 117.7(J=2.1 \mathrm{~Hz}), 109.6(J=24.0 \mathrm{~Hz}), 101.8(J=$ $28.8 \mathrm{~Hz}) .{ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-110.3 . \mathrm{HRMS}: \mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{20} \mathrm{H}_{14} \mathrm{~N}_{3} \mathrm{~F}$: 314.1094, found 314.1096.

3pa, 95%
Product 3pa was obtained as a yellow solid in 95% yield (76.2 mg). ${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform- d) $\delta 8.92(\mathrm{~s}, 1 \mathrm{H}), 8.65(\mathrm{dd}, J=4.9,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 8.49(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.07(\mathrm{~d}, J=$ $8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.99-7.88(\mathrm{~m}, 3 \mathrm{H}), 7.65(\mathrm{ddd}, J=8.4,6.8,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.61-7.55(\mathrm{~m}, 2 \mathrm{H}), 7.49-$ $7.35(\mathrm{~m}, 5 \mathrm{H}), 7.26(\mathrm{dd}, J=7.3,4.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.85(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.37(\mathrm{~s}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 155.6,151.5,151.2,148.4,145.7,142.5,138.0,137.1,130.0,129.2,128.8,128.6$, $128.5,128.2,128.1,127.5,125.4,123.7,121.2,120.4,118.3,110.7,106.6,104.6,70.3$. HRMS: $\mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{27} \mathrm{H}_{20} \mathrm{~N}_{3} \mathrm{O}: 402.1606$, found 402.1603 .

3qa, 71%
Product 3qa was obtained as a yellow solid in 71% yield (34.9 mg). ${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform- d) $\delta 8.87(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 2 \mathrm{H}), 8.47(\mathrm{~d}, J=4.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.39(\mathrm{~s}, 1 \mathrm{H}), 8.29(\mathrm{~d}, J=8.6$
$\mathrm{Hz}, 1 \mathrm{H}), 7.93(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.69(\mathrm{ddd}, J=8.4,6.7,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.49(\mathrm{ddd}, J=8.1,6.8,1.2$ $\mathrm{Hz}, 1 \mathrm{H}), 7.17(\mathrm{t}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.79(\mathrm{~d}, J=4.2 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 158.8$, $156.9,149.0,145.6,130.7,129.5,128.10,128.05,127.8,125.4,124.4,117.1,104.2$. One signal is missing due to overlap. HRMS: m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{15} \mathrm{H}_{11} \mathrm{~N}_{4}: 247.0984$, found 247.0989.

3ab, 89%

Product 3ab was obtained as a yellow solid in 89% yield (58.0 mg). ${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform- d) $\delta 8.97(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 2 \mathrm{H}), 8.64(\mathrm{~s}, 1 \mathrm{H}), 8.36(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 8.12(\mathrm{~s}, 1 \mathrm{H}), 8.10$ $(\mathrm{d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.54(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.41-7.35(\mathrm{~m}, 2 \mathrm{H}), 7.25(\mathrm{t}, J=3.9 \mathrm{~Hz}, 2 \mathrm{H}), 3.93(\mathrm{~s}$, $3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 158.6,157.5,156.3,150.8,142.7,140.5,130.3,128.4,126.1$, $122.5,122.0,121.6,120.9,119.5,117.9,114.0,105.6,55.5$. One signal is missing due to overlap. HRMS: m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{20} \mathrm{H}_{15} \mathrm{~N}_{4} \mathrm{O}: 327.1246$, found 327.1243.

3ac, 95%

Product 3ac was obtained as a yellow solid in 95% yield (59.7 mg). ${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform- d) $\delta 8.98(\mathrm{~d}, J=4.9 \mathrm{~Hz}, 2 \mathrm{H}), 8.65(\mathrm{~s}, 1 \mathrm{H}), 8.33(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 8.18(\mathrm{dd}, J=9.3$, $5.3 \mathrm{~Hz}, 1 \mathrm{H}), 8.11(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.62-7.53(\mathrm{~m}, 2 \mathrm{H}), 7.52-7.44(\mathrm{~m}, 1 \mathrm{H}), 7.38(\mathrm{t}, J=7.4 \mathrm{~Hz}$, $1 \mathrm{H}), 7.28(\mathrm{t}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 159.2(J=243.5 \mathrm{~Hz}), 158.7,157.3$, $151.7(J=2.2 \mathrm{~Hz}), 143.6,140.7,131.0(J=9.0 \mathrm{~Hz}), 128.8,126.5(J=5.3 \mathrm{~Hz}), 125.6(J=9.7 \mathrm{~Hz})$, $122.7,121.5,121.2,120.0,119.0(J=25.5 \mathrm{~Hz}), 118.1,114.0,110.9(J=21.7 \mathrm{~Hz})$. HRMS: m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{19} \mathrm{H}_{12} \mathrm{~N}_{4} \mathrm{~F}$: 315.1046, found 315.1042.

3ad, 79%
Product 3ad was obtained as a yellow solid in 79% yield (59.3 mg). ${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform- d) $\delta 9.01$ (d, $J=4.8 \mathrm{~Hz}, 2 \mathrm{H}), 8.70(\mathrm{~s}, 1 \mathrm{H}), 8.39(\mathrm{~s}, 1 \mathrm{H}), 8.30(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.13$ $(\mathrm{d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.84(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.68-7.52(\mathrm{~m}, 2 \mathrm{H}), 7.40(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.33(\mathrm{t}$, $J=4.8 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 158.6,157.2,152.3,147.2,140.7,131.1,129.1$, $128.7,127.8,127.1,123.8,122.9,122.7,121.6,121.0,119.6,118.3,113.8$. HRMS: m/z: $[\mathrm{M}+\mathrm{H}]^{+}$ calculated for $\mathrm{C}_{19} \mathrm{H}_{12} \mathrm{~N}_{4} \mathrm{Br}$: 375.0245, found 375.0250.

3ae, 62%
Product 3ae was obtained as a yellow solid in 62% yield (40.9 mg). ${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform-d) $\delta 9.20(\mathrm{~s}, 1 \mathrm{H}), 9.07-8.95(\mathrm{~m}, 2 \mathrm{H}), 8.34(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 8.24(\mathrm{~d}, J=7.7 \mathrm{~Hz}$, $1 \mathrm{H}), 8.13(\mathrm{dd}, J=7.3,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.66-7.57(\mathrm{~m}, 3 \mathrm{H}), 7.44(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.33(\mathrm{t}, J=4.8$ $\mathrm{Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 158.7,157.3,152.2,147.4,140.8,131.5,128.9,128.4$, $128.2,124.6,124.3,123.4,122.9,121.8,121.4,120.2,118.3,114.0$. HRMS: m/z: $[\mathrm{M}+\mathrm{H}]^{+}$ calculated for $\mathrm{C}_{19} \mathrm{H}_{12} \mathrm{~N}_{4} \mathrm{Cl}$: 331.0750, found 331.0752.

3af, 82%
Product 3af was obtained as a yellow solid in 82% yield (50.8 mg). ${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform- d) $\delta 9.00(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 2 \mathrm{H}), 8.29(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 8.27(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.24$ $(\mathrm{d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.17(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.70(\mathrm{ddd}, J=8.3,6.7,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.57-7.48(\mathrm{~m}$, $2 \mathrm{H}), 7.40(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.29(\mathrm{t}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.20(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $158.7,157.3,151.6,146.4,140.5,139.3,129.4,128.6,127.6,125.3,124.0,123.7,123.5,123.0$,
122.4, 118.3, 117.2, 113.2, 15.2. HRMS: m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{20} \mathrm{H}_{15} \mathrm{~N}_{4}: 311.1297$, found 311.1296.

3ag, 97%
Product 3ag was obtained as a yellow solid in 97% yield (78.8 mg). ${ }^{1} \mathrm{H}$ NMR (400 MHz , Methylene Chloride- d_{2}) $\delta 9.03(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 2 \mathrm{H}), 8.14(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 8.06(\mathrm{~d}, J=8.9 \mathrm{~Hz}$, $1 \mathrm{H}), 7.75-7.67(\mathrm{~m}, 4 \mathrm{H}), 7.64(\mathrm{dd}, J=9.0,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.58-7.51(\mathrm{~m}, 2 \mathrm{H}), 7.46(\mathrm{ddd}, J=8.5$, $7.2,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.39(\mathrm{t}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.11-7.05(\mathrm{~m}, 1 \mathrm{H}), 7.00(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \delta 158.8,157.1,151.7,141.6,141.1,135.5,129.8,129.5,129.3,129.2,128.9$, $128.3,125.7,124.9,123.0,122.1,121.6,118.8,117.5,112.9$. Two signals are missing due to overlap. HRMS: m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{25} \mathrm{H}_{16} \mathrm{~N}_{4} \mathrm{Cl}$: 407.1063 , found 407.1065.

Product 5ag was obtained as a white solid in 95% yield $(75.1 \mathrm{mg}) .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $8.78(\mathrm{~d}, J=3.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.98(\mathrm{t}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.66-7.61(\mathrm{~m}, 4 \mathrm{H}), 7.50-7.42(\mathrm{~m}, 5 \mathrm{H}), 7.36(\mathrm{br}$, 2H), $2.20(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}^{\mathrm{NMR}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 163.7,151.6,150.1,149.5,146.3,145.1,138.5$, $134.2,132.7,132.5,131.1,130.8,130.4,130.1(\mathrm{br}), 129.1,129.0,125.2,125.1,124.7,123.7,115.0$, 17.4. HRMS: $\mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{24} \mathrm{H}_{17} \mathrm{ClN}_{3} \mathrm{O}: 398.1055$, found 398.1058 .

5bg, 95%
Product 5bg was obtained as a white solid in 95% yield $(78.4 \mathrm{mg}) .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $8.77(\mathrm{dd}, J=4.7,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.99(\mathrm{td}, J=7.7,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.65-7.60(\mathrm{~m}, 4 \mathrm{H}), 7.50-7.42(\mathrm{~m}$, $4 \mathrm{H}), 7.38(\mathrm{br}, 2 \mathrm{H}), 6.68(\mathrm{~s}, 1 \mathrm{H}), 3.75(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 159.0,151.0,150.1$,
$149.1,147.0,144.6,143.9,138.6,134.5,130.9,130.4,130.3,129.8$ (br), 129.13, 129.1, 125.4, 124.7, 124.6, 123.9, 115.2, 106.7, 56.1. HRMS: m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{24} \mathrm{H}_{17} \mathrm{ClN}_{3} \mathrm{O}_{2}$: 414.1004, found 414.1008 .

5cg, 92%
Product 5cg was obtained as a white solid in 92% yield $(73.4 \mathrm{mg}) .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $8.76(\mathrm{dd}, J=4.8,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.97(\mathrm{td}, J=7.7,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.59-7.53(\mathrm{~m}, 4 \mathrm{H}), 7.50-7.42(\mathrm{~m}$, $3 \mathrm{H}), 7.32(\mathrm{br}, 2 \mathrm{H}), 7.19(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.60(\mathrm{~d}, J=1.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.80(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 162.3,151.6,150.1,150.0,147.8,147.7,144.6,138.5,137.2,131.6,130.9,129.9$, 129.7 (br), 129.1, 128.5, 126.3, 125.6, 125.4, 124.7, 123.6, 115.4, 24.3. HRMS: m/z: $[\mathrm{M}+\mathrm{H}]^{+}$ calculated for $\mathrm{C}_{24} \mathrm{H}_{17} \mathrm{ClN}_{3} \mathrm{O}: 398.1055$, found 398.1053.

5dg, 61%
Product 5dg was obtained as a white solid in 61% yield (68.2 mg). ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $8.77(\mathrm{~d}, J=3.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.98(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.58(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.49-7.43(\mathrm{~m}, 3 \mathrm{H}), 7.34$ $-7.21(\mathrm{~m}, 5 \mathrm{H}), 7.17-7.08(\mathrm{~m}, 4 \mathrm{H}), 6.92(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.11(\mathrm{~s}, 1 \mathrm{H}), 4.77(\mathrm{~s}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 163.9,162.6,151.5,150.0,149.7,147.6,145.4,138.5,137.4,133.8,131.9$, $130.8,129.9,128.4,128.4,128.3,127.8,127.6$ (br), 126.3, 125.8, 125.0, 123.6, 110.5, 99.2, 71.4 . HRMS: m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{30} \mathrm{H}_{21} \mathrm{ClN}_{3} \mathrm{O}_{2}: 490.1317$, found 490.1321.

5eg, 72%
Product 5 eg was obtained as a white solid in 72% yield (57.4 mg). ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $8.70(\mathrm{~d}, J=5.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.76(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.71-7.65(\mathrm{~m}, 4 \mathrm{H}), 7.61(\mathrm{dd}, J=9.0,2.3 \mathrm{~Hz}$, $1 \mathrm{H}), 7.55(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.43(\mathrm{br}, 2 \mathrm{H}), 7.36(\mathrm{dd}, J=14.2,4.9 \mathrm{~Hz}, 2 \mathrm{H}), 6.79(\mathrm{~d}, J=9.9 \mathrm{~Hz}$,
$1 \mathrm{H}), 2.58(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 163.1,151.0,150.1,149.8,149.6,147.8,145.7$, $136.6,133.8,131.6,131.0,130.5,130.0$ (br), 129.2, 129.0 (br), 125.3, 125.2, 124.9, 124.91, 123.7, 114.6, 21.2. HRMS: m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{24} \mathrm{H}_{17} \mathrm{ClN}_{3} \mathrm{O}: 398.1055$, found 398.1055.

5fg, 63%
Product $\mathbf{5 f g}$ was obtained as a white solid in 63% yield $(57.0 \mathrm{mg}) .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $8.97(\mathrm{~d}, J=5.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.72-7.71(\mathrm{~m}, 2 \mathrm{H}), 7.68-7.61(\mathrm{~m}, 5 \mathrm{H}), 7.57(\mathrm{dd}, J=9.0,2.3 \mathrm{~Hz}, 1 \mathrm{H})$, $7.50(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.37(\mathrm{dd}, J=1.8,0.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.72(\mathrm{~d}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 162.8,152.2,151.1,149.5,148.3,145.6,140.9(\mathrm{q}, J=34.2 \mathrm{~Hz}), 137.1,133.6$, $132.0,131.4,130.4,129.9,129.4,129.0,125.4,125.2,122.6(\mathrm{q}, J=271.8 \mathrm{~Hz}), 123.5,121.2(\mathrm{q}, J$ $=3.7 \mathrm{~Hz}), 119.7(\mathrm{q}, J=3.4 \mathrm{~Hz})$, 114.5. HRMS: m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{24} \mathrm{H}_{14} \mathrm{ClF}_{3} \mathrm{~N}_{3} \mathrm{O}$: 452.0772, found 452.0776.

5gg, 92%
Product 5 gg was obtained as a white solid in 92% yield $(72.7 \mathrm{mg}) .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $8.60(\mathrm{~s}, 1 \mathrm{H}), 7.79(\mathrm{dd}, J=7.9,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.68(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.63-7.57(\mathrm{~m}, 4 \mathrm{H}), 7.53(\mathrm{dd}$, $J=9.0,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.47(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.34(\mathrm{~m}, 3 \mathrm{H}), 6.71(\mathrm{~d}, J=9.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.49(\mathrm{~s}, 3 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 163.2,150.4,149.9,148.6,147.9,145.8,139.2,136.6,133.8$, $133.5,131.7,131.0,130.5,130.0$ (br), 129.3, 129.0 (br), 125.3, 125.0, 123.9, 123.8, 114.7, 18.3. HRMS: m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{24} \mathrm{H}_{17} \mathrm{ClN}_{3} \mathrm{O}: 398.1055$, found 398.1050.

5hg, 72\%
Product $\mathbf{5} \mathbf{h g}$ was obtained as a white solid in 72% yield $(93.3 \mathrm{mg}) .{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $8.79(\mathrm{~d}, J=4.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.55(\mathrm{~d}, J=7.8,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.00(\mathrm{td}, J=7.7,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.66-7.65$
$(\mathrm{m}, 3 \mathrm{H}), 7.58(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.50-7.45(\mathrm{~m}, 4 \mathrm{H}), 7.41-7.33(\mathrm{~m}, 3 \mathrm{H}), 7.30-7.25(\mathrm{~m}, 1 \mathrm{H})$, $7.09(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 162.6,152.2,150.0,149.3,146.4,144.1$, $138.5,137.8,132.7,132.2,131.0,130.9,130.1,129.9,129.2,129.2,128.6,127.8,127.3,126.5$, 125.3, 124.8, 123.6, 114.1. HRMS: $\mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{27} \mathrm{H}_{17} \mathrm{ClN}_{3} \mathrm{O}: 434.1055$, found 434.1057

5ga, 82\%
Product 5ga was obtained as a white solid in 82% yield $(46.9 \mathrm{mg}) .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $8.59(\mathrm{~s}, 1 \mathrm{H}), 8.36(\mathrm{~s}, 1 \mathrm{H}), 7.83(\mathrm{~d}, J=9.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.74(\mathrm{dd}, J=19.6,8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.62(\mathrm{t}, J=7.5$ $\mathrm{Hz}, 1 \mathrm{H}), 7.43(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.31(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.79(\mathrm{~d}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.47(\mathrm{~s}, 3 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 163.6,150.4,149.8,148.6,147.5,139.2,138.4,136.8,133.5$, 131.1, 128.7, 127.9, 125.4, 124.9, 123.9, 123.6, 116.0 18.3. HRMS: m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{18} \mathrm{H}_{14} \mathrm{~N}_{3} \mathrm{O}: 288.1131$, found 288.1128.

5gd, 86\%
Product 5 gd was obtained as a white solid in 86% yield $(63.0 \mathrm{mg}) .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $8.58(\mathrm{~s}, 1 \mathrm{H}), 8.31(\mathrm{~s}, 1 \mathrm{H}), 7.91(\mathrm{~s}, 1 \mathrm{H}), 7.81-7.76(\mathrm{~m}, 2 \mathrm{H}), 7.68(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.49(\mathrm{~d}, J=$ $7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.28(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.79(\mathrm{~d}, J=9.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.48(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 163.4,150.4,150.36,148.3,147.8,139.2,138.1,136.6,133.7,130.9,129.1,129.0$, 125.7, 123.9, 123.8, 123.4, 116.1, 18.3. HRMS: m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{18} \mathrm{H}_{13} \mathrm{BrN}_{3} \mathrm{O}^{+}$: 366.0237 , found 366.0238 .

Product $\mathbf{5 g h}$ was obtained as a white solid in 76% yield $(52.5 \mathrm{mg}) .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $8.58(\mathrm{~s}, 1 \mathrm{H}), 8.30(\mathrm{~s}, 1 \mathrm{H}), 7.81(\mathrm{~d}, J=9.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.76(\mathrm{dd}, J=8.0,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.71(\mathrm{~d}, J=9.2$
$\mathrm{Hz}, 1 \mathrm{H}), 7.59(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.38(\mathrm{dd}, J=9.2,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.29(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.80(\mathrm{~d}$, $J=9.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.46(\mathrm{~s}, 3 \mathrm{H}), 2.33(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 169.3,163.4,150.4,149.7$, $148.4,147.5,145.4,139.2,138.1,136.3,133.5,130.0,126.4,124.9,124.1,123.9,118.2,116.3,21.2$, 18.3. HRMS: m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{20} \mathrm{H}_{16} \mathrm{~N}_{3} \mathrm{O}_{3}{ }^{+}: 346.1186$, found 346.1184 .

5gi, 76\%
Product 5 gi was obtained as a white solid in 76% yield $(67.5 \mathrm{mg}) .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $8.60(\mathrm{~s}, 1 \mathrm{H}), 7.79(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.64-7.57(\mathrm{~m}, 7 \mathrm{H}), 7.37-7.33(\mathrm{~m}, 3 \mathrm{H}), 6.71(\mathrm{~d}, J=9.9 \mathrm{~Hz}$, 1H), $2.49(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 163.2,150.4,150.0,148.6,147.8,146.0,139.2$, $136.6,134.2,133.8,133.6,130.6,130.1,129.9,129.0,128.7,125.5,123.9,123.8,119.1,114.7$, 18.3. HRMS: m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{24} \mathrm{H}_{17} \mathrm{BrN}_{3} \mathrm{O}^{+}$: 442.0550 , found 442.0551 .

5ij, 99\%
Product $\mathbf{5 i j}$ was obtained as a white solid in 99% yield $(83.0 \mathrm{mg}) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $8.77(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.99(\mathrm{t}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.66(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.61(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H})$, $7.58-7.53(\mathrm{~m}, 2 \mathrm{H}), 7.50-7.43(\mathrm{~m}, 3 \mathrm{H}), 7.32(\mathrm{br}, 2 \mathrm{H}), 6.73(\mathrm{~d}, J=9.9 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 162.9,151.0,150.1,149.8,146.4,145.7,138.6,136.3,135.6,132.2,131.9,131.3$, 130.6, 129.4, 125.0, 124.8, 124.7, 124.1, 123.9, 114.6. HRMS: m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{23} \mathrm{H}_{14} \mathrm{Cl}_{2} \mathrm{~N}_{3} \mathrm{O}^{+}: 418.0508$, found 418.0509 .

5ik, 97%
Product 5ik was obtained as a yellow solid in 97% yield $(78.0 \mathrm{mg}) .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $8.78(\mathrm{~d}, J=4.1 \mathrm{~Hz}, 1 \mathrm{H}), 8.00(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.67(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.64-7.52(\mathrm{~m}, 3 \mathrm{H})$,
$7.52-7.41(\mathrm{~m}, 3 \mathrm{H}), 7.32(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.14(\mathrm{br}, 2 \mathrm{H}), 6.74(\mathrm{~d}, J=9.9 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 162.9,162.8(\mathrm{~d}, J=248.0 \mathrm{~Hz}), 151.0,150.1,149.7,146.1,145.7,138.6$, $136.2,135.9(\mathrm{~d}, J=7.7 \mathrm{~Hz}), 131.9,131.3,130.9(\mathrm{~d}, J=6.1 \mathrm{~Hz}), 130.6,125.8,125.0,124.7,124.6$, 124.2, 123.9, 117.1, $116.4(\mathrm{~d}, J=20.8 \mathrm{~Hz})$, 114.6. HRMS: m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{23} \mathrm{H}_{14} \mathrm{ClFN}_{3} \mathrm{O}^{+}: 402.0804$, found 402.0804.

Reference

1. Ackermann, L.; Lygin, A. V. Org. Lett., 2011, 13, 3332.
2. Modak, A.; Rana, S.; Maiti, D. J. Org. Chem. 2015, 80, 296.
3. Jin, H.; Huang, L.; Xie, J.; Rudolph, M.; Rominger, F.; Hashmi, A. S. K. Angew. Chem. Int. Ed. 2016, 55,794.

III. Derivatization of coupled products

A mixture of 3aa $(0.4 \mathrm{mmol})$ and sodium ethoxide $(0.9 \mathrm{mmol})$ in DMSO $(5 \mathrm{~mL})$ was stirred at $120{ }^{\circ} \mathrm{C}$ under N_{2} atmosphere for 16 h . After cooled to the ambient temperature, the reaction mixture was quenched with $\mathrm{H}_{2} \mathrm{O}$. The aqueous phase was extracted with DCM, and the combined organic phase was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After filtration and evaporation of the solvents under reduced pressure, the crude product was purified by column chromatography on silica gel to afford 9 as a light yellow solid (89\%).
${ }^{1} \mathrm{H}$ NMR (400 MHz, Chloroform- d) $\delta 8.77(\mathrm{~s}, 1 \mathrm{H}), 8.22(\mathrm{~d}, J=3.3 \mathrm{~Hz}, 1 \mathrm{H}), 8.20(\mathrm{~d}, J=4.1 \mathrm{~Hz}$, $1 \mathrm{H}), 8.08(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.80(\mathrm{ddd}, J=8.4,6.8,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.71(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.65(\mathrm{t}$, $J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.55(\mathrm{ddd}, J=8.0,6.6,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.42(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.07(\mathrm{~s}, 2 \mathrm{H}), 3.70(\mathrm{q}$, $J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.26(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 152.8,146.6,141.8,128.8$, $128.4,128.2,127.8,127.3,124.6,123.3,121.3,120.81,120.79,118.2,110.2,70.9,64.2$, 15.0.HRMS: m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{18} \mathrm{H}_{17} \mathrm{~N}_{2} \mathrm{O}: 277.1341$, found 277.1340.

Compound 9 (0.4 mmol) was dissolved in 1, 4-dioxane (5 mL), to which was added 1 N HCl $(4 \mathrm{~mL})$. The reaction mixture was stirred at $90^{\circ} \mathrm{C}$ for 16 h . After that, the solution was neutralized with saturation aqueous NaHCO_{3}. The solution was extracted with dichloromethane. The combined organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and the solvent was removed under reduced pressure. The crude product was purified by column chromatography on silica gel to afford $\mathbf{1 0}$ as a yellow solid (86\%).
${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}) $\delta 9.05(\mathrm{~s}, 1 \mathrm{H}), 8.27(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.11(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H})$, $7.98(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.72(\mathrm{ddd}, J=8.4,6.8,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.57-7.46(\mathrm{~m}, 3 \mathrm{H}), 7.27(\mathrm{ddd}, J=$ 8.0, 6.9, 1.4 Hz, 1H). ${ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO- d_{6}) $\delta 158.1,151.6,146.7,133.9,133.4,132.7$, 132.7, 132.2, 128.9, 127.9, 127.0, 125.5, 124.9, 123.1, 116.1.HRMS: m/z: $[\mathrm{M}+\mathrm{H}]^{+}$calculated for $\mathrm{C}_{15} \mathrm{H}_{11} \mathrm{~N}_{2}$: 219.0922, found 219.0918.

IV. Mechanistic Studies

13
N-pyrimidinylindole (1a, 0.2 mmol), complex $\mathbf{1 3}(0.012 \mathrm{mmol}), \mathrm{AgSbF}_{6}(0.04 \mathrm{mmol})$, and PivOH (0.4 mmol) were dissolved in $\mathrm{MeOH}(3 \mathrm{~mL})$ in a pressure tube. The resulting mixture was stirred for seconds under N_{2} atmosphere, to which was added anthranil $(0.4 \mathrm{mmol})$. The mixture was stirred at $120^{\circ} \mathrm{C}$ for 20 hours. After that, the solvent was removed under vacuum and the residue was purified by silica gel chromatography using ethyl acetate/petroleum ether/ $\mathrm{Et}_{3} \mathrm{~N}(30: 60: 1)$ to afford product 3aa as a yellow solid (91%).

V. NMR Spectra

180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0
fl	(ppm)																	

\qquad

$\stackrel{n}{\stackrel{\infty}{2}} \underset{\substack{i \\ i \\ i}}{ }$

3ia

$\begin{array}{llllllllllllllllllll}190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0\end{array}$ f1 (ppm)

3ja

$\begin{array}{llllllllllllllllll}170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0\end{array}$ f1 (ppm)

30a
\qquad

-20	-40	-60	-80	-100	-120	-140	-160

$\begin{array}{lllllllllllllllllll}180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & C\end{array}$

3af
$\left.\begin{array}{llllllllllllllllllllllllllll}190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 \\ f 1 & (\mathrm{ppm})\end{array}\right)$ f1 (ppm)

10

 $\stackrel{\Omega}{2}$

5ag

5 cg

5 eg

5 gg

5hg


```
(\mathbb{O}
~
```


5gi

5 ij

$5 i j$

