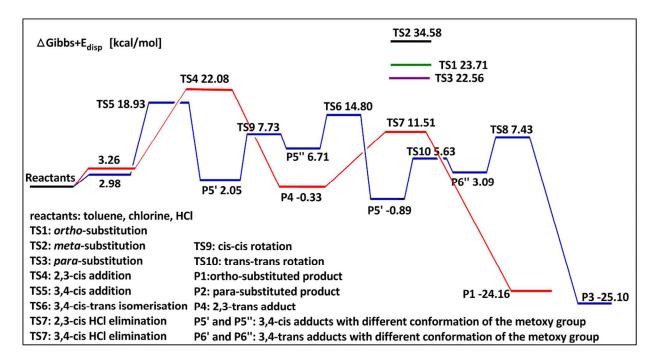
Supporting Information

Electrophilic Aromatic Substitution: New Insights into an Old Class of Reactions

Boris Galabov, *[†] Didi Nalbantova, [†] Paul von R. Schleyer, [‡] Henry F. Schaefer III^{‡,} *

[†]Department of Chemistry and Pharmacy, University of Sofia, Sofia 1164, Bulgaria and [‡]Center


for Computational Chemistry, University of Georgia, Athens, Georgia 30602, United States

*Corresponding authors: Boris Galabov <galabov@chem.uni-sofia.bg>

Henry Schaefer <ccq@uga.edu>

Table of Contents

Figure S1. Computed potential energy surface (PES) for anisole- Cl_2 reactions, catalyzed by HCl, in simulated (IEF-PCM) CCl ₄ solution at B2-PLYP+D3/6-311+G(2d,2p)//B3LYP/6-311+G(2d,2p). Cis-trans isomerization and elimination transition states, leading to formation of <i>m</i> -substituted product are not included.	S2
Figure S2. Addition products formed during anisole chlorination.	S2
Figure S3. (A) UV spectra of the reaction mixture for benzene nitration with mixed acid in 1:1 HNO ₃ :H ₂ SO ₄) in the 300 – 600 nm region; (B) Spectrum of neat nitrobenzene in the 300 – 600 nm region. All spectra are recorded at 25 °C.	S3
Figure S4. M06-2X/6-311+G(2d,2p) structures of the transition state for the concerted S_EAr sulfonation of benzene with two SO ₃ molecules in isolation (A) and for the stepwise process (B) in CH ₃ NO ₂ .	S3
List of references containing the Cartesian coordinates of all optimized structures discussed in the text.	S 3

Figure S1. Computed potential free energy surface (PES) for anisole- Cl_2 reactions, catalyzed by HCl, in simulated CCl_4 solution at B2-PLYP+D3/6-311+G(2d,2p)//B3LYP/6-311+G(2d,2p). Cis-trans isomerization and elimination transition states, leading to formation of *m*-substituted product are not included.

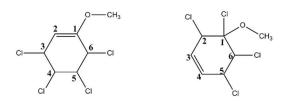
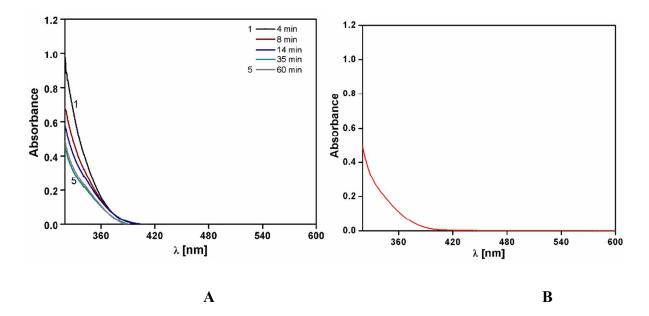
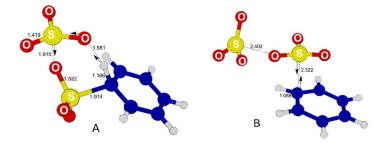




Figure S2. Addition products formed during anisole chlorination.

Figure S3. (A) UV spectra of the reaction mixture for benzene nitration with mixed acid in 1:1 $HNO_3:H_2SO_4$) in the 300 – 600 nm region; (B) Spectrum of neat nitrobenzene in the 300 – 600 nm region. All spectra are recorded at 25 °C.

Figure S4. M06-2X/6-311+G(2d,2p) structures of the transition state for the concerted S_EAr sulfonation of benzene with two SO₃ molecules in isolation (**A**) and for the stepwise process (**B**) in CH₃NO₂.

Cartesian coordinates

The Cartesian coordinates of the optimized structures discussed in the text can be found in the Supporting Information files of the following publications:

Anisole chlorination: SI to Ref. 15.

Toluene chlorination: SI to Ref. 16.

Benzene bromination: SI to Ref. 17.

Benzene nitration: SI to Ref. 18.

Benzene sulfonation: SI to Ref. 19.